

Skolkovo Institute of Science and Technology

Indoor Localization Accuracy Estimation from Fingerprint Data

Artyom Nikitin ¹ Christos Laoudias² Georgios Chatzimilioudis² Panagiotis Karras³ Demetrios Zeinalipour-Yazti^{2,4}

¹Skoltech, 143026 Moscow, Russia

²University of Cyprus, 1678 Nicosia, Cyprus

³Aalborg University, 9220 Aalborg, Denmark

⁴Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany

1 Motivation

- 2 Background
- 3 Our Solution
- 4 Experiments
- 5 Conclusions

Motivation: Indoor Localization

- Indoor Navigation Services spread widely.
- Applications: localization, marketing, warehouse optimization, guides, games, etc.

Motivation: Indoor Localization

- Indoor Navigation Services spread widely.
- Applications: localization, marketing, warehouse optimization, guides, games, etc.
- Different sources of data: cellular, Wi-Fi, BT, magnetic field of the Earth, light, sound, etc.

Motivation: Accuracy Estimation

Important to estimate the accuracy of localization.

Motivation: Accuracy Estimation

- Important to estimate the accuracy of localization.
- Online: important for the end-user (Google Maps, CONE).

Motivation: Accuracy Estimation

- Important to estimate the accuracy of localization.
- Online: important for the end-user (Google Maps, CONE).
- Offline: important for the service provider.
 - Provide quality guarantees.
 - Perform decision making.

1 Motivation

2 Background

3 Our Solution

4 Experiments

5 Conclusions

Background: Localization Approaches

Modeling

- Known APs positions
- Known data model, e.g., Path Loss: $L = 10n \log_{10}(d) + C$

Background: Localization Approaches

Modeling + Fingerprinting

- Known APs positions
- Known data model, e.g., Path Loss: $L = 10n \log_{10}(d) + C$
- Known pre-collected fingerprints (position + readings)

Background: Localization Approaches

Fingerprinting

- Known APs positions
- Known data model, e.g., Path Loss: $L = 10n \log_{10}(d) + C$
- Known pre-collected fingerprints (position + readings)

Existing solutions

Heuristics: e.g., fingerprint density, cluster & merge, etc.

- + Do not require models
- No theoretical guarantees
- Theoretical: e.g., use Cramer-Rao Lower Bound (CRLB)
 - + Provide theoretical guarantees
 - Model is required

Our goal:

- + No model required
- + Provide guarantees via CRLB

Common theoretical approach for offline accuracy estimation: **1** Measurements are random, e.g., Gaussian.

- **1** Measurements are random, e.g., Gaussian.
- **2** From the known information estimate the *likelihood*, i.e., the probability $p(\mathbf{m}|\mathbf{r})$ of measuring \mathbf{m} at \mathbf{r} .

- **1** Measurements are random, e.g., Gaussian.
- **2** From the known information estimate the *likelihood*, i.e., the probability $p(\mathbf{m}|\mathbf{r})$ of measuring \mathbf{m} at \mathbf{r} .
- From the *likelihood* calculate *Cramer-Rao Lower Bound* (CRLB) on the variance of any unbiased estimator of r.

- 1 Measurements are random, e.g., Gaussian.
- **2** From the known information estimate the *likelihood*, i.e., the probability $p(\mathbf{m}|\mathbf{r})$ of measuring \mathbf{m} at \mathbf{r} .
- From the *likelihood* calculate *Cramer-Rao Lower Bound* (CRLB) on the variance of any unbiased estimator of r.

- 1 Measurements are random, e.g., Gaussian.
- **2** From the known information estimate the *likelihood*, i.e., the probability $p(\mathbf{m}|\mathbf{r})$ of measuring \mathbf{m} at \mathbf{r} .
- From the *likelihood* calculate *Cramer-Rao Lower Bound* (CRLB) on the variance of any unbiased estimator of r.

How to find the *likelihood*?

- Model, e.g., Path Loss: $L = 10n \log_{10}(|x x_{AP}|) + C$
- Model parameters, e.g., $n = 2, C = 20 \log_{10} \frac{4\pi}{\lambda}$ (FSPL)
- Position x_{AP} of the AP
- Noise

- Model, e.g., Path Loss: $L = 10n \log_{10}(|x x_{AP}|) + C$
- Model parameters, e.g., $n = 2, C = 20 \log_{10} \frac{4\pi}{\lambda}$ (FSPL)
- Position x_{AP} of the AP
- Noise
- 1 Predict using model

- Model, e.g., Path Loss: $L = 10n \log_{10}(|x x_{AP}|) + C$
- Model parameters, e.g., $n = 2, C = 20 \log_{10} \frac{4\pi}{\lambda}$ (FSPL)
- Position x_{AP} of the AP
- Noise
- 1 Predict using model
- 2 Estimate noise

- Model, e.g., Path Loss: $L = 10n \log_{10}(|x x_{AP}|) + C$
- Model parameters, e.g., $n = 2, C = 20 \log_{10} \frac{4\pi}{\lambda}$ (FSPL)
- Position x_{AP} of the AP
- Noise
- 1 Predict using model
- 2 Estimate noise
- 3 Compare to measurements

- Model, e.g., Path Loss: $L = 10n \log_{10}(|x x_{AP}|) + C$
- Model parameters, e.g., $n = 2, C = 20 \log_{10} \frac{4\pi}{\lambda}$
- Position x_{AP} of the AP
- Noise

- Model, e.g., Path Loss: $L = 10n \log_{10}(|x x_{AP}|) + C$
- Model parameters, e.g., $n = 2, C = 20 \log_{10} \frac{4\pi}{\lambda}$
- Position x_{AP} of the AP
- Noise
- 1 Assume parametric model

- Model, e.g., Path Loss: $L = 10n \log_{10}(|x x_{AP}|) + C$
- Model parameters, e.g., $n = 2, C = 20 \log_{10} \frac{4\pi}{\lambda}$
- Position x_{AP} of the AP
- Noise
- 1 Assume parametric model
- 2 Get fingerprints

- Model, e.g., Path Loss: $L = 10n \log_{10}(|x x_{AP}|) + C$
- Model parameters, e.g., $n = 2, C = 20 \log_{10} \frac{4\pi}{\lambda}$
- Position x_{AP} of the AP
- Noise
- 1 Assume parametric model
- 2 Get fingerprints
- 3 Estimate parameters

- Model, e.g., Path Loss: $L = 10n \log_{10}(|x x_{AP}|) + C$
- Model parameters, e.g., $n = 2, C = 20 \log_{10} \frac{4\pi}{\lambda}$
- Position x_{AP} of the AP
- Noise
- 1 Assume parametric model
- 2 Get fingerprints
- 3 Estimate parameters
- 4 Estimate noise

Pure Fingerprinting

No model provided.

Pure Fingerprinting

- No model provided.
- Data is too complex, e.g., ambient magnetic field:
 - vector field = direction + magnitude;
 - predictable outdoors;
 - perturbed indoors by metal constructions and electrical equipment.

Pure Fingerprinting

- No model provided.
- Data is too complex, e.g., ambient magnetic field:
 - vector field = direction + magnitude;
 - predictable outdoors;
 - perturbed indoors by metal constructions and electrical equipment.

2 Background

3 Our Solution

5 Conclusions

- Pure fingerprinting approach
- Arbitrary data sources
- $FM = \{(\mathbf{r}_i, \mathbf{m}_i) : i = \overline{1, N}, \mathbf{r}_i \in \mathbb{R}^{d_r}, \mathbf{m}_i \in \mathbb{R}^{d_m}\}$ $\mathbf{m}_i - d_m$ -dimensional vector of measurements at location \mathbf{r}_i .
- Given the FM, assign to any location a *navigability score*.
- Visualize navigability scores to assist INS deployer.

ACCES framework

1 Interpolation:

 $FM + Gaussian Process Regression (GPR) \Rightarrow likelihood$

2 CRLB:

 $\textit{Likelihood} + \textsf{CRLB} \Rightarrow \textsf{lower bound on localization error}$

 $\fbox{ I bower bound on localization error } \Rightarrow navigability score \\ \fbox{ }$

- Theoretical bound on localization error
- Assume that behaves similar to real error

Gaussian Process Regression:

- Input: fingerprint map of measurements
- Output: Gaussian likelihood p(m|r) of measuring m at r (prediction + uncertainty)
- Intuition:
 - measurements are Gaussian random variables
 - spatial correlation: close are correlated, far are not

Gaussian Process Regression:

- Input: fingerprint map of measurements
- Output: Gaussian likelihood p(m|r) of measuring m at r (prediction + uncertainty)
- Intuition:
 - measurements are Gaussian random variables
 - spatial correlation: close are correlated, far are not

Properties:

- models arbitrary noisy data
- captures FM's spatial sparsity

Gaussian Process Regression:

- Input: fingerprint map of measurements
- Output: Gaussian likelihood p(m|r) of measuring m at r (prediction + uncertainty)
- Intuition:
 - measurements are Gaussian random variables
 - spatial correlation: close are correlated, far are not

Properties:

- models arbitrary noisy data
- captures FM's spatial sparsity

Nuances:

- parameters tuning is required (kernel, length scale, etc.)
- assume normality condition (does not directly work for NLOS)
- \blacksquare directly applicable only to scalar data \Rightarrow assume independence
- computationally expensive \Rightarrow clustering

Cramer-Rao Lower Bound:

- **Input:** likelihood $p(\mathbf{m}|\mathbf{r})$ of measuring \mathbf{m} at \mathbf{r}
- Output: smallest RMSE achievable by any unbiased estimator of r
- Intuition:
 - likelihood carries information about the distribution
 - distribution does not vary locally \Rightarrow degradation

Cramer-Rao Lower Bound:

- **Input:** likelihood $p(\mathbf{m}|\mathbf{r})$ of measuring \mathbf{m} at \mathbf{r}
- Output: smallest RMSE achievable by any unbiased estimator of r
- Intuition:
 - likelihood carries information about the distribution
 - \blacksquare distribution does not vary locally \Rightarrow degradation
- Properties:
 - theoretical
 - easily found for unbiased estimators

Cramer-Rao Lower Bound:

- **Input:** likelihood $p(\mathbf{m}|\mathbf{r})$ of measuring \mathbf{m} at \mathbf{r}
- Output: smallest RMSE achievable by any unbiased estimator of r
- Intuition:
 - likelihood carries information about the distribution
 - \blacksquare distribution does not vary locally \Rightarrow degradation
- Properties:
 - theoretical
 - easily found for unbiased estimators
- Nuances:
 - \blacksquare an underestimation of the real error \Rightarrow we care about qualitative behavior
 - \blacksquare analytical representation depends on GPR parameters \Rightarrow we involve numerical methods

Our Solution: CRLB

CRLB: error of any unbiased location estimator is bounded as

$$\mathsf{RMSE} \geq \sqrt{\mathsf{tr}(\mathcal{I}^{-1}(\mathbf{r}))},$$

where $\mathcal{I}(\mathbf{r})$ is a Fisher Information Matrix:

$$\mathcal{I}(\mathbf{r}) = -\mathbb{E}\left(rac{\partial^2 \log p(\mathbf{m}|\mathbf{r})}{\partial \mathbf{r}_i \partial \mathbf{r}_j}
ight)$$

Our Solution: CRLB

CRLB: error of any unbiased location estimator is bounded as

$$\mathsf{RMSE} \geq \sqrt{\mathsf{tr}(\mathcal{I}^{-1}(\mathbf{r}))},$$

where $\mathcal{I}(\mathbf{r})$ is a Fisher Information Matrix:

$$\mathcal{I}(\mathbf{r}) = -\mathbb{E}\left(rac{\partial^2 \log p(\mathbf{m}|\mathbf{r})}{\partial \mathbf{r}_i \partial \mathbf{r}_j}
ight)$$

From GPR:

$$\mathbf{m} | \mathbf{r} \sim \mathcal{N}(\boldsymbol{\mu}(\mathbf{r}), \boldsymbol{\Sigma}(\mathbf{r}))$$

Thus,

$$\mathcal{I}(\mathbf{r}) = \frac{1}{2} \sum_{k=1}^{d_m} \left[(\sigma_k^2 + \mu_k^2) H(\sigma_k^{-2}) + H(\mu_k^2 \sigma_k^{-2}) - 2\mu_k H(\mu_k \sigma_k^{-2}) + 2H(\log \sigma_k) \right]$$

1 Motivation

2 Background

3 Our Solution

5 Conclusions

Experiments: Data

- UJIIndoorLoc-Mag database
- 8 corridors over 260 m² lab
- 40,159 discrete captures
- Magnetometer readings
- Measurements along the corridors ⇒ 1-D data

Real accuracy: RMSE via WkNN

Experiments: Algorithms

- **Real accuracy**: RMSE via WkNN
- **Naïve approach:** Fingerprint Spatial Sparsity Indicator:

$$FSSI(\mathbf{r}) = \min_{i \in \overline{1,N}} \|\mathbf{r} - \mathbf{r}_i\|$$

considers only distance between measurements

Experiments: Algorithms

- Real accuracy: RMSE via WkNN
- **Naïve approach:** Fingerprint Spatial Sparsity Indicator:

$$FSSI(\mathbf{r}) = \min_{i \in \overline{1,N}} \|\mathbf{r} - \mathbf{r}_i\|$$

considers only distance between measurements

ACCES: our solution

DQRelSim(X, Y) - behavior similarity of sequences $X = X_i$, $Y = Y_i$ for 1-D case.

- Construction:
 - Difference Quotient $\Rightarrow DQ(X)$ and DQ(Y)
 - DTW \Rightarrow optimally warped DQ(X)' and DQ(Y)' from
 - Normalization
- Values:
 - Similar: 1, if X = Y + const
 - Dissimilar: 0, if either X or Y is constant
 - Opposite: -1, if X = -Y + const

DQRelSim(ACCES, RMSE) vs DQRelSim(FSSI, RMSE)

1 "Cut" scenario:

- Contiguous sequence of measurements is removed
- \Leftrightarrow fingerprints were not collected
- 2 "Flat" scenario:
 - Contiguous sequence of measurements is made constant
 - \blacksquare \Leftrightarrow low signal variability

3 "Sparse" scenario:

- Measurements are removed uniformly
- \Leftrightarrow different frequency of fingerprint collection

"Cut" scenario: magnetic field magnitude

IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

"Cut" scenario: similarity of RMSE, ACCES, FSSI

"Flat" scenario: magnetic field magnitude

"Flat" scenario: similarity of RMSE, ACCES, FSSI

1 Motivation

- 2 Background
- 3 Our Solution
- 4 Experiments

5 Conclusions

Summary:

- ACCES provides offline accuracy estimations and FM assessment.
- Does not consider the origin of the data.
- Applicable to pure fingerprinting.
- Shows reasonable correspondence to the real localization error behaviour.

Summary:

- ACCES provides offline accuracy estimations and FM assessment.
- Does not consider the origin of the data.
- Applicable to pure fingerprinting.
- Shows reasonable correspondence to the real localization error behaviour.

Future work:

- Extensive experimental study with other data.
- Comparison to online accuracy estimation algorithms.
- Adding support for arbitrary models.

- Wi-Fi + IMU
- Optimize data usage
- 3 awards

- Wi-Fi + IMU
- Optimize data usage
- 3 awards
- Crowdsource-based
- Open-source

- Wi-Fi + IMU
- Optimize data usage
- 3 awards
- Crowdsource-based
- Open-source
- anyplace.cs.ucy.ac.cy
- github.com/dmsl/anyplace

Thank You!

Come to see our demo yesterday!

Summary:

- ACCES provides offline accuracy estimations and FM assessment.
- Does not consider the origin of the data.
- Applicable to pure fingerprinting.
- Shows reasonable correspondence to the real localization error behaviour.

Future work:

- Extensive experimental study with other data.
- Comparison to online accuracy estimation algorithms.
- Adding support for arbitrary models.