
WSIM: A software platform to simulate all-optical
security operations

Antonis Krithinakis∗, Lubomir Stroetmann∗†,
Elias Athanasopoulos∗, Georgios Kopidakis∗, and Evangelos P. Markatos∗,

∗Institute of Computer Science, FORTH
Greece

Email: {krithin, lubomir, elathan, kopidaki, markatos}@ics.forth.gr
†University of Aachen

Germany

Abstract—Network throughput rates increase every day
in contrast to electronic chip processing speed and elec-
tronic I/O. Today’s firewalls operate by using traditional
electronic circuits just like any common PC. However,
performing these operations in a fast fiber optics network
on the scale of 40Gbps is impossible. In this paper, we
propose a novel system that is currently being researched
and tries to perform the security operations of a firewall
using optical components. We describe the basic limitations
of the optical domain that make this project difficult to
implement. We outline the basic software platform called
WSIM which is a simulator that offers theoretical support
of the project’s feasibility. The marriage of an all-optical
firewall with the traditional digital systems’ architecture
can offer significant benefits to the network from both a
security and a performance perspective.

I. INTRODUCTION

This novel system is called WISDOM[6] (Wirespeed
Security Domains using Optical Monitoring) and is
designed to develop optical processing modules which
will be placed at the front end of a node firewall to
provide high-speed information filtering purely inside
the optical domain. These photonic firewalls will operate
using novel algorithms and protocols, to extract and
process security information at wire speed.

The main challenge of this project is to demonstrate
that it is possible to bridge the gap between the very
fast (at least 40 Gbps) optical data transmission and the
much slower electronic data security checks by pushing
critical security functions all the way down to the optical
domain.

The paper is structured in the following order. We
present the background in Section II. In Section III
we present in detail a software modelling platform, its
architecture and some application scenarios that can be

modelled. We discuss the software API, which we refer
to as SAPI (Security Application Programming Inter-
face), which is the mini operating system for the initial
hardware prototype. SAPI is described in Section V.
Finally we conclude in Section VI.

II. BACKGROUND

In this section we discuss the challenges which appear
in the optical domain and present information needed as
a background to understand the algorithm used by the
simulator platform.

A. Optical Algorithms

Operations such as pattern-matching are considered
fundamental for security-oriented applications like fire-
walls and Intrusion Detection Systems. Thus, it is vital
for the community to investigate new ways of performing
these tasks for high speed links like the ones provided
by optical systems.

The simulator software is made to simulate an all-
optical pattern recognition system. The components of
this system are able to detect and indicate the position
of a specified pattern of bits in a high-speed optical data
signal. The target pattern only needs to be generated at
a much lower speed, readily achievable with standard
electronics. This pattern matching component is what
we call a pattern matching box.

Every box in the system runs the pattern matching
algorithm whose complexity is proportional to the length
of the pattern. The algorithm is implemented using
optical components only which we are not going to
discuss in this paper but are explained in detail in [10].

B. Optical Limitations

One of the fundamental constraints of the optical
domain is the absence of state[8]. This is due to the



fact that building a memory storage device in the optical
domain is not as trivial as it is in the electronic domain.
More precisely, the only notion of memory in the optical
domain is to use serial, time-of-flight storage which
delays the light pulses inside a loop for a relatively short
period of time.

Optical memory capacity is thus severely limited
compared to electronic memory, with integrated optical
devices being able to store a few hundreds of bits of
information (albeit at extremely high data rates). The
difficulty in having a flexible storage medium in the
optical domain results in a system that almost completely
lacks the notion of state.

Almost all systems and algorithms developed in the
electronic domain reside to a great extent in having a
controllable state. Therefore, developing security algo-
rithms in the optical domain requires a new method of
thinking and learning time in order to understand how
these algorithms can be implemented.

The lack of memory in the optical domain also results
in very limited flexibility in the configuration of a device
and the dynamic re-adjustment of its setup. Since there
is no memory - in the sense of the term used in the
electronic domain - to hold a system’s state, it is hard
to modify a system’s behavior by altering its properties
at run-time. As far as the implementation of a security
device in the optical domain is concerned, the limited
configurability reduces the flexibility in implementing
even trivial features, enabled by default in all similar de-
vices of the electronic domain, such as adding, deleting
or modifying the rule-set of the device.

Aside from the lack of memory in the optical domain,
it is also quite difficult to perform logic operations,
which again is trivial in the electronic domain. The WIS-
DOM hardware architecture uses Semiconductor Optical
Amplifiers (SOAs)[9] in order to implement simple
operations like AND, XOR and other gates expressing
Boolean logic.

However, they are not as functional as digital gates,
and they can be used only in certain combinations.
Using SOAs we have managed to implement the pattern-
matching algorithm we described in Section II-A.

III. SOFTWARE MODELING

In this section we present the software platform we
have developed for modelling the optical firewall. It is a
custom framework developed specifically for the needs
of our architecture. It runs on any PC equipped with
a network interface and a Microsoft Windows operating
system. The framework does not aim to model the optical

core of the system; there are several of options currently
on the market for simulating optical devices[7]. Instead,
our initial goal was to produce a software environment
that illustrates the operation of our architecture as a
whole system.

By using the framework, we are able to reproduce
application scenarios in a controlled software environ-
ment. We can estimate time costs and verify the pattern
matching optical algorithm.

This section is organized as follows: First, we present
the framework’s features through a quick guide using
limited screen shots of the software environment, due
to space constraints. We proceed to explain the system
architecture and then depict some possible usage config-
urations and application scenarios.

A. Overview

One of our first major concerns during the develop-
ment of the framework was that it had to target a mixed
scientific audience and not just computer scientists. This
is, mainly, because our collaborative project is composed
of physicists, optical engineers, electrical engineers and
computer scientists. Thus, we took the decision to de-
velop a graphical and user friendly application for the
Microsoft Windows operating system. The framework
can be used by anyone without requiring deep technical
knowledge of computer software.

With the assistance of the graphical environment the
user is able to construct instances of all-optical pattern
matching boxes. We will further refer to such an instance
as a filter or rule.

Each filter is configured using a dialog box. First you
give the box a unique name. Then you select the target
properties (protocol and service) that the box will search
for (e.g. ICMP[4], TCP[5], UDP[2], PORT number of
required service) and then the source of the packets.

In the beginning, the only source available is the trace
file captured from the network, but after the creation
of each new box you can additionally select as source
the matched or unmatched packets of any of the other
boxes, thus creating processing chains. Optionally, you
can put an extra time delay for a box. In addition, if
you choose the PORT target you will be asked to select
between source port and destination port and put in the
port number as shown in Figure 1.

After a new box has been set up, an iconic represen-
tation of an all-optical pattern matching box is displayed
on the program’s workspace. The user may construct
an unlimited amount of filters in this fashion. However,
the actual system’s capacity is limited. The real optical



Fig. 1. Search for a specific port number

firewall is expected to be able to serve simultaneously
only a few filters.

Upon having set the preferred filters, the framework
can inject traffic into the simulated system. This can
be achieved either by passively capturing the traffic
experienced by the host, which runs the framework, or by
processing already captured traces. Each filter, depicted
in the user’s desktop as an optical firewall instance, up-
dates its statistics in real-time. Statistics include packets
captured, packets which matched the filter and packets
that did not.

In addition, a global tick counter accounts for the
cost of the whole session in terms of spent processing
time. We define a tick as the amount of time spent for
processing one bit of information in the optical domain.
For every tick, each pattern matching box performs the
pattern matching algorithm on one bit of the data. From
an algorithmic view we can imagine this operation as
an iteration by the main processing loop of the system
where each box operates separately from the others in a
pseudo-parallel way.

However, the tick described above corresponds to real
time, which in the optical domain is on the scale of tens
of picoseconds. For example, if we operate in 40Gbps
then the one bit time is: 1

40∗109 = 25 picoseconds.
This correlation of the one bit operation and the

physical time is a configurable feature of our application
so the user can change the virtual network throughput.

IV. SYSTEM ARCHITECTURE

The Simulator process has two threads. The first one is
the graphical interface of the application and the second
one is the main processing unit that consists of the sniffer
and the pattern matching box component.

After the user configuration is made and the simulation
is started, the Sniffer thread is created. The Sniffer is
initialized with a trace file from the user. Then the file
is processed and internal structures that represent the
packet header are created. Each packet from the trace
is processed and translated to a sequence of bits rep-
resenting its header. At present, the system architecture
deals with the IP protocol[3] for the packets’ network
layer and the TCP[5] and UDP[2] protocols for the
packets’ transport layer. Packets in the trace file using
other protocols are excluded.

When all internal structures have been created the
global timer described above begins and starts counting
the time spent on all operations until there are no
unprocessed packets remaining in the stack.

Each packet is processed using the complete optical
algorithm for pattern matching and not using simple
equality relations of computer programming.

Every box keeps basic information like its name, the
target and several counters that build the state of the
box and tree lists. The first list contains the source of
the packets to capture. The other two lists contain the
IDs of boxes whose source list has to be refreshed with
the packet being currently processed after the box has
finished with it. There is one list for matched packets and
one list for unmatched packets for every pattern matching
box.

After a box has captured a packet and finished pro-
cessing it and there is a match, then the packet feeds the
source list of the boxes that the matched list refers to.
The same happens with packets that do not match the
target. The source of the boxes can be fed with packets
from a trace depending on the user’s configuration.

If the box is still in operation and its source list is
fed with a new packet, the packet gets dropped. The
source list must be empty when the pattern matching
box operates on a packet otherwise we have a packet
drop. If a box has finished with a packet and its source
list is empty, the box will be in an idle state until its
source list is refreshed.

The simulation ends when all packets from the trace
have been processed through all the pattern matching
boxes. Then the user can examine the log files generated
which contain all the information on the packets of
the trace including timestamps. We depict the system’s
architecture in Figure 2.

A. Application Scenarios

We use a small trace containing 131 packets for the
examples. The scenarios represent an optical firewall that



Fig. 2. WSIM Architecture

drops all incoming ICMP packets before they manage to
reach any router operating in the digital domain. After
that we need to separate the traffic and search for specific
source or destination ports that may corresponds to well-
known attacks.

1) First Scenario: We are going to set up 3 pattern
matching boxes. The first one is called icmpBox and
searches for ICMP protocol packets. The source of the
packets is the trace file.

Secondly, we want to filter out the unmatched packets
produced from the first box and keep only the TCP
protocol. So the second box is called tcpBox and the
source of the packets is the icmpBox unmatched field.
All matched packets from the tcpBox will go through
the last pattern matching box that is called port 25Box
and is searching for destination port 25.

Then we start the simulation and see the results in
Figure 3 and Table I below.

Our trace contains 131 packets, but as we can see
from the table of results in Table I below, the first box
has dropped 17 packets because of time issues and has
captured 112 packets, a total of 129. That means that
2 packets are not of IP protocol and were not captured
by the filter. 26 packets matched the icmpBox target and
got dropped because we assumed that the optical firewall
drops all incoming ICMP packets.

The rest of the packets went through the second rule
without any dropping and then the matched packets of
this rule through the last pattern matching box which
dropped 11 packets. That can be easily explained be-
cause the first 2 rules need the same time to complete
processing a packet according to the complexity of the
pattern matching algorithm. This is because the target
of the first two rules is 8-bit long (protocol field in

Fig. 3. First scenario interface layout

packet’s IP header) and the target of the third rule is
16-bit (destination port field in packet’s transport layer
header), so the algorithm in the third box needs twice
the time to complete processing each packet.

Target Packet Source Packets
Dropped

icmpBox ”ICMP” ”Trace” 17
tcpBox ”TCP” ”icmpBox unmatched” 0
port 25Box ”PORT” ”tcpBox matched” 11

Packets
Captured

Packets Matched Packets
Unmatched

icmpBox 112 26 86
tcpBox 86 48 38
port 25Box 37 3 34

Network throughput 40 Gbits per second
Bit Operations 716,809
Time (picoseconds) 17,920,225

TABLE I
FIRST SCENARIO RESULTS OPERATING IN 40GBPS

Now we are going to simulate the same scenario but
change the network throughput to 80Gbps so that each
bit operation lasts 12.5 picoseconds. The number of
dropped packets increases and the time for completing
the total operation is approximately 25% of the initial
one. Results are shown in Table II.

2) Second scenario: Now we are going to set up 5
pattern matching boxes. The network throughput is set to



Target Packet Source Packets
Dropped

icmpBox ”ICMP” ”Trace” 22
tcpBox ”TCP” ”icmpBox unmatched” 0
port 25Box ”PORT” ”tcpBox matched” 14

Packets
Captured

Packets Matched Packets
Unmatched

icmpBox 107 21 86
tcpBox 86 48 38
port 25Box 34 3 31

Network throughput 80 Gbits per second
Bit Operations 358,405
Time (picoseconds) 4,480,062.5

TABLE II
FIRST SCENARIO RESULTS OPERATING IN 80GBPS

40Gbps. The first pattern matching box is called tcpBox
and searches for TCP protocol packets. The second one
is called udpBox and searches for UDP protocol packets.
The source of the packets of both boxes is the trace.

Target Packet Source Packets
Dropped

tcpBox ”TCP” ”Trace” 17
udpBox ”UDP” ”Trace” 17
port 25Box ”PORT” ”tcpBox matched” 11
port 80Box ”PORT” ”tcpBox matched” 11
port 53Box ”PORT” ”udpBox matched” 0

Packets
Captured

Packets Matched Packets
Unmatched

tcpBox 112 48 64
udpBox 112 38 74
port 25Box 37 3 34
port 80Box 37 12 25
port 53Box 38 19 19

Network throughput 40 Gbits per second
Bit Operations 717,001
Time (picoseconds) 17,925,025

TABLE III
SECOND SCENARIO RESULTS OPERATING IN 40GBPS

All matched packets from the tcpBox will go through
the next two pattern matching boxes that are called
port 25Box and port 80Box and are searching for desti-
nation port 25 (default for mail processing) and destina-
tion port 80 (default for HTTP traffic) respectively. Then
all matched packets from the udpBox will go through the

Fig. 4. Second scenario interface layout

last pattern matching box which is called port 53Box
and is searching for destination port 53.

Then we start the simulation and see the results in
Figure 4 and Table III above.

V. SOFTWARE API

The SAPI (Security Application Programming
Interface) is the mini operating system of the WISDOM
firewall and will be used together with the first
WISDOM hardware prototype developed by our project
partners. It creates an interface between the low-level
hardware controls and the user by providing an easy
to use API for creating new sets of filter rules. The
SAPI uses an object-oriented design and provides
several classes: SAPI Init, SAPI Filter and its three
subclasses SAPI IPv4 Filter, SAPI TCP Filter and
SAPI UDP Filter. For a simplified UML diagram of
the SAPI, see Figure 5.

SAPI Init is used to initialize the hardware and per-
forms various low-level tasks such as turning on heater
and peltier controls on the circuit board and resetting any
previously set filter rule. SAPI Filter provides a structure
for a general packet filter. The WISDOM hardware only
deals with simple bit patterns on which it performs its



bit-by-bit optical pattern matching. In order to create a
filter rule for the firewall, one can use SAPI Filter which
then translates a human-readable rule to a bit pattern to
be passed on to the hardware. Additionally, one can use
the more specific SAPI IPv4 Filter, SAPI TCP Filter or
SAPI UDP Filter which are aware of the packet header
structure of their respective protocol types in order to
create more specific filter rules.

For example, in order to create a rule that will filter out
any outgoing e-mail traffic, one creates a new instance of
SAPI TCP Filter with destination_port="25".
(Port 25 is the one used by the SMTP protocol used to
send email). Another very common firewall rule example
would be to create an ICMP filter. ICMP is very often
abused and by blocking ICMP ping packets one can also
hide the status of internal hosts from the outside. To
do this using the SAPI, you create a SAPI IPv4 Filter
object with protocol="ICMP". The SAPI knows that
ICMP has the protocol number 0x01[1] and knows the
offset of the ”protocol” field inside an IP packet[3].
It uses this knowledge to create an appropriate binary
pattern that it can pass down to the hardware. Once an
object with the desired filter rule has been created, all
you have to do is call its apply() function and the
filter rule is converted and sent to the hardware.

Furthermore, the SAPI provides a set of predefined
functions for easily creating some of the most commonly
used filter rules. Those include the aforementioned Mail
filter and ICMP filter and also feature a HTTP web traffic
filter, FTP filter, IRC filter, DNS filter, Microsoft File &
Printer Sharing filter, a generic TCP filter to be used
to pre-filter TCP traffic and two IP address filters for
filtering by source or destination IP address, respectively.
Not only do these functions simplify the filter creation
process, they also act as ”wizards” for normal users so
that they do not need to know which ports are used
by Microsoft’s File & Printer Sharing services or what
makes up an ICMP packet.

The SAPI will eventually be accompanied by a GUI
interface which is currently being developed. It will
allow filter rule creation at the click of a button, offer the
possibility to change the order of the set of rules before
it’s written to the consecutive set of hardware devices and
will make configuring and using the WISDOM firewall
possible even for regular users not versed in the field of
network administration.

VI. CONCLUSION

Currently, important security operations such as pat-
tern matching for filtering packets are difficult to perform

Fig. 5. Simplified UML diagram of the SAPI architecture

in network links experiencing throughput greater than 40
Gbps.

In this paper we have presented a novel idea which
suggests the creation of a system architecture that deals
with security operations in the optical domain. We have
also presented the mini operating system of the firewall
and the software platform which can be used to build
and model scenarios in a controlled environment. A
user-friendly simulator of the optical firewall’s operation,
which uses actual network traffic traces, is useful for
security algorithm design purposes as well. It is expected
that it will also provide a hardware validation tool later
in the project.

The bad news is that, as we have described, the
development of such a system has to deal with a lot of
optical limitations and thus is a very challenging project.
The good news is that every day clever ideas come
along and solve fundamental problems. In addition, the
current simulation platform results make us very hopeful.
WISDOM is the beginning of all later optical based
hardware, which can perform sophisticated all-optical
processing for security purposes.

VII. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers
for their valuable feedback. Antonis Krithinakis, Elias
Athanasopoulos, Georgios Kopidakis and Evangelos P.
Markatos are also with the University of Crete. Lubomir
Stroetmann assisted to this work, while interning with
FORTH. This work is funded by the FP6 EU project
WISDOM. Elias Athanasopoulos is also funded by the
Microsoft Research PhD Scholarship project, provided
by Microsoft Research Cambridge.



REFERENCES

[1] Iana assigned internet protocol numbers. http://www.iana.org/
assignments/protocol-numbers/.

[2] RFC768 - User Datagram Protocol. http://www.faqs.org/rfcs/
rfc768.html.

[3] RFC791 - Internet Protocol. http://www.faqs.org/rfcs/rfc791.
html.

[4] RFC792 - Internet Control Message Protocol. http://www.faqs.
org/rfcs/rfc792.html.

[5] RFC793 - Transmission Control Protocol. http://www.faqs.org/
rfcs/rfc793.html.

[6] The WISDOM Project. http://www.ist-wisdom.org.
[7] VPIphotonics. http://www.vpiphotonics.com/.
[8] C. C. Carroll. R68-40 sequential machines and automata theory.

IEEE Trans. Comput., 17(9):922–923, 1968.
[9] D. Cotter et al. Non-linear optics for high-speed digital

information processing. In Science 286, pages 1433-1636),
1999.

[10] R. P. Webb et al. 42gbit/s all-optical pattern recognition system.
In Proceedings of Optical Fibre Communications (OFC), 2008.


