

Skoltech ACCES: OFFLINE ACCURACY ESTIMATION FOR FINGERPRINT-BASED LOCALIZATION

A. Nikitin[♦] C. Laoudias[§] G. Chatzimilioudis[§] P. Karras[¶] D. Zeinalipour§†

♦SKOLTECH § UCY ¶ AAU † MPII

INTRODUCTION

Why: Lack of theoretical offline accuracy estimation frameworks for pure fingerprint localization approaches.

Goal: Provide offline accuracy estimation and fingerprint map assessment for arbitrary fingerprint data sources disregarding data model and in a theoretical manner.

PIPELINE

- 1. **Interpolation:** fingerprint map + *Gaussian Process* Regression (GPR) \Rightarrow likelihood $p(\mathbf{m}|\mathbf{r})$
- 2. Accuracy estimation: likelihood $p(\mathbf{m}|\mathbf{r})$ + Cramer-Rao Lower Bound (CRLB) \Rightarrow lower bound on RMSE
- 3. Bound on RMSE = ACCES navigability score

DEMO: COLLECTION

1. Download Anyplace Indoor Service Windows Google Play or Store from

- 2. Find KAIST E4 building
- 3. Go to Logger
- 4. Collect fingerprints around the building!

DEMO: REFLECTION

5. Come back to the demo site to observe how predicted accuracy changes!

NOTATION

- \mathbf{r} , d_r Coordinate-vector and its size
- m, d_m Measurement vector and its size
- $p(\mathbf{m}|\mathbf{r})$ Likelihood of observing m at r
- $\mathcal{I}(\mathbf{r})$ Fisher Information Matrix
- $\mathbb{E}(\cdot)$ Expectation of a random variable
- μ , σ mean and covariance matrix diagonal of a normal random vector
- H, tr Hessian matrix, trace of a matrix

INTERPOLATION

Gaussian Process Regression:

- measurements are Gaussian random variables
- measurements are spatially correlated

ACCURACY ESTIMATION

Cramer-Rao Lower Bound:

- *likelihood* = probability to measure m at r
- new measurements \Rightarrow insight on r
- lower bound on RMSE for unbiased estimators

$$RMSE \ge \sqrt{tr(\mathcal{I}^{-1}(\mathbf{r}))},$$

$$\mathcal{I}(\mathbf{r}) = \frac{1}{2} \sum_{k=1}^{d_m} \left[(\sigma_k^2 + \mu_k^2) H(\sigma_k^{-2}) + \right]$$

$$H(\mu_k^2 \sigma_k^{-2}) - 2\mu_k H(\mu_k \sigma_k^{-2}) + 2H(\log \sigma_k)$$

CONCLUSIONS

- *ACCES*: offline accuracy estimation framework
- CRLB-based
- No data source and model dependence

CONTACT INFORMATION

Web https://anyplace.cs.ucy.ac.cy Email artem.nikitin@skolkovotech.ru dzeina@cs.ucy.ac.cy