
Hard edges: Hardware-based Control-Flow
Integrity for Embedded Devices

George Christou1, Giorgos Vasiliadis1, Elias Athanasopoulos2, and Sotiris
Ioannidis3

1 Foundation for Research and Technology Hellas (FORTH-ICS), Greece
2 University Of Cyprus, Cyprus

3 Technical University of Crete (TUC-ECE), Greece
{gchri, gvasil}@ics.forth.gr

athanasopoulos.elias@cs.ucy.ac.cy
sotiris@ece.tuc.gr

Abstract. Control-Flow Integrity (CFI) is a popular technique to de-
fend against State-of-the-Art exploits, by ensuring that every (indirect)
control-flow transfer points to a legitimate address and it is part of the
Control-flow Graph (CFG) of a program. Enabling CFI in real systems
is not straightforward, since in many cases the actual CFG of a program
can only be approximated. Even in the case where there is perfect knowl-
edge of the CFG, ensuring that all return instructions will return to their
actual call sites, without employing a shadow stack, is questionable.
In this work, we explore the implementation of a full-featured CFI-
enabled Instruction Set Architecture (ISA) on actual hardware. Our new
instructions provide the finest possible granularity for both intra-function
and inter-function Control-Flow Integrity. We implement hardware-based
CFI (HCFI) by modifying a SPARC SoC and evaluate the prototype on
an FPGA board by running SPECInt benchmarks instrumented with a
fine-grained CFI policy. HCFI can effectively protect applications from
code-reuse attacks, while adding less than 1% average runtime and 2%
power consumption overhead, making it particularly suitable for embed-
ded systems.

1 Introduction

The diversification of computing systems and the wide adoption of IoT
devices that pervade our lives has grown the security and safety concerns in
home appliances, enterprise infrastructure and control systems. Typical exam-
ples range from traditional IoT environments where data are collected and pro-
cessed in back-end cloud systems, to more sophisticated, edge-based scenarios
where part of processing also occurs in end-devices. Protecting against such cases
using software-only solutions is not sufficient, since advanced attacks can modify
even the security software itself, thus bypassing any restrictions posed. In ad-
dition, the performance overheads of software-based solutions is non-negligible
in certain cases. The use of hardware-backed solutions can vitally improve the

2 Authors Suppressed Due to Excessive Length

security of embedded devices, even though this is still challenging due to their
limited resources and their intrinsic budget of performance and memory.

At the same time, the exploitation threats are constantly evolving. More
than a decade ago, exploiting software was as easy as just simply smashing the
stack [16]. An attacker could simply inject code into a vulnerable buffer in the
stack and overwrite the return address (of the current stack frame) to point back
to their code. Today, this is not possible due to data execution prevention (DEP)
mechanisms, however attackers can still exploit software in other ways. For in-
stance, code-reuse attacks, such as Return-Oriented Programming (ROP) [19]
and Jump-Oriented Programming (JOP) [6] can potentially take advantage of
any vulnerability and transform it to a functional exploit. These techniques do
not require any code injections; instead, they re-use existing parts of the program
to build the necessary functionality without violating DEP. According to a re-
cent report, more than 80% of the vulnerabilities are exploited using code-reuse
attacks [18].

Code randomization techniques [17] are shuffling the location of the code,
in order to make code reuse attacks harder to achieve. Still, even a small infor-
mation leak can reveal all of the process code and bypass any randomization
scheme [20]. Instead of hiding the code, another way for stopping exploits is
to prevent the execution of any new functionality, by employing Control-Flow
Integrity (CFI) techniques [3]. An attacker cannot inject code or introduce any
new functionality that is not part of the legitimate control-flow graph (CFG).
Unfortunately, the majority of existing CFI proposals have still many open issues
(related to accuracy and performance), that hinder its applicability [5].

In this work, we extend our previous hardware-assisted CFI (HCFI) [8] in
order to enhance its granularity and flexibility. The implementation of new hard-
ware instructions dedicated for CFI, and the deployment of shadow memory
within the processor core, increase the granularity of CFI (especially in forward-
edge situations); moreover they cover a couple of intrinsic situations (includ-
ing the instrumentation of fall-through functions and indirect jumps, such as
switch statements, within functions). Performance-wise, the implementation
in hardware is the optimal choise; our approach adds less than 1% average run-
time and 2% power overhead, making it suitable for embedded systems.

Overall, HCFI is a hardware design that offers a CFI solution that is (i)
complete, since it protects both forward and backward edges, (ii) fast, since
the experienced overhead is, on average, less than 1%, and (iii) more accu-
rate, since it employs a full-functional shadow stack implemented inside the
processor core. Furthermore, we argue that HCFI is the most complete hard-
ware implementation of CFI so far, supporting many problematic cases (such as
setjmp/longjmp, recursion, fall-through functions and indirect jumps within
functions).

Hard edges: Hardware-based Control-Flow Integrity for Embedded Devices 3

2 Background

Control-Flow Integrity (CFI) [3] constraints all indirect branches in a control-
flow graph (CFG), which is determined statically before the program execution.
In essence, this is achieved by setting a simple set of rules that a program exe-
cution flow must adhere to:

1. A call-site “A” can call a function “B” only if the edge (the call itself) is
part of the Control-Flow Graph (CFG). This is called Forward-Edge CFI
and can easily applied to direct calls, as the only way to modify a direct call
is to overwrite the code itself. This is not the case for indirect calls though,
where function pointers are typically stored in data regions.

2. A function “B” can only return to the call-site “A” that actually called it, and
no other place in the code. This is called Backward-Edge CFI. Backward-
edges are, in essence, indirect calls, since they rely on a pointer (return
address) to jump to their target.

An attacker cannot inject code or introduce any new functionality that is
not part of the legitimate control-flow graph (CFG). The majority of existing
CFI proposals have still many open issues (related to accuracy and performance
overhead), that hinder its applicability, especially, to embedded devices [5, 22].
For instance, it is not always easy to compute the program’s CFG. This is mainly
because the source code might not always be available, while even if it does,
dynamic code that might be introduced at run-time or the heavy use of function
pointers can lead to inconclusive target resolution [5]. This problem has led
researchers to develop CFI techniques that are based on a relaxed approximation
of the CFG [22], also known as coarse-grained CFI.

Unfortunately, coarse-grained CFI has been demonstrated to exhibit weak
security guarantees and it is today well established that it can be bypassed [12].
Approximation of the ideal CFG through code analysis is not always sound,
therefore, at least for protecting backward edges, the community has suggested
shadow stacks [9] - secure memory that stores all return address during func-
tion calls. Many research efforts have stressed that shadow stacks are important
for securing programs, even when we know the program’s CFG with high accu-
racy [11]. A trivial case is when a function is called by multiple places in the
program. According to the CFG, all return locations are legitimate, however
only one is actually correct. Moreover, implementing fine grained CFI solely on
software, introduces prohibitive performance impact. In the original CFI pro-
posal by Abadi [3], the average performance was 21%. More recent approaches
like SafeStack [15], are designed to offer fine grained backward edge protection
with minimal overhead. The applications are instrumented during compilation in
order to use a different, protected stack for storing control flow variables used in
backward edges. However, protecting memory regions using software techniques
has been proven ineffective against sophisticated attacks [7, 13].

To overcome there restrictions, hardware-assisted CFI implementations can
provide architecturally protected memory regions for storing control-flow vari-
ables, while at the same time accelerate significantly any checks required during

4 Authors Suppressed Due to Excessive Length

control-flow transitions; this enables the use of fine-grained CFI even in low-
powered devices.

3 Threat Model

Our threat model assumes an attacker that can exploit a vulnerability, ei-
ther a stack or heap overflow, or use-after-free. This vulnerability can be further
used to overwrite key components of the running process like return addresses,
function pointers, or VTable pointers. We also consider that the attacker has
successfully bypassed ASLR or fine-grained randomization [20], and has full
knowledge of the process’ memory layout. Nevertheless, the system enforces that
(i) the .text segment is non-writable preventing the application’s code from
being overwritten, and (ii) the .data segment is non-executable blocking the
attacker from executing directly data with proper CFI annotation. Both of these
are commonplace in today’s systems preventing software exploitation.

4 Hardware-Enforced Control-Flow Integrity

HCFI enforces the set of CFI rules (described in Section 2) in hardware, while
also provide workarounds for certain corner cases. More specifically, a valid call
requires that the call site and the destination have been previously acknowledged
to be a valid pair in the CFG. A simple way to avoid checking a list of valid
pairs for every indirect call, is to group valid pairs with a label. If the label of
the source and the destination match, then the edge is legal.

On the contrary, a valid return is typically simpler to validate. Whenever a
call takes place, the return address is pushed to the stack. If the address reached
after a return, matches the top of the stack, the return is valid. This is achieved
by also pushing the return address to a new, hidden, stack (namely shadow
stack), and comparing the return’s target to the one stored at the top of the
shadow stack. However, this is not the case for the setjmp/longjmp case, in
which a function does not necessarily return to its caller. In particular, longjmp
never returns to its caller but to its matching setjmp.

To support this functionality, the ISA is extended with new instructions
(shown in Table 1): two for the instrumentation of the backward edges, two
for the forward edges, and two for handling setjmp/longjmp cases. The in-
structions are strategically placed, so as to wrap the Control-Flow edges. SetPC
and SetPCLabel are paired with direct and indirect calls respectively, while
CheckPC is paired with return instructions, and CheckLabel is placed in func-
tion entry points, if the function is an indirect call target. Finally, SJCFI and
LJCFI are paired with the calls to setjmp and longjmp themselves. LJCFI
is placed immediately before the call to longjmp, while SJCFI is placed imme-
diately after the call to setjmp, so that it will be the first instruction executed
after a return from setjmp, no matter if setjmp or longjmp was called.

Finally, given that the design of HCFI does not track stack frames, but spe-
cific addresses instead, recursion may result in the same address being pushed

Hard edges: Hardware-based Control-Flow Integrity for Embedded Devices 5

Normal
Execution

Flow

Label Register

 Label

Control
Flow

Violation

Shadow Stack

0x1234

0xabcd0

0xbeef0

0xcafe0

….

0

1

0

0

Indirect
Call

State

 Return
 Address

(a) FSM for indirect call instruc-
tions

Normal
Execution

Flow

Return
Address

Validation

Shadow Stack

0x1234

0xabcdc

0xbeef4

0xdeadc

0x1337c

0xcafec

….

Control
Flow

Violation

(b) FSM for return instructions

Fig. 1: The basic FSMs for the hardware-based CFI. For return instructions, the
target Program Counter is compared with the top value of the stack everytime
a CheckPC instruction is received and the execution continues normally.

to the shadow stack multiple times. From this observation, a very simple opti-
mization can be implemented; namely, not storing the address when it equals
the top of the stack, but instead marking the address at the top as recursive.
This effectively negates the spacial requirements of immediate recursion. Dur-
ing CheckPC execution, if the top address in the shadow stack is marked as
recursive and is the same as the target of the return instruction it will not be
popped. If not, the top address will be popped and the target address will be
compared with the next top address in the shadow stack. If the two addresses
are equal, the execution will continue normally and the top of the shadow stack
will be popped (if the address was not marked as recursive). If the addesses are
not equal, CheckPC will result in a CFI violation.

Table 1: Instructions needed to support HCFI.

SetPC Pushes the current program counter (PC) in the shadow stack

CheckPC Pops the shadow stack and compares the result with the next PC

SetPCLabel Can push the PC onto the shadow stack and carries a label used to
verify forward edges which is stored in a dedicated register (Label Reg-
ister). Finally, it sets the requirement the next instruction must be a
CheckLabel

CheckLabel Carries a label that is compared to the one in the Label Register

SJCFI Sets the environment for a future longjmp and acts as a landing point
for an executing one

LJCFI Signifies that a longjmp is underway

6 Authors Suppressed Due to Excessive Length

Normal
Execution

Flow

Label Register

Return
Address

If (SetPC == 1)
Label

Control
Flow

Violation

Shadow Stack

0x1234

0xabcd0

0xbeef0

0xcafe0

….

0

1

0

0

Indirect
Call

State

Fig. 2: The extended FSM for Indirect Call States. A SetPCLabel instruction
is received, the appropriate memory modules are set, and the core enters a
state where only CheckLabel instructions are accepted. Once a CheckLabel
instruction with the appropriate label is received, the execution returns to its
normal flow.

5 Fine-grained CFI Instrumentation

The instructions presented in Section 4 are created in order to enable a policy
agnostic CFI mechanism. Especially for the backward edges, they can easily
support the finest possible granularity: by using an architecturally protected
shadow stack where only the CFI instructions can modify values, we can ensure
that a function will always return to the original call site. However, for forward
edges, the granularity is proportional to the effort of analysis performed on the
code of the executable. Ideally, every function in the binary will be reachable by
a minimum set of indirect call sites. We note that our design can even support
more relaxed forward-edge schemes, where indirect call sites can target every
function entry point, i.e. by using only one label in the whole binary — this can
be practical in cases, where extensive control flow analysis is not feasible.

To allow for finer granularity and flexibility, we make the following modi-
fications to our initial design. Previously, every CheckLabel instruction was
requiring the Label Register to be set, and hold the correct label. Under the
new design, an unset Label Register, or one carrying an incorrect label, does not
lead to a violation, as long as the next instruction is also a CheckLabel. Also,
the SetPCLabel instruction can now ommit pushing the PC to the shadow
stack, depending on its arguments. Moreover, we allow the instrumentation of
indirect branching within the same function. Ignoring CheckLabel instructions
does not raise security concerns, if the whole binary is instrumented properly.
Forward-edge transitions should only be checked during indirect call and branch
instructions — during normal execution, the CheckLabel instructions do not
need to make any checks, since the control-flow is not influenced by data.

Hard edges: Hardware-based Control-Flow Integrity for Embedded Devices 7

5.1 Finer Forward-Edge Granularity

When Control Flow Integrity was first introduced by Abadi et. al. [3], indirect
call targets with a common source had to be grouped together. For example, if
a call site “A” indirectly called a call target “B”, and a call site “C” could
indirectly call “D” and “B”, then both call sites “A” and “C”, as well as the
call targets “B” and “D”, would have to share the same label. This is a usual
case in C++ applications where indirect calls, dereference virtual table pointers.
Target functions that are common between indirect call sites, will force the use
of the same label across a large portion of the application. Thus, the granularity
of forward-edge protections become significantly coarser.

In this work, we offer the option to set a unique label for each indirect call
site, and add as many CheckLabels in the call target as needed. The previous
example can now be instrumented with 2 labels in the “B” entry point (one for
each indirect call-site). Call site “A” and “C” will carry different labels in their
CheckLabel instructions. This has the effect of not allowing call site “A” to jump
to “D”, which was previously possible. This allows for much finer forward-edge
CFI on top of an already powerful design. Figure 2 presents the operation of
CheckLabel instruction.

Fall-through Functions In many popular libraries, such as GNU libc, there
are functions with overlapping code sections [4]. In such cases, the execution
of a function falls-through into another function’s entry point (without using
branch instructions). If these functions are possible targets of indirect call in-
structions, they should be instrumented with CheckLabel instructions, other-
wise even if the indirect transition is valid it will result to a CFI violation. Since
CheckLabels do not cause a CFI violation when the processor is not in indi-
rect jump state, they are just ignored during execution. Thus, when a function
falls through, the execution of the inner function’s CheckLabel instructions
will not result in a CFI violation. This allows for fall-through functions to be
instrumented like regular functions.

Intra-Function Forward-Edges Most CFI schemes do not take into account
indirect branches, targeting addresses within the same function. For example,
large switch statements are usually compiled to jump tables in order to reduce
the code size of the binary. In these cases the address of each case is stored in
a jump table. At runtime, the result of the switch statement is used in an
indirect jump in order to dereference the jump table at the appropriate index.
Thus, instead of emitting absolute jumps for every possible statement result,
the compiler emits a single indirect jump that uses the statement result as an
index in the jump table. In our design we offer the capability to instrument those
indirect jumps in order to ensure that the target address is the entry point of
one of the cases. Each indirect jump will be instrumented with a SetPCLabel
instruction that will not push a return address in the shadow stack (i.e. SetPC
bit is ’0’), and the entry points of each case basic block will be instrumented

8 Authors Suppressed Due to Excessive Length

with the appropriate CheckLabel instruction. Every switch statement in the
binary should use a different label for better granularity.

6 Prototype Implementation

To implement the hardware-based CFI described in the previous sections,
we extended the Leon3 SPARC V8 processor, which is a 32-bit open-source
synthesizable processor. Overall, the additions to the core can be grouped in the
following two categories: (i) Memory Components and (ii) CFI Pipeline.

6.1 Memory Components

The following new memory components are deployed in the Register File of
the core:

– A 256*32 bit dual-port Block RAM was used for the Shadow Stack.
– A 256*8 bit single-port Block RAM was used for the setjmp and longjmp

support (SJLJRAM).
– A 18 bit register was used to store the label for forward edge validation

(Label Register).
– A 256*1 bit array helped us optimize recursive calls (Recursion Array).

6.2 CFI Pipeline

Our instructions enter the Integer Unit’s (IU) pipeline as usual, however
they do not interfere with it. We have developed a new pipeline within the IU
(CFI Pipeline) that operates in parallel and provides the functionality required
everytime the instructions are decoded.

– SetPC first tops the Shadow Stack and compares it to the current Program
Counter (PC). If the memory addresses match, the Recursion Array is set;
otherwise, the address is pushed onto the shadow stack. In case the Shadow
Stack is full a Full violation is raised.

– SetPCLabel is in essence two instructions, meaning that it acts exactly as
a SetPC and what could be described as a SetLabel. The SetPC func-
tionality works only if the 25th LS bit of the instruction is set. Regardless
of the SetPC functionality, the Label carried in its 18 LS bits is written
to the Label Register, and the CFI Pipeline transitions to the SetLabel
state. This mandates that only CheckLabel instructions can be executed,
until one with the correct label is issued. If any other instruction is issued,
a Control Flow violation is raised.

– CheckLabel compares the Label carried in its 18 LS bits to the label stored
in the Label Register, if the CFI Pipeline is in the SetLabel state. Oth-
erwise, it is ignored and acts as a nop. If the comparison holds, the Label
Register is reset and the pipeline transists from SetLabel state to normal
execution. If not, the execution continues, but if an instruction other than
checklabel is issued, a Control Flow violation will be raised.

Hard edges: Hardware-based Control-Flow Integrity for Embedded Devices 9

– CheckPC first checks the Shadow Stack; if it is empty, an Empty violation
is raised. Otherwise, it tops the Shadow Stack, increments the value by four
(one instruction) and compares it to the next PC. If the addresses match and
the equivalent recursion bit is not set, the Shadow Stack is popped. If the
addresses did not match but the recursion bit is set, the address is popped
and another comparison is performed with the next value. Again, if they
match and the top value is not recursive, it is popped. If the first comparison
failed and the top address was not recursive, or if both comparisons failed,
a PC Mismatch violation is raised.

– SJCFI changes its functionality depending on whether the CFI Pipeline is
in the longjmp state. If it is not, it writes the current depth of the Shadow
Stack to the SJLJRAM. The address is provided by a label it carries on
its 8 LS bits. Otherwise, it uses the same label to read the address from
the SJLJRAM and set the Shadow Stack to that depth. The Shadow Stack
will not allow an index higher than the current, so that previously popped
addresses cannot be abused. The CFI Pipeline returns to its default state.

– LJCFI sets the pipeline in the longjmp state until an SJCFI instruction
is executed.

7 Performance Evaluation

We synthesize and program our new design, based on the Leon3 softcore, on
a Xilinx ml605-rev.e FPGA board. The FPGA has 1024 MB DDR3 SO-DIMM
memory and the design operates at 120 MHz clock frequency. Since we are tar-
geting embedded systems, we run all tests without an operating system present.
We instrumented most of the SpecInt2000 suite and a few microprocessor bench-
marks, namely Coremark, Dhrystone, and Matmul.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

Fig. 3: The runtime overhead measured with our implementation.

10 Authors Suppressed Due to Excessive Length

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

1 2 3 4 5 6 7 8 9 10

increment empty

Fig. 4: The runtime overhead added by using 1-10 labels on an empty function or a
function that increments a value.

Runtime Overhead When instrumenting only calls (both direct and indirect)
and returns, the average overhead lies at a little under 1% as shown in Figure 3.
In the case of gap benchmark, the reported overhead is the result of a tight loop
executing a multitude of indirect calls to relatively small functions.

We also run two series of microbenchmarks to see the effect of adding multi-
ple labels to a function. We did this by executing a tight loop with an indirect
call to one of two functions. The first was an empty function, which results in
three assembly instructions. The second was a function that incremented a global
variable, this has a body of ten instructions. We added one to ten labels on the
function entry points. With these benchmarks we can find the maximum per-
centage of runtime overhead imposed when a function is called indirectly with
CFI instrumentation. We present our results in Figure 4. In our previous design
the maximum runtime overhead that could be imposed is the same as the over-
head reported for the empty function with only one label. The runtime overhead
is relative to the number of indirect call sites that can point to each function (i.e.
the number of labels in the entry point) and the number of instructions in the
function. In large functions, CFI instructions will account for a small percent-
age of the function’s code. Thus, we expect that the performance overhead will
be significantly less in real world applications. By also instrumenting indirect
jumps, the overhead can increase; even though this depends on the total number
of indirect branches that the program uses. For example, forward-edge protec-
tion in the jump table implementation of switch statements, can be accomplished
with the execution of just two additional instructions. In our new design, the
granularity of forward-edge can be adjusted, i.e. use the same labels in some in-
direct call sites in order to reduce the number of labels in function entry points.
Thus, application designers can opt to reduce forward-edge granularity in order
to favor performance.

Hard edges: Hardware-based Control-Flow Integrity for Embedded Devices 11

Hardware Overhead We implemented our design initially without longjmp
support and the recursion optimization. The resulting area overhead, as detailed
by the reports of the Xilinx tools used to synthesize the design, is very low,
using an additional 0.65% registers and 0.81% LUTs (look-up tables). The area
overhead increases significantly to 2.52% registers and 2.55% LUTs, when placing
the longjmp support and the recursion optimization.

Power Consumption We measure the power consumption of our design using
the Xilinx XPower Analyzer tool. For the unmodified design the tool reported
6072.11 mW power consumption. The required modifications for the CFI in-
structions increase the power consumption to 6149.32 mW. The full fledged
design with CFI and SJ/LJ support has a power consumption of 6176.92 mW.
The results indicate that the power consumption overhead is about 1.2%, which
increases to 1.7% when adding longjump support.

8 Related Work

CFI is the base of many proposed mitigation techniques in the literature.
Most of them are software-based, although there are some attempts for delivering
CFI-aware processors. In this section, we discuss a representative selection of CFI
strategies proposed in the literature and the industry as well as their limitations.
Davi et al. [10] proposed HAFIX, a system for protecting backward edges based
on active set CFI. HAFIX deploys dedicated, hidden memory elements for storing
critical information. Their implementation utilizes labels to mark functions as
active call sites. Labels are used as index in a bitmap, which dictates if a function
is active or inactive. A return can only point to an active function. However,
it has been proven that this notion is very relaxed and can be circumvented [21].
In our design we use an architecturally protected shadow stack, a technique
considered to be the state of the art for protecting beackward edges. Moreover,
our design offers forward edge protection. HAFIX proposes the use of software
techniques for protecting forward-edges.

Intel plans to include Control-flow Enforcement Technology (CET) [1] in fu-
ture processors. In CET a shadow stack is defined in order to protect backward-
edge control flow transfers in a manner similar to our design. With regards to
forward-edge control flow transfers ENDBRANCH instruction is used to mark the
legitimate landing points for call and indirect jump instructions within the ap-
plications code. However, an indirect jump can point to any ENDBRANCH. In
comparison, HCFI can support multiple labels in every function entry offering
per indirect call-site granularity for forward edges. ARM presented Pointer Au-
thentication Code (PAC) [2]. This mechanism utilizes cryptographic primitives
(hashing) in order to verify that the control flow pointers are not corrupted
before using them. The pointer authentication code (PAC) of each control flow
pointer is stored in the unused bits of the pointer (i.e. 24 MS bits of the pointer).
Each process has a unique key which is used in order to calculate and authenti-
cate the control flow pointers. The encryption algorithm used is QARMA. This

12 Authors Suppressed Due to Excessive Length

technology has been already deployed in Apple products with ARMv8.3 cores.
A recent study from Googles project zero identified several vulnerabilities in this
technology [14]. Pointer authentication can offer similar levels of protection with
our design. However, the use of cryptographic primitives in PAC instructions im-
poses signifficantly more overhead in terms of performance and area compared
to our design.

9 Conclusions

In this paper, we designed, implemented and evaluated a flexible and policy-
agnostic Control-Flow Integrity Instruction Set Extension. Our extensions in-
troduced less than 1% runtime overhead on average and less than 2% increase
in power consumption, will only imposing very little overhead in terms of addi-
tional hardware circuitry (less than 2.55%). Our plan for the future is to extend
our implementation to support multi-threading. While our forward-edge pro-
tections can be easily deployed in multi-threaded applications, for protecting
backward-edges a single shadow stack is not enough. We plan to implement a
new technique that allocates memory pages for each thread’s shadow stack.

Acknowledgments
This work was supported by the projects CONCORDIA, C4IIoT, Cyrene

and IntellIoT, funded by the European Commission under Grant Agreements
No. 830927, No. 833828, No 952690 and No. 957218. This publication reflects
the views only of the authors, and the Commission cannot be held responsible
for any use which may be made of the information contained therein. The au-
thors would like to thank Nikolaos Christoulakis for his contribution during the
implementation of HCFI.

References

1. Control-flow Enforcement Technology Preview. https://
software.intel.com/sites/default/files/managed/4d/2a/
control-flow-enforcement-technology-preview.pdf (2016)

2. Pointer Authentication on ARMv8.3. https:
//www.qualcomm.com/media/documents/files/
whitepaper-pointer-authentication-on-armv8-3.pdf (2017)

3. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Pro-
ceedings of the 12th ACM CCS (2005)

4. Agadakos, I., Jin, D., Williams-King, D., Kemerlis, V.P., Portokalidis, G.: Nibbler:
Debloating binary shared libraries. In: Proceedings of the 35th Annual Computer
Security Applications Conference. pp. 70–83 (2019)

5. Athanasakis, M., Athanasopoulos, E., Polychronakis, M., Portokalidis, G., Ioanni-
dis, S.: The Devil is in the Constants: Bypassing Defenses in Browser JIT Engines.
In: NDSS. The Internet Society (2015)

6. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a
new class of code-reuse attack. In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security (2011)

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

Hard edges: Hardware-based Control-Flow Integrity for Embedded Devices 13

7. Carlini, N., Barresi, A., Payer, M., Wagner, D., Gross, T.R.: Control-flow bending:
On the effectiveness of control-flow integrity. In: USENIX Security (2015)

8. Christoulakis, N., Christou, G., Athanasopoulos, E., Ioannidis, S.: HCFI:
Hardware-Enforced Control-Flow Integrity. In: Proceedings of the 6th ACM Con-
ference on Data and Application Security and Privacy. CODASPY ’16 (2016)

9. Dang, T.H., Maniatis, P., Wagner, D.: The performance cost of shadow stacks and
stack canaries. In: ACM Symposium on Information, Computer and Communica-
tions Security, ASIACCS. vol. 15 (2015)

10. Davi, L., Hanreich, M., Paul, D., Sadeghi, A.R., Koeberl, P., Sullivan, D., Arias,
O., Jin, Y.: Hafix: hardware-assisted flow integrity extension. In: Proceedings of
the 52nd Annual Design Automation Conference. p. 74. ACM (2015)

11. Evans, I., Long, F., Otgonbaatar, U., Shrobe, H., Rinard, M., Okhravi, H.,
Sidiroglou-Douskos, S.: Control jujutsu: On the weaknesses of fine-grained con-
trol flow integrity. CCS (2015)

12. Göktaş, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: Over-
coming control-flow integrity. In: IEEE Symposium on Security and Privacy (2014)

13. Göktaş, E., Economopoulos, A., Gawlik, R., Athanasopoulos, E., Portokalidis, G.,
Bos, H.: Bypassing Clang’s SafeStack for fun and profit. Black Hat Europe (2016)

14. Google Project Zero: Examining Pointer Authentication on the
iPhone XS. https://googleprojectzero.blogspot.com/2019/02/
examining-pointer-authentication-on.html

15. Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-
Pointer Integrity. In: USENIX OSDI (2014)

16. One, A.: Smashing the stack for fun and profit. Phrack magazine 7(49), 365 (1996)
17. Pappas, V., Polychronakis, M., Keromytis, A.D.: Smashing the Gadgets: Hindering

Return-Oriented Programming Using In-place Code Randomization. In: Proceed-
ings of the IEEE Symposium on Security and Privacy (2012)

18. Rains, T., Miller, M., Weston, D.: Exploitation trends: From potential risk to actual
risk. In: RSA Conference (2015)

19. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-oriented program-
ming: Systems, languages, and applications. ACM Transactions on Information
and System Security (TISSEC) 15(1), 2 (2012)

20. Snow, K.Z., Davi, L., Dmitrienko, A., Liebchen, C., Monrose, F., Sadeghi, A.R.:
Just-in-time code reuse: On the effectiveness of fine-grained address space layout
randomization. In: Proceedings of the 34th IEEE Symposium on Security and
Privacy (May 2013)

21. Theodorides, M., Wagner, D.: Breaking active-set backward-edge CFI. In: IEEE
International Symposium on Hardware Oriented Security and Trust (2017)

22. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: USENIX Security
(2013)

https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html

	Hard edges: Hardware-based Control-Flow Integrity for Embedded Devices

