
Efficient Indexing Data Structures for Flash-Based
Sensor Devices *

SONG LIN

University of California, Riverside

and

DEMETRIOS ZEINALIPOUR-YAZTI **

University of Cyprus

and

VANA KALOGERAKI, DIMITRIOS GUNOPULOS, WALID A. NAJJAR

University of California, Riverside

Flash Memory is the most prevalent storage medium found on modern Wireless Sensor Devices
(WSDs). In this article we present two external memory index structures for the efficient retrieval
of records stored on the local flash memory of a WSD. Our index structures, MicroHash and
MicroGF (Micro Grid Files), exploit the asymmetric read/write and wear characteristics of flash
memory in order to offer high performance indexing and searching capabilities in the presence of
a low energy budget, which is typical for the devices under discussion. Both structures organize
data and index pages on the flash media using a sorted by timestamp file organization. A key idea
behind these index structures is that expensive random access deletions are completely eliminated.
MicroHash enables equality searches by value in constant time and equality searches by timestamp
in logarithmic time at a small cost of storing the index pages on the flash media. Similarly,
MicroGF enables spatial equality and proximity searches in constant time. We have implemented
these index structures in nesC, the programming language of the TinyOS operating system. Our
trace-driven experimentation with several real datasets reveals that our index structures offer
excellent search performance at a small cost of constructing and maintaining the index.

Categories and Subject Descriptors: C.2.M [Computer-Communication Networks]: Miscella-
neous; H.3.2 [Information Storage and Retrieval]: Information Storage; H.3.3 [Information

Storage and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Design, Experimentation

Additional Key Words and Phrases: Wireless Sensor Networks, Flash Memory, Access Methods

* An earlier version of this paper appeared in [Zeinalipour-Yazti et al. 2005].
** Corresponding Author: D. Zeinalipour-Yazti, dzeina@cs.ucy.ac.cy, Tel: +357-22-892746, Fax:
+357-22-892701, Address: 75 Kallipoleos Str., P.O. Box 20537, CY-1678, Nicosia, Cyprus.
Authors’ addresses: S. Lin, Department of Computer Science & Engineering, University of
California, Riverside, email: slin@cs.ucr.edu; D. Zeinalipour-Yazti, Department of Computer
Science, University of Cyprus, Cyprus, email: dzeina@cs.ucy.ac.cy; V. Kalogeraki, D. Gunopulos,

W. Najjar, Department of Computer Science & Engineering, University of California, Riverside,
email:{vana,dg,najjar}@cs.ucr.edu.
Acknowledgements: This work was supported by grants from NSF ITR #0220148, #0330481.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0362-5915/20YY/0300-0001 $5.00

ACM Transactions on Storage, Vol. V, No. N, Month 20YY, Pages 1–34.

2 · S. Lin et al.

1. INTRODUCTION

Rapid developments in wireless technologies and microelectronics have spawned
a new generation of economically viable embedded sensor systems for monitoring
and understanding the physical world [Warneke et al. 2001; Szewczyk et al. 2004;
Intanagonwiwat et al. 2000; Sadler et al. 2004; Madden et al. 2002; Xu et al.
2004; Zeinalipour-Yazti et al. 2005]. Traditional sensing devices utilized over the
years in meteorology, manufacturing and agriculture, are characterized by their
passive mode of operation, their considerable size and the wired connection to
some centralized processing unit that enables storage and analysis. Wireless Sensor
Devices (WSDs) on the other hand, are tiny computers on a chip that is often no
bigger than a coin or credit card. These devices, equipped with a low frequency
processor (≈4-58MHz) and a wireless radio, can sense parameters such as, light,
sound, temperature, humidity, pressure, noise levels and movement at extremely
high resolutions. This multitude of features constitute WSDs powerful devices
that can be used for in-network processing, filtering and aggregation [Madden et al.
2003; 2002; Yao and Gehrke 2003]. The applications of sensor networks range from
environmental monitoring (such as atmosphere and habitant monitoring [Szewczyk
et al. 2004; Sadler et al. 2004]), to seismic and structural monitoring [Xu et al. 2004]
and industry manufacturing (such as factory and process automation [Crossbow’05
; Madden et al. 2002]).

One of the key challenges in this new era of sensor networks, is the storage and
retrieval of sensor data [Dai et al. 2004; Zeinalipour-Yazti et al. 2005; Ganesan
et al. 2005]. Traditional techniques such as ([Madden et al. 2003; Deligiannakis
et al. 2004; Intanagonwiwat et al. 2000]), work in a centralized way: the acquisition
of data from the physical world is succeeded by the transmission of the respective
data to the sink (querying node). The centralized repository, that contains the full
resolution of sensor data, can then be utilized to resolve different types of queries.
Such centralized data acquisition scenarios have a common problem of large energy
consumption, as the whole universe of readings is transferred towards the sink, thus
leading to a shorter sensor lifetime.

In long-term deployments, it is often cheaper to keep a large window of measure-
ments in-situ (at the generating site) [Zeinalipour-Yazti et al. 2005] and transmit
the specific information to the sink only when requested. For example, biologists an-
alyzing a forest are usually interested in the long-term behavior of the environment.
Therefore the sensors are not required to transmit their readings to the sink at all
times. Instead, the sensors can work unattended and store their readings locally
until certain preconditions are met, or when the sensors receive a query over the
radio that requests the respective data. Such in-network storage conserves energy
from unnecessary radio transmissions which can be used to increase the sampling
frequency of the data, and hence the fidelity of the measurements, in reproducing
the actual physical phenomena.

Currently, the deployment of the sensor technology is severely hampered by the
lack of efficient infrastructure to store locally large amounts of sensor data measure-
ments. The problem is that the local RAM memory of sensor nodes is both volatile
and very limited (≈2KB-64KB). In addition, the non-volatile on-chip flash memory
featured by most sensors is also very limited (≈32KB-512KB). However the limited

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Indexing Data Structures for Flash-Based Sensor Devices · 3

local storage of sensor devices is expected to change soon. Several sensor devices,
such as the RISE hardware platform [Neema et al. 2005; Banerjee et al. 2005], in-
clude off-chip flash memory which supplements each sensor with several megabytes
of storage. Flash memory has a number of distinct characteristics compared to
other storage media: Firstly, each page (typically 128B-512B) can only be written
a limited number of times (≈10,000-100,000). Secondly, pages can only be written
after they have been deleted in their entirety. Additionally, a page deletion always
triggers the deletion of its respective block (≈8KB-64KB per block). Due to these
fundamental constraints, efficient storage management becomes a challenging task.

The problem that we investigate in this paper is how to efficiently organize the
flash memory of a sensing device. Our desiderata are:

(1) To provide efficient access to the data stored on flash by time or value, for both
equality and range queries generated by the user.

(2) To increase the longevity of the flash memory by spreading writes out uniformly
so that the available storage capacity does not diminish at particular regions
of the flash media.

We present two new indexes, MicroHash and MicroGF, which serve as primitive
structures for efficiently indexing temporal environmental and geographical data.
Note that the data generated by sensor nodes has two unique characteristics: i)
Records are generated at a given point in time (i.e. these are temporal records),
and ii) The recorded readings are numeric values in a limited range. For example a
temperature sensor might only record values between -40F to 250F with one decimal
point precision, while the barometric pressure module used in the Mica Weather
Board [Polastre 2003], measures pressure in the range 300mb to 1100mb, again
with one decimal point precision [Polastre 2003]. Traditional indexing methods
used in relational database systems [Fagin et al. 1979; Litwin 1980] are not suitable
as these are mainly geared towards magnetic disks and do not take into account
the asymmetric read/write behavior of flash media. MicroHash and MicroGF have
been implemented in nesC [Gay et al. 2003] and use the TinyOS [Hill et al. 2000]
operating system.

This paper builds on our previous work in [Zeinalipour-Yazti et al. 2005], in
which we presented the design and results of our MicroHash Index. In this paper
we introduce several new improvements, such as an online compression algorithm
and experimental evidence for efficient page read techniques. Additionally, we also
develop an efficient solution to the problem of indexing 2-D geographical infor-
mation. Specifically, we present the design of the MicroGF index structure and
experimentally demonstrate the advantages of such a structure against two popu-
lar alternatives: Grid Files and Quadtrees.
Our contributions in this paper can be summarized as following:

(1) We present the design and implementation of MicroHash, a novel index struc-
ture for supporting equality queries in environmental sensor nodes with limited
processing capabilities and a low energy budget.

(2) We propose the design and implementation of MicroGF, a novel index structure
for supporting spatial queries in sensor nodes equipped with GPS capabilities.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

4 · S. Lin et al.

(3) We present efficient algorithms for inserting, deleting and searching data records
stored on flash media using our algorithms.

(4) We describe the prototype implementation of MicroHash and MicroGF, and
demonstrate the efficiency of our approach with an extensive experimental
study using atmospheric readings from the University of Washington [ATMO’05
], the Great Duck Island study [Szewczyk et al. 2004], and geographical readings
from INFATI[Jensen et al. 2005].

The remainder of the paper is organized as follows: In Section 2 we present
the memory hierarchy of a sensor node and a characterization of its performance
characteristics using the RISE sensor. In Section 3 we formally define the indexing
problem and then describe our data structures in Section 4. Section 5 and Section 6
describe the MicroHash index, search algorithms and search optimizations while
Section 7 presents the MicroGF algorithm. Section 8 presents our experimental
methodology and Section 9 the results of our evaluation. Finally we discuss related
work in Section 10 and conclude the paper in Section 11.

2. THE MEMORY HIERARCHY

In this section we briefly overview the architecture of a sensor node, with a special
focus on its memory hierarchy. We also study the distinct characteristics of flash
memory and address the challenges with regards to energy consumption and access
time.

2.1 System Architecture

The architecture of a sensor node (see Figure 1), consists of a microcontroller unit
(MCU) which is interconnected to the radio, the sensors, a power source and the
LEDs. The MCU includes a processor, a static RAM (SRAM) module and an
on-chip flash memory. The processor runs at low frequencies (≈4-58MHz) which
reduces power consumption. The SRAM is mainly used for code execution while in
the latest generation of sensors, such as Yale’s 58MHz XYZ node [Lymberopoulos
and Savvides 2005] and Intel’s 12MHz iMote (http://www.intel.com), it can also
be used for in-memory (or SRAM) buffering. The choice of the right energy source
is application specific. Most sensors either deploy a set of AA batteries or solar
panels [Sadler et al. 2004]. Therefore a sensor node might have a very long lifetime.

The on-chip flash provides a small non-volatile storage area (32KB-512KB) for
storing the executable code or for accumulating values for a small window of
time [Madden et al. 2003]. A larger external storage can also be supplemented
to a sensor using the Serial Peripheral Interface (SPI), which is typically found on
these devices. For example in the RISE platform, nodes feature a larger off-chip
flash memory which provides the sensor with several GBs of storage.

Although it is currently not clear whether Moore’s Law will apply to the size
and price of the sensor units or their hardware characteristics, we believe that
future sensor nodes will feature more SRAM and flash storage, as more complex
in-network processing applications, increase the memory and CPU demand.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Indexing Data Structures for Flash-Based Sensor Devices · 5

MicroControllerUnit

Processor
~4-58MHz

SRAM
~8KB-64KB

Onchip Flash
~32KB-512KB

Radio

LEDS

Sensors

Power
(AA, Solar)

External
Flash

SPI Bus

500KBps
- 3MBps

Fig. 1. The Architecture of a typical Wireless Sensor.

2.2 Overview of Flash Memory

Flash Memory is the most prevalent storage media used in current sensor systems
because of its many advantages including: i) non-volatile storage, ii) simple cell
architecture, which allows easy and economical production, iii) shock-resistance, iv)
fast read access and power efficiency. These characteristics establish flash memory
as an ideal storage media for mobile and wireless devices [Dipert and Levy 1994].

There are two different types of flash memory, NOR flash and NAND flash, which
are named according to the logic gate of their respective storage cell. NAND flash
is the newer generation of flash memory which is characterized by faster erase time,
higher durability and higher density. NOR is an older type of flash which is mainly
used for code storage (e.g. for the BIOS). Its main advantage is that it supports
writes at a byte granularity as opposed to page granularity used in NAND flash.
NOR flash has also faster access times (i.e. ≈200ns) than NAND (50-80µs) but
lacks in all other characteristics such as density and power efficiency.

For the rest of the paper we will focus on the characteristics of NAND memory
as this is the type of memory used for the on-chip and off-chip flash of most sensors
including the RISE platform. According to Micron (http://www.micron.com/),
NAND memory is the fastest growing memory market in 2005 ($8.7 billion). Al-
though reading from a NAND flash can be performed at any granularity, ranging
from a single byte to a whole block (typically 8KB-64KB), it features a number of
distinct constraints which can be summarized as following:

(1) Delete-Constraint: Deleting data stored on flash memory can only be per-
formed at a block granularity (i.e. 8KB-64KB).

(2) Write-Constraint: Writing data can only be performed at a page granularity
(typically 256B-512B), after the respective page (and its respective 8KB-64KB
block) has been deleted.

(3) Wear-Constraint: Each page can only be written a limited number of times
(typically 10,000-100,000).

The design of our index structures in the remainder of this paper, considers the
above constraints.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

6 · S. Lin et al.

NAND Flash installed on a Sensor Node

Page Read Page Write Block Erase
1.17mA 37mA 57mA

Time 6.25ms 6.25ms 2.26ms
Data Rate 82KBps 82KBps 7MBps

Energy 24µJ 763µJ 425µJ

Flash Idle Flash Sleep
0.068mA 0.031mA

Time N/A N/A
Data Rate N/A N/A

Energy 220µJ/sec 100µJ/sec

Table I. Performance Parameters for NAND Flash using a 3.3V voltage, 512B Page size
and 16KB Block size

2.3 Access Time of NAND Flash

Table I, presents the average measurements that we obtained from a series of micro-
benchmarks using the RISE platform along with a HP E3630A constant 3.3V power
supply and a Fluke 112 RMS Multimeter. The first observation is that reading is
three orders of magnitude less power demanding than writing. On the other hand,
block erases are also quite expensive but can be performed much faster than the
former two operations. Note that read and write operations involve the transfer of
data between the MCU and the SPI bus, which becomes the bottleneck in the time
to complete the operation. Specifically, reading and writing on flash media without
the utilization of the SPI bus can be achieved in ≈50µs and ≈200µs respectively [Wu
et al. 2003b]. Finally, our results are comparable to measurements reported for
the MICA2 mote in [Dai et al. 2004] and the XYZ sensor in [Lymberopoulos and
Savvides 2005].

Although these are hardware details, the application logic needs to be aware
of these characteristics in order to minimize energy consumption and maximize
performance. For example, the deletion of a 512B page will trigger the deletion
of a 16KB block on the flash memory. Additionally the MCU has to re-write the
rest unaffected 15.5KB. One of the objectives of our index design is to provide an
abstraction which hides these hardware specific details from the application.

2.4 Energy Consumption of NAND Flash

Another question is whether it is cheaper to write to flash memory rather than
transmitting over the RF radio. We used the RISE mote to measure the cost of
transmitting the data over a 9.6Kbps radio (at 60mA), and found that transmitting
512B (one page) takes on average 416ms or 82,368µJ. Comparing this with the
763µJ required for writing the same amount of data to local flash, along with the
fact that transmission of one byte is roughly equivalent to executing 1120 CPU
instructions, makes local storage and processing highly desirable.

A final question we investigated is how many bytes we can store on local flash
before a sensor runs out of energy. Note that this applies only to the case where
the sensor runs on batteries. Double batteries (AA) used in many current designs
operate at a 3V voltage and supply a current of 2500 mAh (milliAmp-hours). As-

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Indexing Data Structures for Flash-Based Sensor Devices · 7

suming similarly to [Polastre 2003], that only 2200mAh is available and that all
current is used for data logging, we can calculate that AA batteries offer 23, 760J
(2200mAh * 60 * 60 * 3). With a 16KB block size and a 512B page size, we would
have one block delete every 32 page writes (16KB/512B). Writing a page, according
to our measurements, requires 763µJ while the cost of performing a block erase is
425µJ. Therefore writing 16KB of data requires:

Write16KB = (32pages ∗ 763µJ) + (425µJ) = 24, 841µJ (1)

Using the result of the above equation, we can derive that by utilizing the
23, 760J offered by the batteries, we can write ≈15GB before running out of bat-
teries ((23,760J * 16KB) / 24,841µJ). The interesting point is that even in the
absence of a wear-leveling mechanism we would be able to accommodate the 15GB
without exhausting the flash media. However this would not be true if we used
solar panels [Sadler et al. 2004], which provide a virtually unlimited power source
for each sensor device. Another reason why we want to extend the lifetime of the
flash media is that the batteries of a sensor node could be replaced in cases where
the devices remain accessible.

3. PROBLEM DEFINITION

In this section we provide a formal definition of the indexing problems that the
MicroHash and MicroGF structures address. We also describe how these cope with
the distinct characteristics of flash memory.

Let S denote some sensor that acquires readings from its environment every ǫ
seconds (i.e. t = 0, ǫ, 2ǫ, ...). At each time instance t, the sensor S obtains a
temporal data record drec = {t, v1, v2, ..., vx}, where t denotes the timestamp (key)
on which the tuple was recorded, while vi (1 ≤ i ≤ x) represents the value of some
reading (such as humidity, temperature, light, longitude and latitude, etc).

Also let P = {p1, p2, ..., pn} denote a flash media with n available pages. A page
can store a finite number of bytes (denoted as psize

i), which limits the capacity of P
to

∑n

i=0 psize
i . Pages are logically organized in b blocks {block1, block2, ..., blockb},

each block containing n/b consecutive pages. We assume that pages are read on
a page-at-a-time basis and that each page pi can only be deleted if its respective
block (denoted as pblock

i) is deleted as well (write/delete-constraint). Finally due
to the wear-constraint, each page can only be written a limited number of times
(denoted as pwc

i).
The MicroHash index supports efficient value-based equality queries and efficient

time-based equality and range queries. These queries are defined as follows:

Definition 3.1. Value-Based Equality Queries: a one dimensional query
Q(vi, a) in which the field values of attribute vi are equivalent to value a.

For example the query q=(temperature, 95F) can be used to find time instances
(ts) and other recorded readings when the temperature was 95F.

Definition 3.2. Time-Based Range and Equality Queries: a one dimen-
sional query Q(t, a, b) in which the time attribute t, is between the lower and upper
bound a and b respectively. The equality query is a special case of the range query
Q(t, a, b) in which a = b.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

8 · S. Lin et al.

For example the query q=(ts, 100, 110) can be used to find the tuples recorded
in the 10 second interval.

The MicroGF index supports, similarly to MicroHash, time-based equality and
range queries. In addition, it supports efficient spatial queries defined as follows:

Definition 3.3. Spatial Queries: a multi-dimensional query Q(v1, v2, ..., vx, Aquery)
in which the spatial attributes v1, v2,...vx are in the query area Aquery .

For example the query q=(x, y, cityNewY ork) can be used to find all the posi-
tions appeared in New York city.

Evaluating the above queries efficiently requires that the system maintains an
index structure along with the generated data. Specifically, while a node senses
data from its environment (i.e. data records), it also creates index entries that
point to the respective data stored on the flash media. When a node needs to
evaluate some query, it uses the index records to quickly locate the desired data.
Since the number of index records might be potentially very large, these are stored
on the external flash as well. Although maintaining index structures is a well studied
problem in the database community [Fagin et al. 1979; Litwin 1980; Ramakrishnan
and Gehrke 2002], the low energy budget of sensor nodes along with the unique read,
write, delete and wear constraints of flash memory introduce many new challenges.
In order to maximize efficiency our design objectives are as follows:

(1) Wear-Leveling: Spread page writes out uniformly across the storage media
P in order to avoid wearing out specific pages.

(2) Block-Erase: Minimize the number of random-access deletions as the deletion
of individual pages triggers the deletion of the whole respective block.

(3) Fast-Initialization: Minimize the size of in-memory structures that will be
required in order to use the index.

4. THE DATA STRUCTURES

In this section we describe the data structures created in the fast but volatile SRAM
to provide an efficient way to access data stored on the persistent but slower flash
memory. First we describe the underlying organization of data on the flash media
and then describe the involved in-memory data structures.

4.1 Flash Organization

MicroHash and MicroGF use a Sorted-by-timestamp flash organization, in which
records are stored on the flash media in a circular array fashion. This allows data
records to be naturally sorted based on their timestamp and therefore our orga-
nization is Sorted by Timestamp. This organization requires the least overhead
in SRAM (i.e. only one data write-out page). Additionally, as we will show in
Section 5.4, this organization addresses directly the delete, write and wear con-
straint. When the flash media is full we simply delete the next block following
idx. Although other organizations in relational database systems, such as Sorted
or Hashed on some attribute could also be used, they would have a prohibitive cost
as the sensor would need to continuously update written pages (i.e. perform an
expensive random page write). On the other hand, our Sorted-by-timestamp Orga-

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Indexing Data Structures for Flash-Based Sensor Devices · 9

typedef struct Page {

uint8_t typ:3;

uint16_t crc:16;

uint16_t pwc:15;

uint8_t siz:7;

uint32_t ppa:23;

union {

RootP rootP;

DirP dirP;

IdxP idxP;

DataP dataP;};

} __attribute__((packed));

typedef struct DataP {

DataRec records[DREC];

} __attribute__((packed));

typedef struct IdxP {

// optional anchor

uint64_t lastTS;

IdxRec records[IREC];

} __attribute__((packed));

typedef struct DataRec {

timestamp_t ts;

data_t val1;

} __attribute__((packed));

typedef struct IdxRec {

fladdress_t datap;

// optional offset

floffset_t offset;

} __attribute__((packed));

Fig. 2. Main data structures used in our nesC implementation. The example applies to the
MicroHash Index while the MicroGF Index uses similar structures.

nization always yields completely full data pages as data records are consecutively
packed on the flash media.

4.2 In-Memory (SRAM) Data Structures

The flash media is segmented into n pages, each with a size of 512B. Each page
consists of a 8B header and a 504B payload.

Specifically the header includes the following fields (also illustrated in Figure 2):
i) A 3-bit Page Type (TYP) identifier. This identifier is used to differentiate be-
tween different types of pages such as data, index, directory and root pages.
ii) A 16-bit Cyclic Redundancy Checking (CRC) polynomial on the payload, which
can be used for integrity checking. When CRC is handled by lower levels then this
field can be turned off.
iii) A 7-bit Number of Records (SIZ), which identifies how many records are stored
inside a page. Note that our implementation uses fixed size records that never span
to more than one page. We chose such a scheme, as opposed to using variable
length records, because records generated by a sensor always have the same size.
To avoid segmentation, variable length records would require to keep a directory
inside each page, which will keep track of the available space.
iv) A 23-bit Previous Page Address (PPA), stores the address of some other page
on the flash media giving in that way the capability to create linked lists on the
flash.
v) A 15-bit Page Write Counter (PWC), which keeps the number of times a par-
ticular page has been written to flash.

While the header is identical for any type of page, the payload can store four
different types of information:
i) Root Page: contains information related to the state of the flash media. For
example it contains the position of the last write (idx), the current cycle (cycle)
and meta-information about the various indexes stored on the flash media.
ii) Directory Page: contains a number of directory records (buckets) each of which

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

10 · S. Lin et al.

Flash Card

Directory Page

Index Page

Data Page

Empty Page

SRAM

pWrite

Fig. 3. Overview of the MicroHash Structure. While a node senses data from its environment it
also creates index entries that point to the respective data stored on the flash media. When a
node needs to evaluate some query, it uses the index records to quickly locate the desired data.

contains the address of the last known index page mapped to this bucket. In order
to form larger directories several directory pages might be chained using the 23-bit
PPA address in the header.
iii) Index Page: contains a fixed number of index records and the 8 byte timestamp
of the last known data record. The latter field, denoted as anchor is exploited by
timestamp searches which can make an informed decision on which page to follow
next. Additionally, we evaluate two alternative index record layouts. The first,
denoted as offset layout, maintains for each data record a respective pageid and
offset, while the second layout, denoted as nooffset, maintains only the pageid of
the respective data record.
iv) Data Page: contains a fixed number of data records. For example when the
record size is 16B then each page can contain 31 consecutively packed records.

5. INDEXING IN MICROHASH

The MicroHash index is an efficient external-memory structure designed to support
equality queries in sensor nodes that have limited main memory and processing
capabilities. A MicroHash index structure consists of two modules (as shown in
Figure 3): i) A Directory and ii) a set of Index Pages. The Directory consists of a
set of buckets. Each bucket maintains the address of the newest (chronologically)
index page that maps to that bucket. The Index Pages contain the addresses of
the data records that map to the respective bucket. Note that there might be an
arbitrarily large number of data and the index pages. Therefore these pages are
stored on the flash media and fetched into main memory only when requested.

The MicroHash index is built while data is being acquired from the environment
and stored on the flash media. In order to better describe our algorithm we divide
its operation in four conceptual phases: a) The Initialization Phase in which the
root page and certain parts of the directory are loaded into SRAM, b) The Growing
Phase in which data and index pages are sequentially inserted and organized on the
flash media, c) The Repartition Phase in which the index directory is re-organized
such that only the directory buckets with the highest hit ratio remain in memory,
and the d) The Deletion Phase which is triggered for garbage collection purposes.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Indexing Data Structures for Flash-Based Sensor Devices · 11

5.1 The Initialization Phase

In the first phase the MicroHash index locates the root page on flash media. In
our current design, the root page is written on a specific page on flash (page0).
If page0 is worn out, we recursively use the next available page. Therefore a few
blocks are pre-allocated at the beginning of the flash media for the storage of root
pages. The root page indicates what types of indexes are available on the system
and the addresses of their respective directories. Given that an application requires
the utilization of an index I, the system pre-loads part of I ′s directory into SRAM
(detailed discussion follows in Section 5.3). The root and directory pages then
remain in SRAM, for efficiency, and are periodically written out to flash.

5.2 The Growing Phase

Let us assume that a sensor generates a temporal record drec = {t, v1, v2, ..., vx}
every ǫ seconds, where t is the timestamp on which the record was generated and
vi (1 ≤ i ≤ x) some distinct reading (e.g. humidity, temperature, etc). Instead
of writing drec directly to flash, we use an in-memory (SRAM) buffer page pwrite

(see Figure 4a). When pwrite gets full it is flushed to the address idx, where idx
denotes the address after the last page write. Note that idx starts out as zero
and this counter is incremented by one every time a page is written out. When
idx becomes equal to the size of the flash media n, it is reset to zero. In order to
provide a mechanism for finding the relative chronological order of pages written on
the flash media, we also maintain the counter cycle, which is incremented by one
every time idx is reset to zero. The combination of the <cycle, pageid> provides
the chronological order mechanism.

Next we describe how index records are generated and stored on the flash media.
The index records in our structure are generated whenever the pwrite buffer gets
full. At this point we can safely determine the physical address of the records
in pwrite (i.e. idx). We create one index record ir = [idx, offset] for each data
record in pwrite (∀drec ∈ pwrite). For example assume that we insert the following
12 byte [timestamp, value] records into an empty MicroHash index: {[1000,50],
[1001,52], [1002,52]}. This will trigger the creation of the following index records: {
[0,0],[0,12],[0,24] }. Since pwrite is written to address idx the index records always
reference data records that have a smaller <cycle,pageid> identifier.

The MicroHash Directory provides the start address of the index pages. It is con-
structed by providing the following three parameters: a) A lower bound (lb) on the
indexed attribute, b) an upper bound (ub) on the indexed attribute and the number
of available buckets c (note that we can only fit a certain number of directory buck-
ets in memory). For example assume that we index temperature readings which
are only collected in the following known and discrete range [−40..250], then we set

lb = −40F , ub = 250F and c = 100. Initially each bucket represents exactly |lb..ub|
c

consecutive values although this equal splitting (which we call equiwidth splitting)
is refined in the repartition phase based on the data values collected at run-time.

5.3 The Repartition Phase

A drawback of the initial equiwidth bucket splitting approach is that some buckets
may rarely be used while others may create long lists of index records. To overcome

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

12 · S. Lin et al.

pwrite

MicroHash

Flash Card

idx

cycle=0

a. Growing Phase

b0

b1

b2

b3ts v1 v2r =

MicroHash

Flash Card
idx cycle=1

c. Deletion Phase

b0

b1

b2

b3<1,n/b>

Invalidation
Threshold

Directory

s=0
c=0

[0-10]

[10-20]

[20-30]

[30-40]

s=0
c=0

s=1
c=3

s=2
c=1

Directory Index Pages

s=0
c=0

[0-10]

[10-15]

[20-30]

[30-40]

s=0
c=0

s=3
c=0

s=2
c=1

after

b. Repartition Phase

s=4
c=1[15-20]

evicted to flash

A:

A1:

B:

Fig. 4. The three indexing phases: a) Growing Phase, b) Repartition Phase and c) Deletion Phase

this problem, we use the following splitting policy: Whenever a directory bucket
A links to more than τ records (user parameter), we evict to flash the bucket B,
which was not used for the longest period of time (see Figure 4b). Note that
this mechanism can be implemented using only two counters per bucket (one for
the timestamp and one for the number of records). In addition to the eviction
of page B, we also create a new bucket A1. Our objective is to provide a finer
granularity to the entries in A as this bucket is the most congested one. Note
that the values in A are not reassigned between A and A1 as it would happen
in dynamic hashing techniques, such as extendible hashing [Fagin et al. 1979] or
linear hashing [Litwin 1980]. The reason is that the index pages are on the flash
media and updating these pages would result in a potentially very large number
of random updates (which would be extremely expensive). Our equidepth, rather
than equiwidth, bucket splitting approach keeps in memory finer intervals for index
records used more frequently.

Figure 4b shows that each bucket is associated with a counter s, that indicates
the timestamp of the last time the buffer was used, and a counter c that indicates
the number of index records added since the last split. In the example, the c = 3
value in bucket 2 (A:[10-20]) exceeds the τ = 2 threshold and therefore this bucket
has to be split. Before splitting the bucket, the index forces bucket 4 (B:[30-40]) to
the flash media (as this is the least used bucket). It then proceeds with the split
into A:[10-15] and A1:[15-20]. Note that the A list now contains values in [10-20]
while the A1 list contains only values in the range [15-20]. Any future additions to
A though, will only include values in the range [10-15]. The idea is that we don’t
want to reassign the values of A, since these values reside on the flash media. In
Section 6, we will show that this organization preserves efficient data access.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Indexing Data Structures for Flash-Based Sensor Devices · 13

5.4 The Deletion Phase

In this phase the index performs a garbage collection operation of the flash media
in order to make space for any newly acquired data. The phase is triggered after
all n pages have been written to the flash media. This operation blindly deletes the
next n/b pages, which is the whole block following the pointer idx (see Figure 4c).
It is then triggered again whenever n/b pages have been written, where b is the
number of blocks on the flash media. That leaves the index with n/b clean pages
that can be used for future writes. Note that this might leave pointers from index
pages referencing data that is already deleted. This problem is handled by our
search algorithm described in the next section.

The distinct characteristic of our garbage collection operation is that it satisfies
directly the delete-constraint, because pages are deleted in blocks (which is cheaper
than deleting a page-at-a-time). This makes it different from similar operations
of flash file systems [Dai et al. 2004; Woodhouse] that perform page-at-a-time
deletions. Additionally, this mode provides the capability to ”blindly” delete the
next block without the need to read or relocate any of the deleted data. The
correctness of this operation is established by the fact that the index records always
reference data records that have a smaller <cycle,pageid> identifier. Therefore
when an index page is deleted then we are sure that all associated data pages are
already deleted.

6. SEARCHING IN MICROHASH

In this section we show how records can efficiently be located by their value or
timestamp.

6.1 Searching by Value

The first problem we consider is how to perform value-based equality queries. Find-
ing records by their value involves: a) locating the appropriate directory bucket,
from which the system can extract the address of the last index page, b) reading
the respective index pages on a page-by-page basis and c) reading the data records
referred by the index pages on a page-by-page basis. Since SRAM is extremely
limited on a sensor node we adopt a record-at-a-time query return mechanism, in
which records are reported to the caller on record-by-record basis. This mode of
operation requires three available pages in SRAM, one for the directory (dirP) and
two for the reading pages (idxP,dataP), which only occupies 1.5KB. If more SRAM
was available, the results could have been returned at other granularities as well.
The complete search procedure is summarized in Algorithm 1.

Note that the loadPage procedure in line 4 and 6 returns NULL if the fetched
page is not in valid chronological order (with respect to its preceding page) or, if
the fetched data records are not within the specified bucket range. We use these
termination conditions, as the index records might point to deleted data pages.
Recall that we do not update the index records during deletions for performance
reasons. The validations applied by loadPage, ensure that we can safely terminate
the search procedure. Finally, since the MicroHash index returns records on a
record-at-a-time basis, we use a signal finished at the end to indicate that the
search procedure has been completed.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

14 · S. Lin et al.

Algorithm 1 EqualitySearch

Input: value: the query (search predicate).
Output: The records that contains value.
1: procedure EqualitySearch(value)
2: bucket = hash(value);
3: address = dirP [bucket].idxP ;
4: while ((idxP = loadPage(address)) != NULL) do
5: for i = 0 to |idxP.size| do
6: If ((dataP=loadPage(idxP[i].dataP))==NULL)
7: address=0; break;
8: If (dataP.record[idxP[i].offset]==value)
9: signal dataP.record[idxP[i].offset];

10: end for
11: address = idxP.ppa;
12: end while
13: signal finished;
14: end procedure

6.2 Searching by Timestamp

In this section we investigate time-based equality and range queries. First, note that
if index pages were stored in a separate physical location, and thus not interleaved
with data pages, the sorted (by timestamp) file organization would allow us to
access any data record in O(1) time. However, this would also violate our wear
leveling mechanism as we wouldn’t be able to spread out the page writes uniformly
among data and index pages. Another approach would be to deploy an in-memory
address translation table, such as the one used in [Wu et al. 2003b] and [Wu et al.
2003a], which would hide the details of wear-leveling mechanism. However, such
a structure might be too big given the memory constraints of a sensor node and
would also delay the sensor boot time.

Efficient search can be supported by a number of different techniques. One
popular technique is to perform a binary search over all pages stored on the flash
media. This would allow us to search in O(log2n) time, where n is the size of the
media. For large values of n such a strategy is still expensive. For instance, with a
512MB flash media and a page size of 512B we would need approximately 20 page
reads before we find the expected record.

In our approach we investigate two binary search variants named: LBSearch
and ScaleSearch. LBSearch starts out by setting a pessimistic lower bound on
which page to examine next, and then recursively refines the lower bound until
the requested page is found. ScaleSearch on the other hand exploits knowledge
about the underlying distribution of data and index pages in order to offer a more
aggressive search method that usually executes faster. ScaleSearch is superior to
LBSearch when data and index pages are roughly uniformly distributed on the flash
media but its performance deteriorates for skewed distributions.

For the remainder of this section we assume that a sensor S maintains locally
some indexed readings for the interval [ta..tb]. Also let x < y (and x > y) denote
that the <cyclex, idxx> pair of x is smaller (and respectively greater) than the
<cycley, idxy> of y. When S is asked for a record with the timestamp tq, it follows

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Indexing Data Structures for Flash-Based Sensor Devices · 15

LBSearch + Anchors

LBSearch + No Anchors

ts
te

tq tq' tq''tq'''

te
tqshift shifttq' tq''ts

ScaleSearch + Anchors

ScaleSearch + No Anchors

ts
te

tq tq' tq''tq'''

te
tqshift shifttq' tq''ts

scale

scale lb lb

lb

lb lb lb

lb lblblb

Fig. 5. Searching By Timestamp. ts: oldest timestamp on flash (te: newest), tq : the query
(timestamp), lb: The lower bound obtained using either idxlb or idxscaled.

one of the following approaches: i) LBSearch: S starts out by setting the lower
bound :

idxlb(tq, ts)

⌈

tq−ts

ℜ

⌉

, if cycle == 0;

idx +
⌈

tq−ts

ℜ

⌉

, otherwise

where idx is the address of the last written page and ℜ a constant indicating the
maximum number of data records per page. It then deploys the LBSearch(ts, idxlb)
procedure as illustrated in Algorithm 2. It is easy to see that in each recursion step,
LBSearch always moves clockwise (increasing time order) and that idxlb ≤ idxtq

.

Algorithm 2 LBSearch (No Anchors)

Input: tq: the query (timestamp), current: begin search address
Output: The page that contains tq.
1: procedure LBSearch(tq, current)
2: p = readPage(current);
3: if (isIndexPage(p)) then
4: // logical right shift
5: return LBSearch(tq, current + 1);
6: else
7: t1 = P.record[0].ts;
8: t2 = P.record[P.lbu].ts;
9: if (t1 ≤ tq ≤ t2) then

10: return P ;
11: end if
12: return LBSearch(tq, current + idxlb(tq, t2));
13: end if
14: end procedure

It is important to note that a lower bound can only be estimated if the fetched
page, on each step of the recursion, contains a timestamp value. Our discussion
so far, assumes that the only pages that carry a timestamp are data pages which
contain a sequence of data records {[ts1, val1]...[ts1, valℜ]}. In such a case, the
LBSearch has to shift right until a data page is located. In our experiments we
noted that this deficiency could add in some cases 3-4 additional page reads. In

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

16 · S. Lin et al.

order to correct the problem we store the last known timestamp inside each index
page (named Anchor).

ii) ScaleSearch: When index pages are uniformly spread out across the flash me-
dia, then a more aggressive search strategy might be more effective. In ScaleSearch,
which is the technique we deployed in MicroHash, instead of using idxlb in the first
step we use idxscaled:

idxscaled(tq, ts)

⌈

tq−ta

tb−ta
∗ idx

⌉

, if cycle == 0;

idx +
⌈

tq−ta

tb−ta
∗ n

⌉

, otherwise.

We then use LBSearch in order to refine the search. Note that idxscaled might
in fact be larger than idxtq

in which case LBSearch might need to move counter-
clockwise (decreasing time order).

Performing a range query by timestamp Q(tq, a, b) is a simple extension of the
equality search. More specifically, we first perform a ScaleSearch for the upper
bound b (i.e. Q(tq, b)) and then sequentially read backwards until a is found. Note
that data pages are chained in reverse chronological order (i.e. each data page
maintains the address of the previous data page) and therefore this operation is
very simple.

6.3 Search Optimizations

In this section we present three optimizations that increase the performance of
the basic MicroHash approach. The first two methods alleviate the performance
penalty that incurs because of index pages that are not fully occupied. Note that
searching over partially full index pages, results in unnecessary transfer of data
between the MCU and the flash cells. The first method, named Elf-Like Chaining
(ELC), eliminates non-full index pages, which as a result decreases the number
of pages required to answer a query, and the second method, named Two-Phase
Read minimizes the number of bytes transferred from the flash media. The third
method attempts to minimize the amount of data that is read or written to the flash
media. This is achieved by deploying some basic Run-Length Encoding compression
scheme, while the sensor acquires the data.

6.3.1 Elf-Like Chaining (ELC). In MicroHash, index pages are chained using
a back-pointer as illustrated in Figure 6 (named MicroHash Chaining). Inspired
from the update policy of the ELF filesystem [Dai et al. 2004], we also investigate,
and later experimentally evaluate, the Elf-like Chaining (ELC) mechanism. The
objective of ELC is to create a linked list in which each node, other than the
last node, is completely full. This is achieved by copying the last non-full index
page into a newer page, whenever new index records are added to the index. This
continues until an index page becomes full, at which point it is not further updated.

To better understand the two techniques, consider the following scenario (see Fig-
ure 6): An index page on flash (denoted as pi (i ≤ n)), contains k (k < psize

i) index
records {ir1, ir2, ..., irk} that in our scenario map to directory bucket v. Suppose
that we create a new data page on flash at position pi+1. This triggers the creation
of l additional index records, that in our scenario map to the same bucket v. In Mi-
croHash Chaining (MHC), the buffer manager simply allocates a new index page

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Indexing Data Structures for Flash-Based Sensor Devices · 17

...

MicroHash Chaining

... ...

Elf-Like Chaining

copy

k
copy

k+l

k

copy

l ...
pi pi+3

pi pi+3

Fig. 6. Index Chaining Methods: a) MicroHash Chaining and b) ELF-like Chaining.

for v and keeps the sequence {ir1, ir2, ..., irl} in memory until the LRU replacement
policy forces the page to be written out. Assuming that the new index sequence
is forced out of memory at pi+3, then pi will be back-pointed by pi+3 as shown in
Figure 6. In Elf-Like Chaining (ELC), the buffer manager reads pi in memory
and then augments it with the l new index records (i.e. {ir1, ..., irk, ..., irl+k}).
However, pi is not updated due to the write and wear constraint, but instead the
buffer manager writes the new l + k sequence to the end of the flash media (i.e.
at pi+3). Note that pi is now not backpointed by any other page and will not be
utilized until the block delete, guided by the idx pointer, erases it.

The optimal compaction degree of index pages in ELC significantly improves
the search performance of an index as it is not required to iterate over partially
full index pages. However, in the worse case, ELC might introduce an additional
page read per indexed data record. Additionally we observed in our experiments,
presented in Section 9, that ELC requires on average 15% more space than the
typical MicroHash chaining. In the worst case, the space requirement of ELC
might double the requirement of MHC.

size-k...
copy

size-k
copyk k k

size-k
copy k

...

pi pi+2 pi+3

Fig. 7. Sequential Trashing in ELC.

To understand the worst case scenario in ELC, consider scenario in Figure 7.
This time assume that the buffer manager reads pi in memory and then augments
psize

i (a full page) new index records. That will evict pi to some new address (in our
scenario pi+2). However some additional k records are still in the buffer. Assume
that these pages are now evicted from main memory to some new flash position
(in our scenario pi+3). So far we utilized three pages (pi, pi+2 and pi+3) while the
index records could fit into only 2 index pages (i.e. k + psize

i records, k < psize
i).

When the same scenario is repeated, then we say that ELC suffers from Sequential
Trashing and ELC will require double the required space to accommodate all index
records.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

18 · S. Lin et al.

Flash Card

SRAM

1,2

Single vs Two Phase
Page Read

1,2

Flash Card

SRAM

1 2

2

1

2

1

2

1

 0

 1

 2

 3

 4

 5

 6

 7

 8

512448384320256192128648

T
im

e
(m

s)

Bytes included in Page

Single versus Two Phase Page Read
 Phase I: Reads 8B Header, Phase II: Reads X Payload

Single Phase
Two Phase

Fig. 8. a) Illustration of the Single Phase and Two Phase Page Read strategies. b) Performance
comparison of the strategies on the RISE platform.

6.3.2 Two-Phase Page Reads. Our discussion so far assumes that pages are read
from the flash media on a page-by-page basis (usually 512B per page). When pages
are not fully occupied, such as index pages, then many empty bytes (padding) is
transferred from the flash media to main memory. In order to alleviate this burden,
we exploit the fact that reading from flash can be performed at any granularity (i.e.
as small as a single byte). More specifically, we propose the deployment of a Two-
Phase Page Read in which the MCU reads a fixed header of a page from flash in
the first phase, and then reads the exact amount of bytes in the next phase.

The performance of two-phase reads versus single phase reads has been experi-
mentally evaluated on the RISE platform [Neema et al. 2005] as is shown in Figure 8.
Note that in order to initiate a read over the flash media there is a fixed 9-byte over-
head for accessing the SPI bus. From our experimental analysis, it can be concluded
that two-phase reading is almost always superior to its single phase counterpart,
with an exception of pages which are adequately full (i.e. >90%). Minimizing the
page reading time significantly minimizes energy consumption during searches.

6.3.3 Lossless Compression by Exploiting Temporal Locality. One common char-
acteristic of real signals (or records) generated by sensing devices, is that consecu-
tive time instances are correlated [Deligiannakis et al. 2004; Tang and Raghavendra
2004; Szewczyk et al. 2004]. For instance, a sensor device might generate the same
temperature reading of 70F , for every second in the span of an hour. Therefore the
temperature timeseries is characterized by temporal locality.

In this subsection, we describe how a sensor device might exploit this additional
parameter in order to perform some basic compression of the generated data values.
Although one might argue that compression is of less importance, as flash storage
can be very large and potentially very cheap, its importance originates from the
fact that the predominant cost in the operation of a sensing device that records
readings on local storage, comes from the bytes that are read or written to flash

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Indexing Data Structures for Flash-Based Sensor Devices · 19

MicroHash with
Index Compression

MicroHash

Index Records

d2 d3 d4 d5

Index Page

Data Records

Data Page

i2 i3 i4i1

59

d1

60

d2

60

d3

60

d4

60

d5

61

d6

60

d7

60

d8

Index Records

d2,d5 d7,d8

Index Page

Data Page

i2 i3 i4i1

59

d1

60

d2

60

d3

60

d4

60

d5

61

d6

60

d7

60

d8

Data Records

MicroHash with
Data Compression

Index Records

d2 d4

Index Page

Data Page

i2 i3 i4i1

59:1

d1

60:4

d2

61:1

d3

60:2

d4 d5 d6 d7 d8

Data Records

Fig. 9. Exploiting Temporal Locality in order to compress MicroHash records .

media. Therefore, we seek to reduce the amount of data stored on the flash media
using some energy efficient compression algorithm that might significantly prolong
the lifetime of the sensing device.

Before outlining our solution, it is important to mention that any such technique,
has to operate in a online fashion: the compression has to be performed before the
data is stored on the flash media and while being generated by the sensing device.
With this mode of operation the sensor can avoid the only other alternative which
is the expensive offline compression method in which the data is compressed in
a post-processing step. Finally, we seek to preserve the temporal order of data
records, in order to keep the searching procedures outlined in section 6 unaffected.

We propose the deployment of tools from the Information Theory field in order
to address the online compression problem. Specifically, we utilize the Run-Length
Encoding scheme in order to eliminate repetitive sequences that are a result of tem-
poral locality. In Run-Length Encoding, consecutive values are replaced by a single
value of the repeated value. For example the sequence {50,60,60,60,60,60,61,61}
can be represented with {1:50,5:60,2:62}, where ”x : y” denotes that the value y is
repeated for x consecutive time instances. In the example, this yields a saving of
two integers.

We examine how the encoding scheme can be applied in two different cases: i)
Index Record Compression and ii) Data Record Compression. In the former case,
which is illustrated in Figure 9b, we identify the correlated intervals and represent
them using a single index record. Recall that the index records are generated as soon
as the in-memory (SRAM) buffer page pwrite that contains the data records gets full.
Therefore the correlated intervals are identified only within pwrite. In the example,
we can see that each index record now stores the ranges [d2, d5] and [d7, d8] in which
the temperature 60F was recorded, rather than one index record per data record
(which is illustrated in Figure 9a). In the Data Record Compression case, which is
illustrated in Figure 9c, we inverse the situation and record ranges of data values
instead of ranges of index values. The compression is applied incrementally and
directly on the data series which at this point resides in pwrite. Specifically, every
time pwrite gets full, we execute in time O(k) the Run-Length Encoding technique
on the k uncompressed data records of pwrite, where k ≤ n and n=|pwrite|. When k
equals to zero, then this iterative procedure terminates, the respective index records
are generated (using the typical microhash algorithm) and pwrite is written to flash.

Although data record compression might be more storage efficient than index

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

20 · S. Lin et al.

record compression, the former can only be applied on one-dimensional data records
(i.e. (timestamp, val1) pairs). The N-dimensional case, where each data record
has the following format: r=(timestamp, val1, val2, ..., valn), turns out to be
more complicated as the run-length encoding is designated to only run on a single
correlated attribute rather than N attributes.

Finally we mention that it would not be practical to apply any compression
method directly on the binary sequence of records, as this prevents us from having
direct access to each data record. For instance, suppose that we are given the fol-
lowing two sensor readings in their binary representation ([ts,val]): {[00000,00000],
[00001,00000]}. Using run-length encoding we could have encoded this sequence
using three numbers: {14, 1, 5} (14 consecutive ”0”, 1 consecutive ”1” and 5 con-
secutive ”0”). However such an encoding would not allow us to have direct access
to the individual timestamps or values of the two data records, unless the data is
first decoded.

7. INDEXING AND SEARCHING IN MICROGF

In spatial query processing, the objective is to locate the data records which were
recorded when the sensing device was within some predicate geographic region.
For instance, a sensor device equipped with a GPS might provide the geographic
coordinates of a moving zebra [Sadler et al. 2004] or car [Jensen et al. 2005]. A query
might then be to locate the objects that were close to some predicate landmark.

A naive method to cope with this kind of spatial queries, is to apply the Micro-
Hash index directly on the two (or more) spatial dimensions. This would construct
one index record for each respective spatial dimension. For example, data record
< ts, x, y > can be indexed by keeping two different index records for x and y
respectively. However, such an index structure is not very efficient, firstly due to
the redundant space allocation, as we create multiple index records for each data
record, and secondly because such a division can not efficiently capture the locality
of spatial information for both equality and range queries.

In this section we propose the MicroGF (Micro Grid File) index structure which is
an external memory index structure designated for the efficient execution of spatial
queries. The MicroGF index uses similarly to MicroHash, a set of directory and
index pages to annotate where spatial data records are located on the flash memory.
The Directory consists of a set of buckets, which segments the recording space into
multiple cells. Each bucket maintains the address of the newest (chronologically)
index page that maps to the corresponding cell. The Index Pages contain the
addresses of the data records that map to the respective bucket.

7.1 MicroGF Index Data Structures

Directory Page Data Structure: The directory of the MicroGF index structure
consists of an N-dimensional grid of cells, where N denotes the number of spatial
dimensions in the data records. To simplify discussion, we assume a 2-dimensional
grid of cells in the xy-plane, that represents the coordinate space of some geographic
area in which the sensing device generates spatial records. Therefore the MicroGF
directory page consists of n*n square cells, where n is the size of some geographic
area, and where each cell contains the address of the last known index page that
mapped into this geographic region.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Indexing Data Structures for Flash-Based Sensor Devices · 21

Index Page Data Structure: The Index Pages contain, similarly to MicroHash,
the addresses of the respective data pages. In order to improve search performance
each index record is divided into four equal-size quadrants. This essentially divides
the recording space of a grid cell into four regions. Each quadrant then maintains
the address for K records which map to the specific area.

Algorithm 3 Insertion

Input: MicroGF directory, data record < ts, x, y >. Output: updated MicroGF with
< ts, x, y > inserted.
1: procedure Insert(ts, x, y)
2: Dir P = the directory entry that x, y resides in;
3: Idx P = Dir P.idx, Idx R = the first index record in Idx P ;
4: Q = find quadrant(Idx R, x, y);
5: if (Quadrant Insert(Q,x, y) == success) then signal finished;
6: else
7: Q.BID = find borrow quadrant(Q)
8: if (Quadrant Insert(Q.BID,x, y) == success) then signal finished;
9: else

10: if Idx P is not full then
11: Idx R′ = new index record, Q.SID = Idx R′,
12: Q′ = find quadrant(Idx R′, x, y),Quadrant Insert(Q′, x, y);
13: else
14: Idx P ′ = new index page, Idx P ′ → next = Idx P ,
15: Dir P.idx = Idx P ′, INSERT(ts, x, y);
16: end if
17: end if
18: end if
19: signal finished;
20: end procedure

7.2 Indexing in MicroGF

The indexing procedure is triggered when the in-memory data record buffer pwrite,
gets full. For each spatial record R we follow the following insertion algorithm (see
Algorithm 3). First we locate the correct grid cell to which the data record R has to
be assigned. This information is encapsulated in MicroGF’s directory. From there
we extract the flash address of the newest (chronologically) index page (Idx P)
that maps to the corresponding cell.

We then utilize the find quadrant(Idx R, x, y) function which identifies the
quadrant Q, to which the data record R maps to. If this quadrant has enough
space to accommodate R (i.e. if the number of indexed records is less than K),
then the insertion is completed. Otherwise, the record R is assigned to adjacent
quadrants having no records in it. These adjacent quadrants are named for conve-
nience borrow quadrants. Note that borrow quadrants are allocated only within the
same index record. If the number of records assigned to a cell does not fit into the
adjacent borrow quadrants, then a new index record (Idx R′) is created. In this
scenario, the original quadrant Q, is repartitioned into four sub-quadrants and the
new index record is identified by a sub-region address (SID).

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

22 · S. Lin et al.

P1

0 1

1

0

0

0

1

1

P0

P3

P2

1

2

3

4

5

6

7

P’1

P’0

P’3

P’2

00 01 10 11 00 01 10 11

2 1

Borrow Bucket

3

4

5

6

7

Next Record

Index Page

Fig. 10. Creation of a MicroGF Index Page. The two figures show at a high level how the
trajectory on the left is encoded into a set of two index records.

To better understand the indexing process, assume that we have the trajectory
shown in Figure 10 (left). The trajectory consists of seven data points, denoted
with numbers 1 to 7. Also assume that the index record filling parameter K is set
to 2. The first two records 1 and 2, are inserted into quadrants 01 and 00 separately
(Figure 10 (right)). Record 3 and 4 are then both inserted into quadrant 10. As
record 5 and 6 belong to quadrant 10 (but quadrant 10 is full), we check all 4
quadrants and find an empty quadrant 11, then we borrow the quadrant of 11 to
index record 5 and 6 and update the BID of quadrant 10 as 11. When data record
7 comes, there is no space in either the mapping quadrant (10) or in the borrow
quadrant (11). Therefore we create a new index record which accommodates the
new record. Note that the borrow quadrant identifier (BID) of quadrant 10 is
11, which means we utilize 11 as the borrow quadrant to store the data records
mapped into quadrant 10. In addition, the Sub-region Identifier (SID) of 10 in
the first index record is 2, which means that there is no more space to index data
record 7 in the first index record and we use the second index record to index it
with smaller granularity.

7.3 Searching in MicroGF

Searching in MicroGF is performed by first finding the directory cell Dir P , to
which the query A belongs to. Then all the index pages that map to Dir P are
searched. For each index page, we only have to check the quadrant Q that A
overlaps, the borrow quadrant of Q (Q.BID) and Q’s sub-region (Q.SID). The
pseudocode of the MicroGF searching procedure is detailed in Algorithm 4.

7.4 The advantages of MicroGF

Two other popular methods to index spatial records, are Grid Files [Nievergelt
et al. 1984] and QuadTree [Samet 1984]. In Grid Files, a grid directory is utilized
to partition the space into rectangle partitions and to index data page containing
desired data records. However, the directory in Grid Files is very large and thus

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Indexing Data Structures for Flash-Based Sensor Devices · 23

Algorithm 4 Query

Input: MicroGF directory, query area A.
Output: data records < ts,Px, Py > within area A.
1: procedure Query(A)
2: Dir P = the directory entry that A overlaps;
3: Idx P = Dir P.idx;
4: while (Idx P != NULL) do
5: Q = find quadrant(Idx P, A);
6: while (Q != NULL) do
7: search(Q,A), search(Q.BID,A);
8: Q = Q.SID;
9: end while

10: Idx P = Idx P → next;
11: end while
12: signal finished;
13: end procedure

can not be maintained in SRAM as in MicroGF. In QuadTree, the recording space
is recursively decomposed into quadrants. Each of the four quadrants becomes a
node in the QuadTree. A larger quadrant is a node at a higher hierarchical level
of the QuadTree, and smaller quadrants appear at lower levels. A problem with
QuadTree, is the poor index space utilization for certain biased data distributions.
For example, if all the data records are located under only one quadrant at each
node, then only 25% of the index space is utilized. MicroGF, however, overcomes
this problem by introducing the concept of borrow quadrants, which results in a
better space utilization of index pages for any data set. With the more compact
index pages, the query processing in MicroGF is faster and cheaper. These advan-
tages of the MicroGF index structure are experimentally validated in Section 9.5.

8. EXPERIMENTAL METHODOLOGY

In this section we describe the details of our experimental methodology.

8.1 Experimental Testbed

We have implemented MicroHash along with a tiny LRU BufferManager in nesC [Gay
et al. 2003], the programming language of TinyOS [Hill et al. 2000]. TinyOS is an
open-source operating system designed for wireless embedded sensor nodes. It was
initially developed at UC-Berkeley and has been deployed successfully on a wide
range of sensors including our RISE mote. TinyOS uses a component-based ar-
chitecture that enables programmers to wire together, in an on-demand basis, the
minimum required components. This minimizes the final code size and energy con-
sumption as sensor nodes are extremely power and memory limited. nesC [Gay
et al. 2003], the programming language of TinyOS, realizes the operating system
structuring concepts and execution model.

Our implementation consists of approximately 5000 lines of code and requires
at least 3KB in SRAM. Specifically we use one page as a write buffer, two pages
for reading (i.e. one for an index page and one for a data page), one page as an
indexing buffer, one for the directory and one final page for the root page. In order

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

24 · S. Lin et al.

to increase insertion performance and index page compactness, we also supplement
additional index buffers (i.e. 2.5KB-5KB).

We had to write a library that simulates the flash media using an operating
system file, in order to run our code in TOSSIM [Levis et al. 2003], the simulation
environment of TinyOS. We additionally wrote a library that intercepts all messages
communicated from TinyOS to the flash library and prints out various statistics
and one final library that visualizes the flash media using bitmap representations.

8.2 PowerTOSSIM - Energy Modeling

PowerTOSSIM is a power modeling extension to TOSSIM presented in [Shnayder
et al. 2004]. In order to simulate the energy behavior of the RISE sensor we extended
PowerTOSSIM and added annotations to the MicroHash structure that accurately
provide information when the power states change in our environment. We have
focused our attention on precisely capturing the flash performance characteristics as
opposed to capturing the precise performance of other less frequently used modules
(e.g. the radio stack).

Our power model follows our detailed measurements of the RISE platform [Neema
et al. 2005], which are summarized as following: We use a 14.8 MHz 8051 core
operating at 3.3V with the following current consumption 14.8mA (On), 8.2mA
(Idle), 0.2µA (Off). We utilize a 128MB flash media, unless otherwise mentioned,
with a page size of 512B and a block size of 16KB. The current to read, write
and block delete was 1.17mA, 37mA, 57µA and the time to read in the three pre-
mentioned states was 6.25ms, 6.25ms and 2.27ms.

Using these parameters, we performed an extensive empirical evaluation of our
power model and found that PowerTOSSIM is indeed a very useful and quite ac-
curate tool for modelling energy in a simulation environment. For example we
measured the energy required to store 1 MB of raw data on an RISE mote and
found that this operation requires 1526mJ while the same operation in our simu-
lation environment returned 1459mJ , which has a error of only 5%.

8.3 Dataset Descriptions

Since we cannot measure environmental conditions, such as temperature or humid-
ity in a simulation environment, we adopt a trace-driven experimental methodology
in which a real dataset is fed into the TOSSIM simulator. More specifically, we use
the following datasets:

Washington State Climate: This is a a real dataset of atmospheric data col-
lected by the Department of Atmospheric Sciences at the University of Washing-
ton [ATMO’05]. Our 268MB dataset contains readings on a minute basis between
January 2000 and February 2005. The readings, which are recorded at a weather
logging station in Washington, include barometric pressure, wind speed, relative hu-
midity, cumulative rain and others. Since many of these readings are not typically
measured by sensor nodes we only index the temperature and pressure readings,
and use the rest readings as part of the data included in a record. Note that this
is a realistic assumption, as sensor nodes may concurrently measure a number of
different parameters. Figure 11 shows the timeseries for the readings used in our
experiments along with the respective value distributions.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Indexing Data Structures for Flash-Based Sensor Devices · 25

 0

 20000

 40000

 60000

 80000

 100000

 120000

-40 0 20 40 60 80 100 150 200 250

N
um

be
r

of
 M

ea
su

re
m

en
ts

Temperature (Fahrenheit)

Temperature Histogram

Temperature

 0

 50000

 100000

 150000

 200000

 900 950 1000 1050 1100

N
um

be
r

of
 M

ea
su

re
m

en
ts

Pressure (millibars)

Pressure Histogram

Pressure

Fig. 11. Temperature (F) and Barometric Pressure (mb) readings recorded at an atmospheric
monitoring site in Washington, USA. The last row indicates the respective distribution histograms
for the two timeseries.

Great Duck Island (GDI 2002): A real dataset from the habitat monitoring
project on the Great Duck Island in Maine.1 We use readings from one of the 32
nodes that were used in the Spring 2002 deployment, which included the following
readings: light, temperature, thermopile, thermistor, humidity and voltage. Our
dataset includes approximately 97,000 readings that were recorded between October
and November 2002.

INFATI: This is a real dataset derived from the INFATI Project [Jensen et al.
2005] carried out by Aalborg University. The readings are the GPS positions of
24 different cars moving in the city of Aalborg, Denmark in 2001. The readings
include carid, timestamp, x-coordinate, y-coordinate, etc. Our dataset includes
approximately 250,000 readings recorded between January and March 2001.

9. EXPERIMENTAL EVALUATION

In this section we present extensive experiments to demonstrate the performance
effectiveness of the MicroHash Index structure. The experimental evaluation de-
scribed in this section focuses on three parameters: i) Space Overhead, of main-
taining the additional index pages, ii) Search Performance, which is defined as
the average number of pages accessed for finding the required record and iii) Energy

1http://www.greatduckisland.net/

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

26 · S. Lin et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2.5 3 3.5 4 4.5 5S
pa

ce
 O

ve
rh

ea
d

 [I
nd

ex
/(

In
de

x+
D

at
a)

] (
%

)

Buffer Size (KB)

Index Space Overhead Ratio
 Varying Buffer Size and fixed 18B record size

Index on Temperature (Offset)
Index on Temperature (noOffset)

Index on Pressure (Offset)
Index on Pressure (noOffset)

 0

 10

 20

 30

 40

 50

 10 12 14 16 18 20 22S
pa

ce
 O

ve
rh

ea
d

 [I
nd

ex
/(

In
de

x+
D

at
a)

] (
%

)

Record Size [8B/TS + 2B/attribute] (bytes)

Index Space Overhead Ratio
 Varying Record Size and fixed 3KB buffer

Index on Temperature (Offset)
Index on Temperature (noOffset)

Index on Pressure (Offset)
Index on Pressure (noOffset)

Fig. 12. Space Overhead of Index Pages with a) varying buffer size and b) varying record size.

Consumption, for indexing the data records. Due to the design of the MicroHash
and MicroGF index, each page is written exactly once during a cycle. Therefore
there is no need to experimentally evaluate the wear-leveling performance. Finally
we compare the performance of MicroGF with other spatial indexing techniques.

9.1 Overhead of Index Pages

In the first series of experiments we investigate the overhead of maintaining the
additional index pages on the flash media. For this reason we define the overhead
ratio Φ as follows: Φ = IndexPages

DataPages+IndexPages
. We investigate the parameter Φ

using a) An increasing buffer size and b) An increasing data record size.
We also evaluate two different index record layouts: a) Offset, in which an index

record has the following form {pageid,offset} and NoOffset, in which an index record
has the form {pageid}. We use the five year timeseries from the Washington state
climate dataset and index data records based on their temperature and pressure
attribute. The data record on each of the 2.9M time instances was 18 bytes (i.e.
8B timestamp + 5x2B readings).

9.1.1 Increasing Buffer Size. Figure 12 (left) presents our results using a vary-
ing buffer size. The figure shows that in all cases a larger buffer helps in fitting
more index records per page which therefore also linearly reduces the overall space
overhead. In both the pressure and temperature case, the noOffset index record
layout significantly reduces the space overhead as less information is required to be
stored inside an index record.

The figure shows that indexing on pressure achieves a lower overhead. This is
attributed to the fact that the pressure changes slower than the temperature over
time. This leads to fewer evictions of index pages during the indexing phase which
consequently also increases the index page occupancy.

We found that a 3KB buffer suffices to achieve an occupancy of 75-80% in index
pages. This can be viewed in the bitmap illustrations of the flash media in Figure 13.
The figures show two characteristics: a) The number of index page on flash and b)
the occupancy of these pages using a 256-bit grayscale pixel (where black denotes
an empty page). As we can see, providing a larger buffer during the indexing phase
not only decreases the number of index pages (i.e. less black pixels) on flash but
also makes these index pages higher occupied (i.e. less darker pixels).

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Indexing Data Structures for Flash-Based Sensor Devices · 27

Index/Data Pages (left) — Grayscale Occupancy (right)

2.5K Buffer

Index/Data Pages (left) — Grayscale Occupancy (right)

10K Buffer

Fig. 13. Bitmap Illustrations of the Flash Media. Each pixel represents a page on flash media.
The left column shows the index pages (in black) and the data pages (in white). The right column
uses a 256-bit grayscale image to color the fullness of index pages (black=empty).

9.1.2 Increasing Data Record Size. Sensor nodes usually deploy a wide array of
sensors, such as a photo sensor, magnetometer, accelerometer and others. Therefore
the data record size on each time instance, might be larger than the minimum 10B
size (8B timestamp and 2B data value). Figure 12 (right) presents our results using
a varying data record size. The figure shows that in all cases a larger data record
size decreases the space overhead proportion. Therefore it does not become more
expensive to store the larger data records on flash.

9.2 Searching By Timestamp

In the next experimental series, we investigate the average number of pages that
must be read in order to find a record by its timestamp. Note that if we did
not use an index, and thus had only data records on the flash, then we could
find the expected record in O(1) time as we could manipulate the position of the
record directly. However, this would also violate our wear leveling mechanism as
we wouldn’t be able to spread out the page writes evenly among data and index
pages.

We evaluate the proposed search by timestamp methods LBSearch and Scale-
Search under two different index page layouts: a) Anchor, in which every index
page stores the last known data record timestamp and b) NoAnchor, in which an
index page does not contain any timestamp information.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

28 · S. Lin et al.

 4

 5

 6

 7

 8

 9

 10

 11

 2.5 3 3.5 4 4.5 5

P
ag

es
 R

ea
d

(P
ag

e
S

iz
e

51
2B

)

Buffer Size (KB)

Search By Timestamp Performance (Index on Temperature)

LBSearch + NoAnchor
LBSearch + Anchor

ScaleSearch + NoAnchor
ScaleSearch + Anchor

 3

 3.5

 4

 4.5

 5

 5.5

 2.5 3 3.5 4 4.5 5

P
ag

es
 R

ea
d

(P
ag

e
S

iz
e

51
2B

)

Buffer Size (KB)

Search By Timestamp Performance (Index on Pressure)

LBSearch + NoAnchor
LBSearch + Anchor

ScaleSearch + NoAnchor
ScaleSearch + Anchor

Fig. 14. Search-By-Timestamp Performance of the MicroHash Index.

Figure 14 shows our results using the Washington state climate dataset for both
an index on Temperature (left) and an Index on Pressure (right). The figure shows
that using an anchor inside an index pages is a good choice as it usually reduces the
number of page reads by two, while it does not present a significant space overhead
(only 8 additional bytes).

The figure also shows that ScaleSearch is superior to LBSearch as it exploits the
uniform distribution of index pages on the flash media. This allows ScaleSearch to
get closer to the result, in the first step of the algorithm.

The figure finally shows that even though the time window of the query is quite
large (i.e. 5 years or 128MB), ScaleSearch is able to find a record by its timestamp
in approximately 3.5-5 page reads. Given that a page read takes 6.25ms, this
operation requires according to the RISE model only 22-32ms or 84-120µJ.

9.3 Searching by Value: MicroHash vs ELF-Like Chaining

The cost of searching a particular value on the flash media is linear with respect
to the size of the flash media. However, a simple linear scan over 256 thousands
pages found on a 128MB flash media, would result in an overwhelming large search
cost. One factor that significantly affects search performance, is the occupancy of
index pages. In the basic MicroHash approach, index pages on the flash might not
be fully occupied. If index pages are not fully utilized, then a search requires to
iterate over more pages than necessary.

In this section we perform an experimental comparison of the index chaining
strategies presented in Section 6.3. We evaluate both MicroHash Chaining (MHC)
and Elf-like chaining (ELC) using a fixed 3KB buffer. We deploy the chaining
methods when the temperature is utilized as the index (we obtained similar results
for pressure). Our evaluation parameters are : a) Indexing Performance (pages
written) and b) Search Performance (pages read).

Figure 15 (left) shows that MHC always requires less page writes than ELC. The
reason is that ELC’s strategy results in about 15% sequential trashing, which is the
characteristic presented in Section 6.3. Additionally, ELC requires a large number
of page reads in order to replicate some of the index records. This is presented in
the ELC Total plot, which essentially shows that it requires as many page reads as
page writes in order to index all records.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Indexing Data Structures for Flash-Based Sensor Devices · 29

 0

 1000

 2000

 3000

 4000

 5000

10080604020

P
ag

es

Temperature

Insertion Performance: ELC vs MHC Chaining Histogram

MHC Writes
ELC Writes

ELC Total (Read+Write)

 0

 2000

 4000

 6000

 8000

 10000

10080604020

N
um

be
r

of
 P

ag
e

R
ea

ds
 (

D
at

a+
In

de
x)

Temperature

Search Performance: ELC vs MHC Chaining Histogram

MHC Index Read
MHC Total Read
ELC Index Read
ELC Total Read

Fig. 15. Comparing MicroHash Chaining (MHC) with ELF-like Chaining (ELC) using a) Insertion
Performance and b) Searching Performance by Value.

On the other hand, ELC’s strategy results in linked lists of fully occupied index
pages than MHC. This has as a result, an improved search performance since the
system is required to fetch less index pages during search. This can be observed
in Figure 15 (right), in which we present the number of index pages read and the
total number of pages (index + data). On the other hand, we also observe that
ELC only reduces the overall read gain to about 10%. This happens because the
reading of data pages, dominates the overall reading cost. However when searches
are more frequent, then the 10% is still an advantage and therefore ELC is more
appropriate than its counterpart MHC.

9.4 Great Duck Island Trace

We index measurements from the great duck island study, described in Section 8.3.
For this study we allocate a fixed 3KB index buffer along with a 4MB flash media
that has adequate space to store all the 97,000 20-byte data readings.

In each run, we index on a specific attribute (i.e. Light, Temperature, Ther-
mopile, Thermistor, Humidity and Voltage). We then record the overhead ratio of
index pages Φ, the energy required by the flash media to construct the index as
well as the average number of page reads that were required to find a record by
its timestamp. We omit the search by value results since these are very similar to
those presented in the previous subsection.

Table II shows that the index pages never require more that 30% more space on
the flash media. For some readings that do not change frequently (e.g. humidity),
we observe that the overhead is as low as 8%. The table also shows that indexing
the records has only a small increase in energy demand. Specifically, the energy cost
of storing the records on flash without an index was 3042mJ, which is on average
only 779mJ less than using an index. Therefore maintaining the index records does
not impose a large energy overhead. Finally the table shows that we were able to
find any record by its timestamp with 4.75 page reads on average.

9.5 MicroGF vs Grid File and QuadTree

In this section we compare the performance of the MicroGF structure with two
hash-based spatial indexing techniques: Grid Files and QuadTree. We utilize four

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

30 · S. Lin et al.

Index On Overhead Energy ScaleSearch
Attribute Ratio Φ(%) Index (mJ) Avg Page Read

Light 26.47 4,134 4.45
Temperature 27.14 4,172 5.45
Thermopile 24.08 4,005 6.29
Thermistor 14.43 3,554 5.10
Humidity 7.604 3,292 2.97
Voltage 20.27 3,771 4.21

Table II. Performance Results from Indexing and Searching the Great Duck Island dataset.

3000

2000

1000

500

4321

A
ve

ra
ge

 P
ag

e
R

ea
ds

 (
D

at
a+

In
de

x)

Dataset(1,2. Synthesis Datasets; 3. INFATI; 4. Weather Data)

Search Performance: MicroGF vs Grid Files and QuadTree

Grid Files

QuadTree

MicroGF

40

20

10

5
4321

S
pa

ce
 O

ve
rh

ea
d

[(
In

de
x/

(I
nd

ex
+

D
at

a)
](

%
)

Dataset(1,2. Synthesis Datasets; 3. INFATI; 4. Weather Data)

Index Space Overhead Ratio

Grid Files

QuadTree

MicroGF

Fig. 16. Comparing MicroGF with Grid Files and QuadTree using a)Searching Performance by
Value. b)Space overhead of Index pages.

datasets: 2 synthetic data sets with 250K random points in a two dimensional space,
the INFATI data set [Jensen et al. 2005] and the weather data set [ATMO’05]. We
segment the recording space into 36 subregions and generate a random query area
for each subregion. We then compare the average page access number for a query
and the space overhead of index pages (Φ = IndexPages

DataPages+IndexPages
). As is shown

in Figure 16, on average the MicroGF algorithm accesses 40% less pages than
QuadTree and 80% less pages than Grid Files in query processing. In addition, the
index space overhead of MicroGF is 15% less than QuadTree and 56% less than Grid
Files. This is mainly attributed to the following two reasons: a) Borrow Quadrants
can utilize the index page space more efficiently and b) Subregion segmentation
adjusts the index structure dynamically according to the distribution of data.

10. RELATED WORK

In this section, we review prior work on storage and indexing techniques for sensor
networks. While our work addresses both problems jointly, most prior work has
considered them in isolation.

A large number of flash-based file systems have been proposed in the last few
years, including the Linux compatible Journaling Flash File System (JFFS and
JFFS2) [Woodhouse], the Yet Another Flash File System (YAFFS) [Wookey]
specifically designed for NAND flash with it being portable under Linux, uClinux,
and Windows CE.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Indexing Data Structures for Flash-Based Sensor Devices · 31

Wear-Leveling techniques for flash memory have been reported by flash card ven-
dors such as Sandisk [Sandisk]. These techniques are executed by a microcontroller
which is located inside the flash card. The Wear-Leveling techniques are only exe-
cuted within 4MB zones and are thus local rather than global which is the case in
MicroHash and MicroGF. A main drawback of the local wear-leveling techniques
is that the writes are no longer spread out uniformly across all available pages.
Finally these techniques assume a dedicated controller while our techniques can be
executed by ordinary microcontroller of the sensor device. Other vendors might
utilize their own proprietary wear-leveling techniques. However, it is difficult to
compare our structure with these techniques because most vendors usually don’t
disclose any details with regards to their architecture or algorithms.

Recently various techniques have been proposed for data storage and indexing
in sensor networks. Matchbox is a simple file system packaged with the TinyOS
distribution [Hill et al. 2000]. It hides the lower details of wear-leveling and provides
a pointer to each file (page in our context) on the flash memory. Had we used such
an approach, would require a very large footprint to keep track of these pointers.
The Efficient Log Structured Flash File System (ELF) [Dai et al. 2004] is a log-like
file structure designed for wear-leveling. It works by updating desired file page
and writing it into a new flash memory space. A few other indexing schemes
have been proposed in the context of sensor networks. One such scheme is TSAR
in [Desnoyers et al. 2005], which stores data locally at sensor nodes and index
them by higher tier nodes called proxies. Distributed Index of Features in Sensor
networks (DIFS [Greenstein et al. 2003]) and Multi-dimensional Range Queries in
Sensor Networks (DIM [Li et al. 2003]) extend the data-centric storage approach
to provide spatially distributed hierarchies of indexes to data. All these techniques
provide index topologies at the network level, but do not provide details on how to
efficiently write the index information into the sensor flash memories as we do in
our approach.

An R-Tree index structure for flash memory on portable devices, such as PDAs
and cell phones, has been proposed in [Wu et al. 2003b]. These structures provide
an efficient algorithm to compact several consecutive index units (R-tree nodes) into
a page for better space utilization and search. In addition, they use an in-memory
address translation table, which hides the details of wear-leveling mechanism. How-
ever, such a structure has a very large footprint (3-4MB) which constitute it inap-
plicable for all sensor nodes (2KB-64KB RAM) we have so far. Other hash-based
techniques (like Z-ordering and grid files) have been proposed for spatial data in-
dexing. Z-ordering [Orenstein and Merrett 1984] divides each attribute into equal
segments and impose a linear ordering on the domain. The position in high di-
mensional space is therefore mapped to a one dimensional array. A problem with
Z-ordering is that not all the points close in X-Y plane is close in Z-value. Another
problem is that the bucket boundary of Z-ordering is fixed at the very beginning
which makes it inefficient on non-uniformly distributed data. Grid file [Nievergelt
et al. 1984] is another kind of hash-based spatial index structure. The grid file
partitions the space into rectangle partitions and utilizes grip directory (a matrix)
to link to the data page containing a desired point. The size of the grid directory
is adjusted as in extendible hashing. Several variants of grid files have been pro-

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

32 · S. Lin et al.

posed [Seeger and Kriegel 1990; Whang and Krishnamurthy 1985] to improve the
performance of grid files for biased distributed data. However, these algorithms
read flash data records multiple times due to bucket update, which is inefficient
in our context. As has been shown in our paper, the MicroGF algorithm is ro-
bust on biased distributed data while overcoming the small RAM and wear-leveling
problems.

Systems such as TinyDB [Madden et al. 2003] and Cougar [Yao and Gehrke
2003] achieve energy reduction by pushing aggregation and selections in the net-
work rather than processing everything at the sink. Both approaches propose a
declarative approach for querying sensor networks. These systems are optimized
for sensor nodes with limited storage and relatively short-epochs, while our tech-
niques are designated for sensors with larger external flash memories and longer
epochs. Note that in TinyDB users are allowed to define fixed size materialization
points through the STORAGE POINT clause. This allows each sensor to gather locally
in a buffer some readings, which cannot be utilized until the materialization point
is created in its entirety. Therefore even if there was enough storage to store MBs
of data, the absence of efficient access methods makes the retrieval of the desired
values quite expensive.

In Data Centric Routing (DCR), such as directed diffusion [Intanagonwiwat
et al. 2000], low-latency paths are established between the sink and the sensors.
Such an approach is supplementary to our framework. In Data Centric Storage
(DCS) [Shenker et al. 2003] data with the same name (e.g. humidity readings) is
stored at the same node in the network, offering therefore efficient location and
retrieval. However the overhead of relocating the data in the network will become
huge if the network generates many MBs of GBs of data. Finally, local signal-based
compression techniques, such as the one proposed in [Deligiannakis et al. 2004],
could improve the compression efficiency of our framework and their investigation
will be a topic of future research.

11. CONCLUSIONS

In this paper we describe Microhash and MicroGF, which are efficient external
memory index structures that address the distinct characteristics of flash memory
in wireless sensor systems. We provide an extensive study of NAND flash memory,
when this is used as a storage media of a sensor node, and validate various design
principles using our RISE platform. Our proposed access methods might provide
a powerful new framework to realize in-situ data storage in sensor networks. Ad-
ditionally, we expect that these index structures will enable new types of queries,
such as temporal or top-k [Zeinalipour-Yazti et al. 2005] queries, that have not been
addressed adequately to this date. Our experimental testbed written in nesC, with
real traces from environmental and habitant monitoring, shows that the structures
we propose are both efficient and practical.

REFERENCES

ATMO’05. Live From Earth and Mars Project. University of Washington, Seattle http://www-
k12.atmos.washington.edu/k12/grayskies/.

Banerjee, A., Mitra, A., Najjar, W., Zeinalipour-Yazti, D., Kalogeraki, V., and Gunop-

ulos, D. 2005. Rise co-s : High performance sensor storage and co-processing architecture. In

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Indexing Data Structures for Flash-Based Sensor Devices · 33

Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communi-

cations and Networks.

Crossbow’05. Crossbow Technology Inc. http://www.xbow.com/.

Dai, H., Neufeld, M., and Han, R. 2004. Elf: an efficient log-structured flash file system for
micro sensor nodes. In Proceedings of the 2nd international conference on Embedded networked
sensor systems. 176–187.

Deligiannakis, A., Kotidis, Y., and Roussopoulos, N. 2004. Compressing historical informa-
tion in sensor networks. In Proceedings of the ACM SIGMOD international conference on
Management of Data. 527–538.

Desnoyers, P., Ganesan, D., and Shenoy, P. 2005. Tsar: A two tier sensor storage architecture
using interval skip graphs. In Proceedings of the 3rd international conference on Embedded
networked sensor systems. 39–50.

Dipert, B. and Levy, M. 1994. Designing with Flash Memory.

Fagin, R., Nievergelt, J., Pippenger, N., and Strong, H. 1979. Extendible hashing - a fast
access method for dynamic files. ACM Transactions on Database System 4, 3, 315–344.

Ganesan, D., Greenstein, B., Perelyubskiy, D., Estrin, D., and Heidemann, J. 2005. Multi-
resolution storage and search in sensor networks. ACM Transactions on Storage 1, 3, 277–315.

Gay, D., Levis, P., Von, B., Welsh, M., Brewer, E., and Culler, D. 2003. The nesc lan-
guage: A holistic approach to networked embedded systems. In ACM SIGPLAN Conference
on Programming Language Design and Implementation.

Greenstein, B., Estrin, D., Govindan, R., Ratnasamy, S., and Shenker, S. 2003. Difs: A
distributed index for features in sensor networks. In First IEEE Ineternational Workshop on
Sensor Network Protocols and Applications.

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K. 2000. System
architecture directions for networked sensors. SIGPLAN NOTICE 35, 11, 93–104.

Intanagonwiwat, C., Govindan, R., and Estrin, D. 2000. Directed diffusion: A scalable and
robust communication paradigm for sensor networks. In Mobile Computing and Networking.
56–67.

Jensen, C., Lahrmann, H., Pakalnis, S., and Runge, J. 2005. The infati data.

Levis, P., Lee, N., Welsh, M., and Culler, D. 2003. Tossim: Accurate and scalable simulation of
entire tinyos applications. In Proceedings of the First ACM Conference on Embedded Networked
Sensor Systems.

Li, X., Kim, Y., Govindan, R., and Hong, W. 2003. Multi-dimensional range queries in sen-
sor networks. In Proceedings of the First ACM Conference on Embedded Networked Sensor
Systems.

Litwin, W. 1980. Linear hashing: A new tool for file and table addressing. In Sixth International
Conference on Very Large Data Bases. 212–223.

Lymberopoulos, D. and Savvides, A. 2005. Xyz: A motion-enabled, power aware sensor node
platform for distributed sensor network applications. In Information Processing in Sensor
Networks. 449–454.

Madden, S., Franklin, M., Hellerstein, J., and Hong, W. 2002. Tag: a tiny aggregation
service for ad-hoc sensor networks. ACM SIGOPS Operating Systems Review 36, SI, 131–146.

Madden, S., Franklin, M., Hellerstein, J., and Hong, W. 2003. The design of an acquisi-
tional query processor for sensor networks. In Proceedings of the ACM SIGMOD international
conference on Management of data. 491–502.

Neema, S., Mitra, A., Banerjee, A., Najjar, W., Zeinalipour-Yazti, D., Gunopulos, D.,
and Kalogeraki, V. 2005. Nodes: A novel system design for embedded sensor networks. In
IEEE Intl. Conference on Information Processing in Sensor Networks (IPSN’2005).

Nievergelt, J., Hinterberger, H., and Sevcik, K. 1984. The grid file: An adaptable, symmetric
multi-key file structure. ACM Transactions on Database Systems 9, 1, 38–71.

Orenstein, J. and Merrett, T. 1984. A class of data structures for associative searching. In
Proceedings of the 3rd ACM SIGACT-SIGMOD symposium on Principles of database systems.
181–190.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

34 · S. Lin et al.

Polastre, J. 2003. Design and implementation of wireless sensor networks for habitat monitoring.

Master’s Thesis. University of California, Berkeley .

Ramakrishnan, R. and Gehrke, J. 2002. Database management systems. McGraw-Hill, Third
edition.

Sadler, C., Zhang, P., Martonosi, M., and Lyon, S. 2004. Hardware design experiences in
zebranet. In Proceedings of the 2nd international conference on Embedded networked sensor
systems. 227–238.

Samet, H. 1984. The quadtree and related hierarchical data structures. ACM Computing Sur-
veys 16, 2, 187–260.

Sandisk. Sandisk Flash Memory Cards - Wear Leveling.
http://sandisk.com/pdf/oem/WPaperWearLevelv1.0.pdf.

Seeger, B. and Kriegel, H. 1990. The buddy-tree: an efficient and robust access method for
spatial data base systems. In Proceedings of the sixteenth international conference on Very
large databases. 590–601.

Shenker, S., Ratnasamy, S., Karp, B., Govindan, R., and Estrin, D. 2003. Data-centric
storage in sensornets. ACM SIGCOMM Computer Communication Review 33, 1, 137–142.

Shnayder, V., Hempstead, M., Chen, B., Werner-Allen, G., and Welsh, M. 2004. Simulating
the power consumption of large-scale sensor network applications. In Proceedings of the 2nd
international conference on Embedded networked sensor systems. 188–200.

Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., and Culler, D. 2004. An anal-
ysis of a large scale habitat monitoring application. In Proceedings of the 2nd international
conference on Embedded networked sensor systems. 214 – 226.

Tang, C. and Raghavendra, C. 2004. Compression techniques for wireless sensor networks.
Wireless sensor networks, 207–231.

Warneke, B., Last, M., Liebowitz, B., and Pister, K. 2001. Smart dust: Communicating with
a cubic-millimeter computer. IEEE Computer 34, 1, 44–51.

Whang, K. and Krishnamurthy, R. 1985. Multilevel grid files. Yorktown Heights.

Woodhouse, D. Jffs : The journalling flash file system. In Red Hat Inc.
http://sources.redhat.com/jffs2/jffs2.pdf.

Wookey. Yaffs - a filesystem designed for nand flash. In Linux 2004 Leeds, U.K.

Wu, C., Chang, L., and Kuo, T. 2003a. An efficient b-tree layer for flash memory storage
systems. In The 9th International Conference on Real-Time and Embedded Computing Systems
and Applications.

Wu, C., Chang, L., and Kuo, T. 2003b. An efficient r-tree implementation over flash-memory
storage systems. In Proceedings of the 11th ACM international symposium on Advances in
geographic information systems. 17–24.

Xu, N., Rangwala, S., Chintalapudi, K., Ganesan, D., Broad, A., Govindan, R., and Estrin,

D. 2004. A wireless sensor network for structural monitoring. In Proceedings of the 2nd
international conference on Embedded networked sensor systems. 13 – 24.

Yao, Y. and Gehrke, J. 2003. Query processing in sensor networks. In Conference on Innovative

Data Systems Research.

Zeinalipour-Yazti, D., Lin, S., Kalogeraki, V., Gunopulos, D., and Najjar, W. 2005. Mi-
crohash: An efficient index structure for flash-based sensor devices. In 4th USENIX Conference
on File and Storage Technologies (FAST). 31 – 44.

Zeinalipour-Yazti, D., Neema, S., Gunopulos, D., Kalogeraki, V., and Najjar, W. 2005.
Data acquision in sensor networks with large memories. In 1st IEEE International Workshop
on Networking Meets Databases (NetDB).

Zeinalipour-Yazti, D., Vagena, Z., Gunopulos, D., Kalogeraki, V., Tsotras, V., Vlachos,

M., Koudas, N., and Srivastava, D. 2005. The threshold join algorithm for top-k queries in
distributed sensor networks. In 2nd International VLDB Workshop on Data Management for
Sensor Networks. 61–66.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

