
Enhanced CAPTCHAs: Using Animation to Tell

Humans and Computers Apart

Elias Athanasopoulos and Spiros Antonatos

Institute of Computer Science, Foundation for Research and Technology Hellas,
P.O Box 1385 Heraklio, GR-711-10 Greece

{elathan, antonat}@ics.forth.gr

Abstract. Completely Automated Public Turing Test to tell Comput-
ers and Humans Apart (CAPTCHA) is a –rather– simple test that can
be easily answered by a human but extremely difficult to be answered
by computers. CAPTCHAs have been widely used for practical security
reasons, like preventing automated registration in Web-based services.
However, all deployed CAPTCHAs are based on the static identification
of an object or text. All CAPTCHAs, from simple ones, like typing the
distorted text, to advanced ones, like recognizing an object in an image,
are vulnerable to the Laundry attack. An attacker may post the test to
a malicious site and attract its visitors to solve the puzzle for her. This
paper focuses on sealing CAPTCHAs against such attacks by adding
a dimension not used so far: animation. Animated CAPTCHAs do not
have a static answer, thus even when they are exposed to laundering,
unsuspected visitors will provide answers that will be useless on the at-
tacker’s side.

Keywords: Web Security, CAPTCHA, Laundry attacks.

1 Introduction

CAPTCHAs[7] are challenge-response puzzles used to determine whether a user
is human or not. There are several types of CAPTCHA tests, including distorted
text, pictures of objects or even audio clips in case of impaired users. A simple
example of a CAPTCHA test is shown in Figure 1. Users are requested to type
the text displayed in the picture, ”smwm” in our example. Most advanced ex-
amples, like the one in Figure 2, ask the user to identify an object, a person or
an animal.

CAPTCHA tests are dynamically generated by computers, in contrast to the
standard Turing test which is administered by a human. This characteristic al-
lows them to be widely used for practical security reasons. Their applications
span across multiple domains, from preventing worms and spam to online polls
and search engines. The most common application of CAPTCHA tests is the pre-
vention of automatic registration in Web-based services, like Web-based e-mail.
E-mail provider sites include a CAPTCHA test as a step of the registration
process to stop bots from subscribing and using their resources for spam distri-
bution. Other applications involve online polls, where CAPTCHAs ensure that

H. Leitold and E. Markatos (Eds.): CMS 2006, LNCS 4237, pp. 97–108, 2006.
c© IFIP International Federation for Information Processing 2006

98 E. Athanasopoulos and S. Antonatos

Fig. 1. An example
CAPTCHA, which is
solved if a user recognizes
the word ’smwm’

Fig. 2. A sophisticated
CAPTCHA, which is solved
if a user identifies all the
three animals

Fig. 3. A modern
CAPTCHA, which adds
distortion to the image

only humans vote or Web-blogs, where CAPTCHAs protect the blog from the
massive insertion of garbage content by automated scripts. CAPTCHA tests can
be circumvented in several ways. Advanced character recognition programs[13]
can extract the text from simple tests like the one in Figure 1. However, tests
used today are not that simple. By adding noisy backgrounds, colours and in-
creasing the level of distortion, tests become resistant to character recognition
programs. An example of how modern CAPTCHA tests look like is shown in
Figure 3. Apparently, all CAPTCHA tests are vulnerable to laundry attacks. An
attacker may post the test to her site and lure the visitors of this site to solve the
test for her, e.g. by providing free access to content after the test is solved. Laun-
dry attacks are independent of the complexity of current CAPTCHA tests. Their
key property is that they use the intelligence of a human, thus any CAPTCHA
tests in their current form are vulnerable to this attack.

In this paper, we present a novel technique for preventing laundry attacks
for CAPTCHAs. The key idea behind our approach is that the answer of the
CAPTCHA is embedded inside the test, animated to avoid static properties
of current tests.. All current forms of CAPTCHAs follow the ”type the an-
swer” pattern, which dramatically helps laundering. We propose another form
of CAPTCHA, where the answer is not static but floats around the test.

Specifically, our approach is a test where various objects are randomly moving
inside the test. One of them is the correct answer and the user has to click on it to
complete the test. Animation does not prevent the user to tell the attacker what
is the answer, but prevents her from telling the attacker where is the answer.

2 Background

CAPTCHAs were originally developed by AltaVista. They were used to block
or discourage the submission of URLs to their search engine. In 2002, Baird et
al. developed PessimalPrint, a CAPTCHA that uses a model of document image
degradations that approximates ten aspects of the physics of machine-printing
and imaging of text. Their model included spatial sampling rate and error, affine
spatial deformations, jitter, speckle, blurring, thresholding, and symbol size. Baf-
fleText by PARC research uses non-English pronounceable character strings to
defend against dictionary-driven attacks, and Gestalt-motivated image-masking
degradations to defend against image restoration attacks.

Enhanced CAPTCHAs 99

Considerable research effort has been spent on breaking CAPTCHAs. Mori
and Malik [13] have developed efficient methods based on shape context match-
ing that can identify the word in an EZGimpy image with a success rate of
92%. Chellapilla et al.[10] have recently shown that computers are as good as or
better than humans at single character recognition under all commonly used dis-
tortion and clutter scenarios used in todays CAPTCHAs. Poorly implemented
CAPTCHAs can be also broken without using character recognition software
but by exploiting session management weaknesses.

3 Animated CAPTCHAs

This Section aims at examining the threat model against current technologies
used in the construction of CAPTCHAs and at describing our approach. To
be fair, we give the attacker all benefits and we make no assumptions about
the design of our approach. The key objectives of our approach is a) ease of
deployment, we use industry standard technologies, such as Sun’s Java Applets
or Macromedia’s Flash Movies, b) the test must be solvable by any user, at least
as easy as current tests and finally c) robustness against attacks.

3.1 Laundry Attacks

Most services introduce a CAPTCHA to prevent automatic registration or ensure
that a human is using them. Their main objective is to stop attackers from
instrumenting their bots to automatically use the service for malicious purposes.
An example is a Web e-mail service. In the absence of CAPTCHAs, the attacker
could instruct her bots to register automatically to the service and start using
the service in her way. For example, she can use the registered e-mail addresses
to send spam. A CAPTCHA based on a static image is frequently used by
large e-mail providers, such as Microsoft, Google and Yahoo, to ensure that the
registration process was completed by a human and not a bot.

One way to defeat CAPTCHAs, based on a static image, such as the one
in Figure 1, is by using sophisticated pattern matching. A bot can run special
pattern recognition software that identifies the distorted word and eventually
solve the test. However, the complexity of a static image CAPTCHA can be
easily augmented and thus make the task of the pattern recognition program
quite harder. Such an example can be seen in Figure 3. Although a human can
easily identify that the ”plus” word is displayed, the distortion in the picture
increases exponentially the difficulty for a pattern recognition software. Thus,
attackers are left with one solution to automatically solve a CAPTCHA: the
laundry attack.

A laundry attack takes advantage of unsuspected users who will eventually
solve a CAPTCHA in favor of the attacker, while they think that the CAPTCHA
is solved for their own service. In more detail, consider an attacker who runs
a popular Web site. Although it is out of the scope of this paper to explain
how the malicious site will gain enough popularity, we can refer the reader to
techniques[3].

100 E. Athanasopoulos and S. Antonatos

Every visitor of the malicious site is lured to solve a CAPTCHA. However,
this test is not generated by the site itself but it is actually the test of the
victim service, for example the CAPTCHA of the registration phase of the Web
e-mail service. No matter how difficult the test is, the answer now comes from
a human and it is highly probable that it will be correct. The unsuspected user
solves the test and the answer is “forwarded” to the victim service. In case the
malicious site does not have enough popularity, it may present an aggressive
behavior and periodically ask the user to solve a test, for example it can ask the
user to solve one CAPTCHA per file download. In this way, the attacker has
achieved to automatically solve CAPTCHAs independently of their difficulty,
with a number of mistakes proportional to the number of mistakes ordinary
users make and linearly to the number of visitors to her site.

The laundering of a CAPTCHA can be implemented by using the bots as in-
termediates. The malicious page that holds the “victim” puzzle contains a URL
in the form “http://one of my bots IP/test.jpg”. When an unsuspected user re-
quests this URL, the bot sees the request and initiates the communication with
the victim site, for example loads the registration page. Libraries like cURL [1]
can be used to load pages from the command line offering full functionality sim-
ilar to browsers, like cookies or redirections. The bot can also run a minimal
HTML rendering engine and examine the loaded page, in order to spot the lo-
cation of the CAPTCHA. Most sites have a constant name for the CAPTCHA
image or even when they use dynamic names, their location inside the page is
fixed or their names follow a specific pattern. After the test is located, it is then
copied to “test.jpg” and served to the user. The user then answers the test to a
form of the malicious site that has “http://one of my bots IP/submit.php” as
action. The bot receives the answer and completes it to the loaded page. To the
best of our knowledge, most services we tested allow multiple registrations per
IP address, thus the attacker does not need to use all her bot power to perform
the automated registrations, but a small fraction of it.

3.2 Animated CAPTCHAs to Prevent Laundry Attacks

Current forms of CAPTCHAs are subject to laundry attacks because of their
static nature. They are pictures that contain the puzzle and the user has to
complete the answer to a text field outside the puzzle. That is, the solution of
the CAPTCHA is static and can be transfered between nodes of a malicious
infrastructure (i.e. between a bot and a cooperative Web site which serves the
laundry attack).

The first step we need to take is to transform a CAPTCHA test from a static
picture to a dynamic application. That is, the answer must be completed inside
the puzzle.

Consider a test where the user has to identify an object. The test is now a mini-
application that contains both the image and the form where the user submits
the answer. The form points directly to the service that originally creates it, for
example the Web e-mail service, and the puzzle is immutable, e.g. the attacker
cannot change its forms to redirect them to her bots. We see how we can achieve

Enhanced CAPTCHAs 101

immutable tests in Section 4. The attacker now has to launder the advanced
test. When an unsuspected user completes her answer inside the puzzle, her
submission will go directly to the victim site and will fail. There are mainly two
reasons for the failure. First, the solution was submitted with a different cookie
or session ID as the request (some services use the PHP session ID to map the
answer to the request). Second, the solution was submitted from a different IP
address than the request.

Fig. 4. An animated CAPTCHA, which we developed as a Java Applet

The attacker can circumvent this type of puzzles by posting a message like
”Do not complete the answer inside the puzzle but to this text field”. If the
user follows the attacker’s instructions (and we believe will do as she will have
the incentives, e.g. access to the content) the same procedure as static puzzles
can be followed. The second step is to eliminate the need for the user to type
the answer and ask her to perform an action in the context of the application
CAPTCHA. That is, the user is asked to click to the correct solution. The
puzzle now contains multiple possible answers and the user has to click on the
correct one. The click will submit the answer to the originating site. Again, the
attacker may post a message like ”Do not click on the test but complete this
field where you would click”. Although, the probability of a false answer has
increased significantly (users may provide naive answers like “left” or ”bottom”)
the attacker may assist users using Javascript snippets that can show the user
the mouse coordinates.

The last step is to randomly animate the possible answers. While in the pre-
vious case answers remained static inside the puzzle, they now follow a random
path. Even when the unsuspected user tells the attacker where she clicked, this
information is useless at the attacker’s side. The animation of the puzzle, which
runs at the bot, is completely different than the one which runs at the user’s side.
Thus, an answer like ”I clicked on x,y coordinates” is useless as in that location
it can be any answer when the bot clicks. In Section 4 we will discuss in more de-
tail randomness issues. Animated CAPTCHAs succeed to force attackers to try
conventional methods of breaking the test, like brute-force or reverse engineering
attacks (see Section 5) and not use the human intelligence of unsuspected users.

102 E. Athanasopoulos and S. Antonatos

4 Implementation

As CAPTCHAs are mainly used in Web sites, in this Section we will focus
on how we can implement animated CAPTCHAs for browsers. Our goal is to
construct a CAPTCHA that cannot be modified by the attacker. Two possible
implementation approaches are Flash movies and Java applets. Both of these
types are widely available and can be found at most browsers. We implemented
our prototype using Java technology.

We want to prevent the attacker from two actions: (a) the attacker must not be
able to identify the correct answer via reverse engineering, (b) as answers trigger
a communication with the originating service, the communication endpoint must
not be circumvented.

4.1 Reverse Engineering

Although we can hide the source code for an animated CAPTCHA, it can be
decompiled for source inspection and modification using freeware tools[5]. As-
suming that the answer of the CAPTCHA is embedded in the application, a
decompilation process could reveal it to the attacker. Our first option, towards
this direction, is the use of code obfuscation freeware tools[9].

However, it is well known that a system can not base its security strength in
obfuscation or secrecy[12]. But, in our case, we want to avoid fast and automated
reverse engineering, which will not require human interaction.

In more detail, a Web site will generate an animated CAPTCHA during every
registration process (or other activity, which must be verified that it is used by a
human). Generation of an animated CAPTCHA means that the CAPTCHA will
be compiled from a standard template, will be randomized by inserting random
code and, finally, it will be implanted with the correct solution and the session
ID of the host requesting the service. The correct solution is considered also a
unique per CAPTCHA random token. In the Web site’s side, we assume that
there is a storage component to keep the mapping between correct tokens and
session IDs. After the generation of the CAPTCHA, the resulting Java class file
will be obfuscated. If the whole process of the generation and obfuscation of
CAPTCHAs is considered a heavy job for the server to perform it on demand,
it can use a pool of pre-generated CAPTCHAs (this pool can be maintained in
low-traffic hours, in parallel with other maintenance procedures).

The above procedure guarantees that each animated CAPTCHA is a unique
application. Each successful reverse engineering attempt, which should be also
considered hard, must be triggered from a human and not by an automated
program, since each CAPTCHA will have a different decompilation result. But,
solving an animated CAPTCHA via human intervention is the definition of the
CAPTCHA. The reverse engineering effort can not be re-used to solve automat-
ically a collection of animated CAPTCHAs.

These ideas are already used in the case of polymorphic worms[14]. Code
randomization has also been explored in various levels of software engineering
and has been used to Computer Security[11].

Enhanced CAPTCHAs 103

4.2 Communication Circumvention

Our second goal is to protect the communication endpoint. Recall that the ani-
mated CAPTCHA is a Java applet, which embeds the token that maps in the so-
lution and the session ID that maps to the host, which triggered the CAPTCHA.
We need to prevent an attacker from locating the token or the session ID me-
chanically, since in that way she can create artificially a correct response to the
service provider, and thus bypass the CAPTCHA.

In order to deal with this issue the token of the correct answer and the session
ID must be encrypted and located in a non-fixed place of the Java bytecode.
We can achieve the latter using code randomization as explained in 4.1. The
decryption key should also placed in a random location of the Java bytecode. An
attacker can still reveal the decryption key, as well as spot the encrypted token
and session ID through reverse engineering, but as we have already explained this
process must be repeated for every CAPTCHA instance, since each CAPTCHA
is a unique Java applet (in terms of bytecode). Thus, it is still impossible for
an automated program to circumvent the communication channel without the
human interaction.

5 Attacks Against Animated CAPTCHAs

With Laundry attacks eliminated, as it was described in Section 3.2, the ma-
licious user will try to attack on the animated CAPTCHA itself. In this Sec-
tion, we analyze in detail how an animated CAPTCHA can cope with attacks
focused in animated CAPTCHAs. Furthermore, we implemented an actual ani-
mated CAPTCHA as a Java Applet (Figure 4), which had four objects following
a circular orbit as possible solutions. During the implementation we tuned up
various parameters in order to make the animated CAPTCHA more resistible
against the attacks we describe below.

5.1 Brute Force Attack

The attacker may try to instruct her bot to continuously click on the puzzle
until a possible answer is clicked. In that case, the probability to click a correct
answer is 1/|possibleanswers|. The number of possible answers cannot be high
enough due to space reasons inside the puzzle. By placing tens of possible answers
inside a limited space, the user will get confused and eventually she will be
discouraged. Assume a bot-power (BP) of one thousand compromised machines
and an animated CAPTCHA with ten possible answers. The probability for one
member of the bot of solving randomly the CAPTCHA, P (a), is 1/10. Assume,
also, that the under attack site allows a maximum of five retries (R) per IP
address per day and only one registration per IP. We can estimate the amount
of puzzles the attacker may solve in one day: P = BP ∗P (a)∗R = 1000∗1/10∗5 =
500. That is, the attacker may succeed to solve 500 puzzles per day, and thus
complete automatically 500 registration processes, which is considered too high.

104 E. Athanasopoulos and S. Antonatos

In order to cope with the brute force attack, we need to reduce the probability
P (a). We can easily transform the answer space of the puzzle from a discrete to a
contiguous one. This can be done, by treating every click as an answer, including
the clicks that reached the blank space, which surrounds the animation. Thus,
the probability of clicking the correct answer now depends on two factors: an
answer is found under the point where bot clicks and this answer is correct. Thus
the probability to solve the puzzle by random clicking is now equal to the ratio
r, where r is the surface area of one answer divided by the surface area of the
whole puzzle area. The animated Java applet we developed depicted in Figure 4
occupies a surface of 480x480 pixels and each possible answer is an icon, which
occupies a surface of 48x48 pixels. That is the ratio r is 0.01. Using the same
parameters as before and P (a) = 1/10∗r = 0.001, the attacker can automatically
solve 5 puzzles a day. By tuning the ratio, we can achieve one to two orders of
magnitude reduction on the number of puzzles that can be automatically solved
and have a user-friendly puzzle at the same time.

Moreover, by combining more animated CAPTCHAs the probability P (a) is
reduced drammaticaly and not in a linear fashion. For example, the test may
require the user to click a group of moving animals in a specific order based on
their size. If the animated CAPTCHA has ten moving objects and three of them
are animals, then the probability of clicking an animal is P (a) = 0.001. The
probability of solving the test is the product of the three individual probabilities
of clicking an animal. That is P (a) = (0.001)3.

5.2 Remote Control Attack - Sweatshop Attack

The attacker may proceed with a manual installation on each bot, through dis-
play redirection techniques. Sweatshops are also an available option [6]. An at-
tacker can hire employees from a sweatshop who will proceed to manual instal-
lation on the bots. Employees connect to each bot and redirect their display to
a local machine. Specialized software can be used for display redirection. We ex-
perimented with VNC[8]. VNC is a lightweight display redirector that is ported
to most operating systems and can be easily installed in any system. We also
considered the built-in functionality of the X11 server and the remote assistance
feature of Windows XP professional. However, the X11 environment can be only
found in Unix systems but most bots are Windows XP systems[15]. Further-
more, more bots are likely to have Windows XP Home installed. We ignore the
fact that when VNC or remote assistance run, their presence is noticeable to the
actual owner of the bot.

A way to defend against the sweatshop attack is to enhance the animation,
and thus increase the bandwidth needed for the display redirector software. For
example, observe that the animated CAPTCHA depicted in Figure 4 has a
constantly changing background (similar to the snow effect of a non-working
television) and that a multicolour display is required, since the user needs to be
able to distinguish the green from the red apple. That is, a display redirector,
configured in monochrome mode and in low resolution, so as to reduce the needed
bandwidth cannot be used. Unfortunately, this choice has a drawback for people

Enhanced CAPTCHAs 105

Time (sec)
0 10 20 30 40 50 60

10

20

30

40

50

60

70

80

T
ra

ffi
c

(M
B

its
/s

ec
)

Low Colour Configuration

Medium Colour Configuration

High Colour Configuration

Fig. 5. VNC traffic for the various colour configurations. During the first 10 seconds
we monitored the line without a VNC connection. The next 10 seconds we monitored
the line with a VNC connection, but without running the CAPTCHA applet. During
the rest of the period, the CAPTCHA applet runs remotely. Denote that we plot only
the downstream traffic.

suffering of colour blindness, since they are not able to distinguish different
colours1. However, W3C argues for the inaccessibility of all Visual CAPTCHAs
for people with low vision[4].

In addition, if the answers inside the puzzle are animated slowly, the display
redirection tools may be able to catch up with differences and display them
correctly to the employees’ machine.

We experimented on the delay introduced by VNC and bandwidth consump-
tion for different display configuration between a hypothetical compromised ma-
chine and a hypothetical machine owned by an employer of a sweatshop. Both
machines were interconnected in a LAN with 100 MBit/sec network connec-
tion. We collected three traces, using the Ethereal tool[2], for a colour display of
64 (Low Colour Configuration), 256 (Medium Colour Configuration) and 24-bit
(High Colour Configuration), respectively. In each experiment we enabled the
compression of the transmitted data, supported by VNC. Although, VNC sup-
ports an even lowest display configuration, with 8 colours, we did not collect a
trace, since our CAPTCHA was impossible to be solved: the green apple (the
correct answer) was displayed with a yellow colour.

The results are plotted in Figure 5. Observe that even at the lowest colour
configuration, VNC introduces a network traffic closed to 6 MBit/sec in order to
display the animated CAPTCHA. Denote, that the VNC connection is fired up
after the first 10 seconds have elapsed, but the CAPTCHA is launched after the
first 20 seconds have elapsed. That is, the enhanced animation of the CAPTCHA
causes the VNC server to transmit more information in the VNC client.

Based on Figure 5, we understand that an attack based on the remote control
of a compromised machine may succeed only if the compromised machine is
equipped with a network connection closed to 6 MBit/sec or better. On the

1 It is estimated that people suffering of colour blindness are almost 7% of all humans.

106 E. Athanasopoulos and S. Antonatos

other hand, it is almost trivial to modify various properties in order to make the
remote control of an animated CAPTCHA harder to be achieved.

Someone can argue that existing commodity network speeds may increase in
the near future and thus remote control software will have the required band-
width to transmit a complex animation. However, no matter the speed, someone
can create a high quality multimedia CAPTCHA, including motion and sound
information dependent with the solution, which will need enormous bandwidth
in order to be solved using a remote desktop application. Apparently, a multi-
media CAPTCHA that combines high quality motion, high quality sound and
a possible sequence of logic actions, is out of the context of this paper, but is
subject for our future work.

Table 1. A list of properties of an animated CAPTCHA, which can be easily tuned
in order to make the CAPTCHA more resistible in possible attacks

Property Attack Action Result

1 Colourful answer Remote Control ↑ Bandwidth consumption ↑
2 Animated background Remote Control Enhance Bandwidth consumption ↑
3 Dimension of background Brute Force ↑ P (a) ↓
4 Dimension of answers Brute Force ↑ P (a) ↓
5 Background is an answer Brute Force + P (a) ↓
6 Frame delay Remote Control ↓ Bandwidth consumption ↑
7 Random orbit Remote Control + Remote user difficult to adapt

8 Random frame delay Remote Control + Remote user difficult to adapt

9 Code obfuscation Laundry/RE + Reverse engineering effort↑
10 Code randomization Laundry/RE + Reverse engineering effort↑
11 On the fly compilation Laundry/RE + Reverse engineering effort↑

In Table 1 we summarize various parameters that someone can modify and
make an animated CAPTCHA resistible in the attacks we presented, namely the
basic Laundry, the Reverse Engineering, the Brute Force and the Remote Con-
trol/Sweatshop attack. Denote that the symbol ↑ means ’increasing’, the symbol
↓ means ’reduced’ and the symbol + means ’adding’. For example, consider
Property 4, which is translated as: ”Increasing (↑) the dimension of answers,
during a Brute Force attack, the probability of a random guess P (a) is reduced
(↓)”.

6 Conclusion and Future Work

In this paper, we investigated the state of the art of possible attacks against
CAPTCHAs; puzzles that try to distinguish a human from a computer pro-
gram, used mainly to prevent a service to malicious programs, such as bots. We
introduced a new form of a CAPTCHA, which is based on animation. We ar-
gued that animated CAPTCHAs can resist to modern attacks, like laundering,

Enhanced CAPTCHAs 107

and common attacks, such as brute-force or reverse engineering. In regards to
well organized attacks via sweatshops, we measured the traffic required by a
popular remote desktop software to run our animated CAPTCHA prototype re-
motely and showed that commodity user equipment is not sufficient. Finally, we
suggested various enhancements, which will burden the task for an attacker to
bypass an animated CAPTCHA, using either of the possible attacks and forcing
her to manually solve the puzzles.

We believe that our enhanced with animation CAPTCHA technology can
resist in sophisticated attacks better than standard CAPTCHAs based on static
images with distorted text. However, we have not exposed our technology to
the users and get their feedback, in order to understand the possible complexity
which is introduced to ordinary Web surfers. Thus, we plan to evaluate animated
CAPTCHAs against static CAPTCHAs and see how user-friendly our technology
is, by performing experiments where real users must register to a service using
a process that embeds static and animated CAPTCHAs.

In addition, part of our future work is multimedia CAPTCHAs. Puzzles that
embed high quality motion, sound and a solution that is the result of a sequence
of logic actions.

Acknowledgments. We would like to thank the anonymous reviewers for their
valuable comments. We also thank Kostas G. Anagnostakis (I2R) for his in-
sightful comments. This work was supported in part by the project CyberScope,
funded by the Greek General Secretariat for Research and Technology under the
contract number PENED 03ED440, and by the FP6 project NoAH, funded by
the European Union under the contract number 011923. Elias Athanasopoulos
and Spiros Antonatos are also with the University of Crete.

References

1. cURL. http://curl.haxx.se/.

2. Ethereal. http://www.ethereal.com.

3. Google bombing. http://en.wikipedia.org/wiki/Google bomb.

4. Inaccessibility of CAPTCHA, Alternatives to Visual Turing Tests on the Web.
http://www.w3.org/TR/turingtest/.

5. JCavaJ Java Decompiler. http://www.bysoft.se/sureshot/jcavaj/index.html.

6. Sweatshop. http://en.wikipedia.org/wiki/Sweatshop.

7. The CAPTCHA Project. http://www.captcha.net/.

8. VNC. http://www.realvnc.com.

9. yGuard. http://www.yworks.com/en/products yguard about.htm.

10. Kumar Chellapilla, Kevin Larson, Patrice Simard, and Mary Czerwinski. Comput-
ers beat humans at single character recognition in reading based human interaction
proofs (hips). In Second Conference on Email and Anti-Spam (CEAS), 2005.

11. Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering code-
injection attacks with instruction-set randomization. In CCS ’03: Proceedings of
the 10th ACM conference on Computer and communications security, pages 272–
280, New York, NY, USA, 2003. ACM Press.

108 E. Athanasopoulos and S. Antonatos

12. A. Kerckhoffs. La cryptographie militaire. In Journal des Sciences Militaires, 9
Jan 1883, pp. 5-38. http://www.petitcolas.net/fabien/kerckhoffs/.

13. G. Mori and J. Malik. Recognizing objects in adversarial clutter – breaking a visual
captcha. In Conf. Computer Vision and Pattern Recognition, Madison, USA, June
2003.

14. Peter Szoer and Peter Ferrie. Hunting for metamorphic. In Virus Bulletin Con-
ference, September 2001.

15. The Honeynet Project Whitepapers. Know your enemy: Tracking botnets, March
2005. http://www.honeynet.org/papers/bots/.

	Introduction
	Background
	Animated CAPTCHAs
	Laundry Attacks
	Animated CAPTCHAs to Prevent Laundry Attacks

	Implementation
	Reverse Engineering
	Communication Circumvention

	Attacks Against Animated CAPTCHAs
	Brute Force Attack
	Remote Control Attack - Sweatshop Attack

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

