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Traditional venue and tour recommendation systems do not necessarily provide a diverse set of recommen-

dations and leave little room for serendipity. In this paper, we design MPG, a Mobile Personal Guide that

recommends: i) a set of diverse yet surprisingly interesting venues that are aligned to user preferences; and ii)

a set of routes, constructed from the recommended venues. We also introduce EPUI, an Experimental Platform

for Urban Informatics. Our comparison with the state-of-the-art schemes indicates that MPG is capable of

providing high-quality venues and route recommendations while incorporating seamlessly both the notion of

diversity and that of serendipity.
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1 INTRODUCTION
The rapid developments in mobile computing lead to the transformation of traditional Yellow pages

to mobile applications that are conveniently reachable, up-to-date, localized, and personalized,

connected to the surroundings, and versatile in many other ways. Platforms such as Yelp and

Foursquare allow their users to generate multimedia content (e.g., text, image) and share their

experiences with their peers.

Many systems have been developed and built on top of these platforms for recommending

specific venues or Points of Interest (POIs) to be visited by users, i.e., digital travel guides. Given that

this digitization results in a richer and up-to-date content, the possibilities for providing flexible,

personalized guides are huge. Personalized tour systems have also appeared in the literature (e.g.,

[28]) that take into consideration spatiotemporal constraints, users’ interests, etc. Nevertheless,

many of the approaches to date are monolithic and myopic to user preferences, returning generic

recommendations where every location is treated equally (e.g., [6, 16, 20, 38, 58]).

Authors’ addresses: Xiaoyu Ge, University of Pittsburgh, Department of Computer Science, xiaoyu@cs.pitt.edu; Panos

K. Chrysanthis, University of Pittsburgh, Department of Computer Science, panos@cs.pitt.edu; Konstantinos Pelechrinis,

University of Pittsburgh, Department of Informatics and Network Systems, kpele@pitt.edu; Demetrios Zeinalipour-Yazti,

University of Cyprus, Department of Computer Science, dzeina@cs.ucy.ac.cy; Mohamed A. Sharaf, United Arab Emirates

University, Department of Computer Science, msharaf@uaeu.ac.ae.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1533-5399/2020/1-ART1 $15.00

https://doi.org/10.1145/3391197

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3391197
https://doi.org/10.1145/3391197


1:2 X. Ge et al.

Example: The following scenario best illustrates how a well-designed digital travel guide will help

travelers. Pam is a businesswoman that visits Pittsburgh for the first time on a business trip. After

finishing all her business meetings in the morning, she wants to have a cup of coffee before finding

a fulfilling restaurant for lunch, so she turns to her smartphone to quickly find 100 coffee shops

and restaurants near her via a digital travel guide. Since the digital travel guide already knows her

coffee preference, via a personalized profile, it is able to recommend precisely the nearest Starbucks

as Pam likes Starbucks’s cappuccino. As she finishes her coffee, Pam wants to proceed with the

lunch, so she queries the digital travel guide for the top-2 restaurants through a user-friendly query

interface. This time the digital travel guide provides her with two diverse restaurants, Souvlaki and
Pizza Hut, each from one of her two favorite food types, Greek and Pizza, respectively. After lunch,

Pam wanted to spend some relaxing time and visit some of the interesting venues of Pittsburgh, so

she again turns to her digital travel guide, and this time for a recommendation of four interesting

venues. The digital travel guide knows Pam is a history and science enthusiast, and she loves to

visit museums, so it first recommends two great museums, namely the Heinz History Center and

the Carnegie Science Center which are about the same distance from her current location. It also

recommends for the third spot a smaller museum at the Fort Pitt, established by the British between

1759-61 and later developed as Pittsburgh. However, for the fourth spot on the recommendation

list, instead of recommending another museum, the digital travel guide surprises her with the

recommendation of the Nationality Rooms of the Cathedral of Learning
1
, which is something that

Pam has never heard of, but instantly recognized as amust-go venue after reading their descriptions.
Clearly, one of the key components of such a digital travel guide is its venue recommendation

algorithm. A common approach to venue recommendation among prior works—personalized or

not—is the ranking of venues based on some quality features (e.g., [21, 28, 40, 51, 55]). Consequently,

the top-k venues are returned. There are two major drawbacks to this approach. First, it does not

allow for a diverse set of recommendations; because similar venues tend to have a similar ranking,

and thus the top venues will all be similar to each other with high probability. Second, these

systems are overwhelmingly focused on optimizing an efficiency objective, such as minimizing

the distance covered, and maximizing the benefit obtained from the route as captured by a measure

of venue quality (e.g., [28, 40, 55]). It is only in recent years that efforts have been made to consider

objectives that go beyond the pure efficiency (e.g., [21, 51]) but they are still in a nascent stage.

The first drawback at a high level translates to a poor recommendation since the effective choice
of the user is reduced, given that many of the recommended venues will offer similar experiences.

The second drawback leads to recommendations that do not capture the great and livable aspect of a

city, as the features that contribute to capturing a livable environment are missing in these systems.

That is, traditional recommendation systems do not encourage users to step outside their comfort

zones and discover unexpected but interesting venues. The objective in this paper is to design a

Mobile Personal Guide (MPG) that addresses both drawbacks of the existing systems and delivers an

interactive response (i.e., sub-second) for each query to guarantee smooth user interactions.

MPG Overview To address the first drawback of the common approach, MPG takes into consid-

eration the user’s preferences and provides a set of venues that satisfy the imposed constraints

with maximized diversity. The diversity (as formally defined later in Section 3) is essentially a

measure of dissimilarity of the venues based on external attributes. Simply put, MPG outputs a set
of high-quality yet diverse venues. To illustrate this objective, let us consider again our example

scenario above, where 35 venues satisfy Pam’s preferences, depicted in Figure 1. Assume that Pam

only has time to visit 4 of them, as in our example scenario above. The venues represented by the

1
The Nationality Rooms are a collection of 31 classrooms in the University of Pittsburgh’s main building Cathedral of

Learning depicting and donated by the national and ethnic groups that helped build the city of Pittsburgh. [2]

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.



Serendipity-based Points-of-Interest Navigation 1:3

Fig. 1. MPG provides a set of diverse recommendations without sacrificing the quality.

large circles correspond to the top-4 venues ranked; for instance, based on their popularity (i.e.,

top-4 venues with highest popularity). The venues represented by the triangle and the square are

ranked 5th and 6th, respectively. The rest of the venues are ranked lower and are represented by

the brown dots. The space corresponds to two external features (f1, f2) that define the similarity of

a pair of venues. In particular, the top-4 venues are very close in this space and hence are similar (or

in other words, they have low diversity in the space defined by f1 and f2). A system that does not

consider the diversity of the recommended venues would most certainly choose these venues as

output. However, MPG allows the user to explore the available venues in this latent space—without

sacrificing the quality of the recommendations—and so, it would return to the user the top-2 venues,

as well as the 5th and 6th, ranked venues (the venues with a red fill). As we can see, this set is more

widespread in this latent space as compared to the top-4 venues (whether these are restaurants or

museums). Furthermore, since it is impossible for any recommendation system to guarantee 100%

user satisfaction, it is also important to construct a set of recommendations with broad coverage of

the initial candidate set of venues (i.e., recommend venues that represent a large portion of the

candidate venues). This will help the system to increase the chance of recommending venues that

are interesting to the user and provide the user with the possibility to zoom into venues that they

are interested in and discover more similar venues if they prefer.

In a nutshell, our approach consists of the following basic steps. First, we begin with assigning

intensity value Ivp to venue v based on its popularity. We also assign a distance intensity value Ivd,q ,

which captures the distance between the current location q of the mobile user and venue v. By

combining Ivp and Ivd,q , we obtained a composite intensity value, Ivp,d . We further tune these intensity

values based on the preferences of user u obtaining Ivp,d,u , which forms our composite intensity

value space Ivk . Finally, I
v
k along with a vector fv that represents venue v in the latent space (i.e.,

external attributes) form the input to our modified PrefDiv (Preferential Diversity) algorithm [23]

whose output is the required recommendations. One of the advantages of PrefDiv is that it offers
the mobile user the ability to adjust the balance between relevance and diversity in the returned

results.

To address the second drawback of the common approach, MPG introduces the important concept

of Serendipity, which has been identified as a characteristic that can significantly improve the

quality of experience that a city-dweller has [41]. We define serendipity as the recommendation

of items that are relevant to a user but unexpected and happily surprising. Recent studies (e.g.,

[31, 39]) have shown that recommending items that are relevant while unexpected is an essential

factor in increasing user satisfaction and prevent filter bubbles.

It is worth pointing out that serendipity is a very different concept from diversity, which consti-

tutes ex-post process and can be combined with serendipity. Specifically, diversity in the context of
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the recommendation systems can generally be understood as a property that applies to a set of

recommended items that measures how dissimilar items are to each other in a set, which involves

measuring the average pairwise dissimilarity of items through some dissimilarity metrics. Even

though a consensus definition for serendipity in the context of the recommendation system has

not yet been formed, based on previous studies (e.g., [3, 46, 61]), relevance and unexpectedness

have been identified as the two most essential elements in defining the serendipity in the recom-

mendation context. In particular, the relevance refers to the quantitative measure of the benefit

of recommending an item, and the unexpectedness requires the recommended items to be unex-

pected by the user and is typically achieved through randomness and non-determinism algorithms.

Unlike diversity, serendipity does not prevent similar items to be recommended as long as the

recommended items are relevant to and unexpected by the user (e.g., the recommendation of two

historical museums to a history lover where he/she is not even aware that the second museum

exists).

In other words, diversity and serendipity are complementary to each other. To better illustrate

the difference between diversity and serendipity, let us consider a recommendation request for a set

of k items that are both relevant and diverse from a database with N items. Typically, the number

of mutual dissimilar items C in the database that are relevant is much larger than the requested k

items (i.e., k < C ≤ N ). A typical recommendation system will employ some method to recommend

a subset of k item from C that has the best trade-off between relevance and diversity, such as top-k.

In this scenario, adding serendipity means picking the k recommendation from these C relevant

yet diverse items in a non-deterministic fashion to fulfill the unexpectedness. Clearly, from this

example, one can tell that serendipity is a stand-alone concept that can be applied in conjunction

with the diversity and relevance.

MPG incorporates serendipity in two layers, both of which explore randomness. At the first layer,
serendipity is still achieved through the recommendations of venues based on PrefDiv. We develop

a probability-based variant of PrefDiv, namely, Probabilistic Preferential Diversity (pPrefDiv), which
incorporates the necessary serendipity for a surprisingly interesting recommendation of venues.

The second layer of serendipity is achieved through the recommendation of routes. Specifically, we

utilize random walks to generate a set of initial routes. The randomness of this process essentially

captures the desired serendipity, since the venues to be included in the route are not chosen in

a way that optimizes a pre-defined objective. Lastly, the Pareto front is deployed to pick final

recommendations that show high quality with respect to both diversity and serendipity.

Contributions In summary, this paper’s contributions are as follows:

• We introduce a new mobile service, coined MPG, which is capable of generating venue recom-

mendations that are not only popular and relevant to user’s preference but are also diverse. Our
method ranks venues based on user preferences, the distance to the venue, and the popularity

of a venue based on check-in information, and achieves diversity with a novel semantic distance

function.

• We formally introduce the notion of Serendipity, and effectively integrate serendipity in MPG

into both venue and route recommendation by means of randomness while still preserving the

relevance and diversity aspects of recommendations. We described in detail pPrefDiv (Proba-
bilistic Preferential Diversity), which supports serendipity in venues, and formally introduced a

random-walk based routing method that achieves the serendipity in route recommendation.

Specifically, we propose four novel schemes for achieving serendipity in route recommenda-

tions, namely PrefDiv+RandomWalk, pPrefDiv+RandomWalk, pPrefDiv+ShortestDistance and
pPrefDiv+HighestRelevence. We also propose a newmetric to measure their degree of serendipity,

which is the deviation of a route from the most anticipated, non-deterministic, top route.
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• Wepresent as a proof-of-concept the design and implementation of two prototype systems: i) MPG
for Android devices and ii) EPUI, our Experimental Platform for Urban Informatics that supports

the personalized venue and route recommendation in an interactive manner. EPUI supports a
number of state-of-the-arts approaches for the venue and tour recommendations and enables

their comparison by presenting the recommended venues and tours visually on a street map as

well as displaying evaluation metrics through summary dashboards. EPUI’s implementation

is flexible and allows for different diversity and indexing schemes to be incorporated as well

as new recommendation algorithms to be uploaded. Hence, EPUI can be used by the broader

research community to facilitate the evaluation of alternative POIs recommendations and route

construction algorithms.

• We experimentally compare our proposed solutions to other state-of-the-arts alternatives (i.e.,

K-Meroids, DisC Diversity, and Random for venue recommendations, and two deterministic

baseline schemes for serendipity based route recommendations) using three data sets (i.e., NYC,

San Francisco, and Pittsburgh). In our comparisons, in addition to the standard metrics (e.g.,

coverage, intensity value), we used our proposed metric that capture the degree of serendipity

in route recommendation. Our extensive experiments verify the effectiveness of our proposed

solutions, showing that MPG can successfully increase coverage of the result-set compared

to other alternatives, achieve a significantly better Relevance-Diversity trade-off than other

methods and offer high-degree of serendipity. They also verify its ability to support interactive

response time.

The rest of the paper is organized as follows: In the next section, we review related work. In

Section 3, we formally define our problem and describe the basic components of the MPG design.
We introduce the serendipity venue and route recommendation algorithms in Sections 4. The MPG
prototype and EPUI experimental platform are presented in Section 5. Our thorough experimental

evaluation and its findings are reported in Section 6. Section 7 concludes our work and briefly

describes our future directions.

2 RELATEDWORK
In this section, we discuss existing works that are strongly related to our own. In particular, we

will present studies related to trip planning as well as methods for query personalization.

2.1 Trip planning and spatial recommendations
During the last years, there has been a large volume of studies that focus onmethods for personalized

location/Point-of-Interest (POI) recommendations to social-network users [8, 47, 57]. The majority

of existing work utilizes collaborative-filtering techniques [57], geometric embeddings [8], or they

even incorporate features present in the users’ social network [47] to associate every venue with a

score, which is representative of the probability of a user enjoying (or liking) a particular venue. The

aforementioned studies consider and evaluate each venue independently. Hence, motivated by this

monolithic view of these methods, recent work has focused on recommending tours of locations.
For instance, De Choudhury et al. [16] focus on segmenting streams of spatiotemporally tagged

photos into paths and then assembling these paths into itineraries. Similar studies by Kurashima et

al. [40] and Yoon et al. [58], are based on geotagged content from photo-sharing media (e.g., photo

streams, GPS trajectories) to recommend future travel paths. However, these approaches come

with their drawbacks. For example, in order to be applicable, the presence of training sequences of

spatiotemporally tagged photographs (or other similar traces) is required. These approaches cannot

handle multiple types of venues that cater to different user needs. The same is true for interactive

systems [6, 20, 38], which iteratively personalize or improve a tour based on user feedback.
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The support for multiple types of venues is considered by Ardissono et al. [5], where the user

manually selects a venue from each desired type, and then a tour traversing the selected venues is

proposed. More recently, Gionis et al. [28] developed a system based on dynamic programming

algorithms, which provides spatially constrained tours based on user preferences of the category of

venues. Other spatial recommendation approaches focus on reconstructing and recommending

routes based on existing location trajectories (e.g., [11, 55]).

Existing works (e.g., [29, 42, 43, 57]) that employed a collaborative filtering-based approach for

venue recommendation identify a set of similar users based on user previous interactions (e.g.,

feedbacks, ratings) with venues and then predict a user’s rating for a venue that they have not rated

based on the observed ratings of the venue of similar users and the properties of the venue. In recent

years, one commonly used algorithm for collaborative filtering based recommender systems is

matrix factorization (e.g., [29, 42]) that decomposes a user-item rating matrix into a product of two-

factor matrices U and I . The prior represents the relation between some latent factors and the users,

and the latter represents the relation between latent factors and the items. Such decomposition

essentially maps both users and items to a joint latent factor space of dimensionality f , such

that recommendations are derived based on the user-item interactions modeled as inner products

in that space. Matrix factorization can also be generalized to accommodate more information

(e.g., contextual) going beyond just the information of users and items. Such a generalization of

matrix factorization is called tensor factorization [32], which allows for more flexible and generic

integration of multi-dimensional data. Instead of the traditional 2-dimensional user-item matrix,

tensor factorization integrates additional information by modeling the data as an N-dimensional

tensor (e.g., User-Item-Context).

Recently, Lu et al. [43] has proposed methods that aim to promote serendipity in matrix fac-

torization based recommender systems. However, these methods use “serendipity" as a way to

recommend unpopular items that are relevant to a user’s preference, and do not not capture the

non-deterministic, unexpected characteristic of true serendipity. Although matrix or tensor factor-

ization based techniques provide a high degree of accuracy on the estimation of the preferences

between users and items, they do not provide any guarantees for diversity or serendipity of the

results. Furthermore, matrix or tensor factorization based recommender systems suffer from cold

start related problems (e.g., when a new user or item has been added to the system) as well as low

scalability due to their superlinear time and space complexity [52]. Therefore, they are not suitable

for interactive exploratory range queries in digital travel guides that demand sub-second latency.

Other recent works (e.g., [7, 60]) have studied the problem of recommending a trip with a diverse

set of venues by employing taxonomies or categorical hierarchies to diversify the venues. Their

approaches only capture the coarse-grained difference between venues, and thus, they are unable

to distinguish between venues that are within the same category. As such, for a top-4 query that

recommends four venues from two venue categories coffee shop and gym, they could recommend

{Starbucks 1, Starbucks 2, 24 Hour Fitness A, and 24 Hour Fitness B} rather than the more diverse

recommendation of {Starbucks 1, Costa Coffee, 24 Hour Fitness A, and Anytime Fitness}.

Existing work addresses the problem of finding spatially diverse routes in two different ways.

Lu et al. [44] proposed to integrate the output of several different location recommender systems

to form the top-k recommendations with two aggregation strategies: i) to use the scaled score

produced by each recommender systems, and ii) to rely on the ranked position of a location in

each recommender system’s recommendation, and assign higher scores to the top locations. Both

these aggregation strategies have their drawbacks. The score-based approach requires a proper

scaling between the scores produced by different recommendation algorithms, which is typically

a challenging task, and the position-based approach is less effective when the overlap between

the recommendations produced by different algorithms is small. Furthermore, it does not provide
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explicitly guarantee on the diversity of the final recommendations. Xu et al. [56] propose to generate

the desired subset of spatially diverse routes from a large set of relevant but semantically similar

routes (i.e., routes that pass through POIs of the same categories given by the user). Since this

approach only focuses on finding routes that are diverse with each other based on the spatial

distance between the two routes, it does not take into consideration the semantic diversity between

POIs or serendipity. To the best of our knowledge, there is no study to date that considers the venue

coverage, semantic diversity (in a latent space) in combination with serendipity when it comes to

recommendations.

2.2 Query personalization
Relevance Relevance rankings constructed from the combination of user preferences and result

diversification techniques have been previously proposed to deal with the problem of informa-

tion overload (i.e., avoid overwhelming users with a large volume of irrelevant results). Ranking

techniques are comprehensively surveyed in [53].

Mostly these techniques can be distinguished based on the type of preferences they support for

filtering and ordering data. These techniques primarily handle only one type of preference, either

quantitative or qualitative. However, each preference type has its own advantages and disadvantages.
Hybrid schemes that support both qualitative and quantitative preferences have been proposed in an

attempt to exploit the advantages of both types of preferences while eliminating their disadvantages

[27, 37]. In this work, our proposed algorithms can work with any existing relevance ranking model

that returns a set of sorted tuples/objects along with their scores/intensity values.

More recently, in [10], the author studied the problem of producing rankings while preserving

a given set of fairness constraints. In particular, the proposed algorithm takes as input, a utility

function, a collection of sensitive attributes (e.g., gender, race) of each item, and a collection of

fairness constraints that bound the number of items with each sensitive attribute that are allowed

to appear in the final results. It outputs a ranking that maximizes the relevance with respect to the

given utility function while respecting the fairness constraints.

Diversity In recent years, result diversification has been extensively studied in many different

contexts (e.g., [18, 33–36]), and with various definitions such as similarity, semantic coverage [4],

and novelty [15]. In our work, we focus on the similarity definition and use MaxMin and MaxSum,

which are two widely used diversification models, as baselines.

The goal of these two diversification models is to select a subset S from the object space R, so

that the minimum or the total pairwise distances of objects in S is maximized. Recently, a number

of variations of the MaxMin and MaxSum diversification models have also been proposed (e.g.,

[17, 48]) to address the problem of diversifying continuous data. Formally, MaxMin and MaxSum

are defined as follows:

Definition 1. MaxMin generates a subset of R with the maximum f =minpi ,pj ∈Sdt (pi ,pj ) where

dt is some distance function pi , pj for all subsets with the same size.

Definition 2. MaxSum generates a subset of R with the maximum f = Σoi ,oj ∈Sdt (oi ,oj ) where dt
is some distance function oi , oj for all subsets with the same size.

DisC Diversity (or DisC for short) [18] is the most recently proposed diversity framework and

solves the diversification problem from a different perspective. In DisC Diversity, the number of

retrieved diverse results is not an input parameter. Instead, users define the desired degree of

diversification in terms of a tuning parameter r (radius). DisC Diversity considers two objects oi
and oj in the query result R to be similar objects if the distance between oi and oj is less than or

equal to a tuning parameter r (radius). It selects the representative subset S ∈ R according to the
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following conditions: i) For any objects in R, there should be at least one similar object in S ; and ii)

All objects in S should be dissimilar to each other. These two conditions ensure both the coverage

and the dissimilarity property of a diverse result set.

The key differences between PrefDiv algorithms used by the MPG and DisC Diversity are: i)

PrefDiv algorithms follow the Top-k paradigm, which provides users with the option to specify the

size of the final result set by assigning a value to parameter k , whereas DisC Diversity adjusts the

size of the result set by changing its radius parameter r . ii) The PrefDiv algorithms focus on both

the relevance of the result set with respect to the users’ preference and the diversity of the result
set. DisC Diversity focuses mainly on the most diverse representative subset with two scenarios

that only illustrate the possibility of using DisC Diversity to handle such relevance-aware diversity

requests; however, they do not mention any specific strategies on how one can dynamically change

the radius r .

Another way to generate a diverse, representative set of results is through clustering. One

example of this would be k-Medoids, which is a well-known clustering algorithm that attempts to

minimize the distance between points in a cluster and the center point (medoid element) of that

cluster. The k-Medoids algorithm can be classified into two stages: In its first stage, it generates

a set of k clusters C = {c1, c2, ..., ck} based on some distance function dt . In the second stage, one

element from each cluster is selected to be part of the result set R. Several strategies for selecting

an element from each cluster could be employed. For instance, one strategy is to choose the center

point of each cluster, which is expected to deliver high diversity, and another strategy would be to

choose the point that has the highest intensity value for each cluster. However, since there is no

parameter that can be tuned either manually or automatically to balance the trade-off between

relevance and diversity, k-medoids is unable to balance such a trade-off in fine granularity.

Multi-Criteria Objective Optimization Even though the goal of diversity is to avoid loss of

potentially important data due to its low ranking, the result of diversification does not automatically

imply relevance for the users. This was the underlying motivation for the top-k diversification

techniques, such as PrefDiv [23], Swap [59], the Query Manifold (QM) framework [62]. This was

also the motivation for the multi-objective optimization approaches in which the first objective

is relevance and the second objective is dissimilarity [63]. As opposed to PrefDiv, Swap, and the

multi-objective optimizations that recommend relevant and diverse data, QM recommends a set of

relevant and diverse queries.

The difference between PrefDiv and Swap is that the latter seeks diversity through pairwise

distances of items among the result-set and filters out items that contribute less to diversity. Swap

ensures relevance by removing items that drop the relevance below a pre-defined threshold. In

contrast, PrefDiv seeks diversity by eliminating similar items and ensures relevance by using a

relevance-focused greedy algorithm that can reflect the user-specified relevance distribution.

The most widely known approach that is targeted directly at optimizing the trade-off between

diversity and relevance was introduced by [9]. In this work, the authors have proposed the twin-

objective function called Maximal Marginal Relevance (MMR), which combines both relevance

and diversity aspects in a single comprehensive, objective function with a scaling factor λ. When

λ = 1, the MMR function equals to a standard relevance ranking function, when λ = 0 it computes a

maximal diversity ranking. Compared to PrefDiv, MMR always requires to compute its objective

function against the entire set of initial candidate items for each of its k representative items,

whereas, PrefDiv does not rely on a single comprehensive, objective function and in most cases

only requires a very small number of comparisons for each of its k representative items. Recently, a

new MMR function that integrates regret minimization was proposed to generate the relevance

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.



Serendipity-based Points-of-Interest Navigation 1:9

Fig. 2. MPG System Architecture.

score [30]. This new score attempts to minimize the disappointment of users when they see k

representative tuples rather than the whole database.

Div-Astar [50] is another multi-criteria objective optimization solution that is graph-based,

in which each node corresponds to one item in the original data. This diversity graph is sorted

according to the relevance score, and a a∗ algorithm is used to find the exact solution for diversifying

top-k results. That is, Div-Astar considers the problem as finding the optimal solution for the

maximum weight independent set problem, which has been proven to be NP-hard.

Our proposed MPG system differs from all of the above works, as MPG leverages the capability of

pPrefDiv, the nondeterministic version of PrefDiv, to provide venue recommendation that optimizes

three important aspects of venue recommendation (i.e., relevance, diversity, and coverage), while

delivering results that are unexpected by the user. Furthermore, MPG is capable of providing

serendipity-based route recommendations with relevance and diversity in mind.

3 MPG DESIGN
In this section, we introduce the formal underpinnings of MPG and its core components (Figure 2).

We begin by formally defining relevance and diversity that are central to our work.

3.1 Relevance, Intensity, Diversity, Similarity, and Coverage
Relevance We represent the degree or score of relevance of an item o to a user u by the Preference
Intensity Value (Iou ).

Definition 3. Preference Intensity Value (I ) is a real value between −1 and 1. Negative preferences
are expressed using any value in [−1, 0); −1 is used to express complete dislike. Positive preferences
are expressed using any value in (0, 1]; 1 is used to capture the most likability. Equality/indifference is
expressed using 0.

Diversity We measure the diversity of a set of items S by measuring how dissimilar, i.e., the

semantic distance beyond a threshold, each item in S is with respect to all other.

Definition 4. Dissimilarity: Let O be the set of items in the database. Two objects oi and oj ∈ O are
dissimilar to each other dsmϱ (oi ,oj ), if dt (oi ,oj ) > ϱ for some distance function dt and a real number ϱ,
where ϱ is a distance parameter, which we call radius.
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P1

0.4 0.2 0.3 0.1

Starbucks Peet's DDCoffee 
Tree

P2 (Cafe)

Pizza
Hut Roma

P3 (Pizza)

0.3 0.2 0.23 0.27
0.6 0.4

0.5 0.5

P5 (Museum)

Heinz
History
Center

Carnegie
Science
Center

P4 (Greek)

Zorbas

Souvlaki.gr

Athena

0.1 0.1
0.8

Fig. 3. Pam’s sample hierarchical user profile. The first level corresponds to the coarse-grain preference profile
(P1), while each one of the sub-trees stemming from P1 corresponds to the preferences within each category
(e.g., preference P2 corresponds to the “Cafe” venue type).

Definition 5. Similarity: Two objects oi and oj ∈ O are similar to each other, if dt (oi ,oj ) ≤ ϱ for
some distance function dt and a real number ϱ. We use simϱ (oi ,O ) to denote a set of items in O that are
similar to an item oi , such that ∀oj ∈ simϱ (oi ,O ),oj , oi .

Definition 6. Coverage:Given a set of items S and a result-set R, where R ⊆ S , coverage corresponds
to the percentage of items in S that satisfies dt (oS ,oR ) ≤ ϱ, such that oR ∈ R and oS ∈ S where dt is some
distance function and ϱ is a real number parameter.

3.2 MPG Objective - Problem Statement
We first formulate the algorithmic problem that lays in the epicenter of MPG, and then discuss the

components of our solution.

Problem 1. Given a set of geographical points G = {д1,д2, . . . ,дl }, a popularity index ξдi for location
дi , a query point q, a reach r , a desired level of serendipity ψ and a profile set that encodes user
preferences P = {p1,p2, . . . ,pn }, identify a set G∗ ⊆ G ( |G∗ | = k ) with maximized diversity ∆(S), while
satisfying the constraint set h(G∗,P,q, r ,ψ , ξ ).

In our setting, the set G corresponds to the set of available venues/Points-of-Interest (PoI).

The query point q corresponds to the current location of the mobile user, while r represents the

maximum allowed distance between q and any point in the chosen solution V ∗, and ψ indicates

whether serendipity would be involved in the query or not. The set of preferences P captures the

profile of the mobile user with respect to his/her interests. Finally, the constraints described by

function h include: (i) a geographic constraint that ensures that the maximum distance between

the currently location of the mobile user and any venue recommended does not exceed r (i.e.,

d (q,vi ) ≤ r ,∀vi ∈ V ); and (ii) a personalization constraint that ensures that the output set of venues

is compatible with the user preferences (i.e., V |= P).

Given this problem setting, the actual MPG system includes an interface that will obtain: i) the

current location of the user q (e.g., through the GPS sensors, NFC sensors); ii) the user inputs such

as the reach r ; and iii) the set of types of venues she is interested in and the number of venues k

she would like to know about. The preference of the user will be stored either in the system (i.e.,

bound to the user account) or stored on the mobile device and uploaded to the system/server at the

time of the request. In response to a request, MPG provides a set V ∗ of the recommended venues

based on the definition of Problem 1. These recommended venues can further be used for route

recommendations if desired or requested.
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3.3 Venue Preferences
MPG utilizes a hierarchical profile P that mirrors the typical venue classification. In the typical

classification every venue v is associated with a categorical type Tv , and every category may be a

subcategory of another category. For example, an Italian pizzeria belongs to the category “Italian

restaurant”, which can belong to the higher level category “Restaurants”, which can itself belong to

the category “Food” and so on. At the top level of the hierarchy there are ten categories, namely,

Arts & Entertainment, College & University, Food, Nightlife Spots, Outdoors & Recreation, Events,
Professional & Other Places, Residences, Shops & Services and Travel & Transport. However, in order

to build highly personalized and specific profiles, we use the bottom layer of hierarchy, as well as

the specific venues visited.

In particular, given the set of check-ins Cu of mobile user u, we build a hierarchical profile P. At

the top level, the preferences of the user are expressed in terms of the (normalized) frequencies

of this user’s visitations with respect to the types of venues. The second layer of the user profiles

further provides the normalized frequencies of venues for the different types of locations visited byu.

Figure 3 presents a sample profile for user Pam in our example scenario (in Section 1). Preference P1
is a coarse-grain preference profile, which informs the system that Pam prefers to spend 40% of her

time in coffee shops, 10% in museums, 20% in burger joints and 30% in Greek restaurants. Preferences

P2 − P5 are able to distill further Pam’s preferences. For instance, she appears to prefer Starbucks

more compared to Peet’s coffee. Such a preference profile can nowadays easily be constructed with

a variety of services, e.g., Google Maps Timeline; a detailed discussion around the construction

remains outside the scope of this paper. In our prototype implementation, we combine the user

check-in information from Foursquare with the foursquare category hierarchy to build the user

profiles [1].

3.4 MPG Intensity Value
MPG utilizes a preference intensity value for relevance that is a composite of syntactic-based and

semantic-based intensity values: distance-based, popularity-based, and profile-based intensity values.

3.4.1 Distance-based Intensity Value. The physical distance between the current location q of the

mobile user and venue v can also be used to obtain an intensity value for v. In particular with dvq
being the normalized distance between q and v’s location the distance-based intensity value can be

defined as:

Ivd = 1 −
dvq

r
(1)

In the above equation, the distance has been normalized based on the maximum allowed distance

from Problem 1, that is, r . Note here that dvq can be, in principle, equal to 0. However, this happens

when the current user location q is at a venue v. Given that the user is already at this location,

these venues are not considered by our system.

3.4.2 Popularity-based Intensity Value. An important factor that can impact the choice of a venue

v from MPG is its popularity. With cv being the number of total visits in venue v, i.e., the number

of check-ins in v, and sv being the number of unique visitors in v, we define the popularity-based

intensity value of v as:

Ivp = λ ·
cv

max

i∈V
ci
+ (1 − λ) ·

sv
max

i∈V
si
, λ ∈ [0, 1] (2)

where V is the set of all the venues. λ is a scaling factor between the total number of visitors

and the number of unique visitors. When λ = 1, only the number of total visitors determine the

popularity-based Intensity value of a venue and when λ = 0, only the number of unique visitors

determine the popularity-based Intensity value of a venue. The default is λ = 0.5. This intensity
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value essentially corresponds to the popularity index ξ used in the formal definition of the MPG
problem.

3.4.3 Profile-based Intensity Value. The degree or strength of relevance of a venue v is expressed

by the preference-based intensity value Ivu derived from the user’s profile. In particular, the profile-

based intensity value is a combination of the score of the type of the venue (i.e., the coarse-grain

preference) with the specific venue (i.e., fine-grain preference) score. As stated above, since these

scores are derived from the user’s check-ins Cu , the profile-based intensity value Ivu for venue v

and user u is computed as follows:

Ivu = ω ·
Cv
u∑

vj ∈t

C
vj
u

+ ω ·

∑
vj ∈t

C
vj
u∑

t∈T

∑
vj ∈t

C
vj
u

(3)

where, ω is the trade-off parameter between the coarse-grain and fine-grain preference scores with

a default of 0.5, Cv
u is the number of check-ins that u had in v, t is the venue type of v and T is

the set of all venue types. Going back to Pam’s case (Figure 3), the coarse-grain preference score

would reflect her preference towards the nodes in the second level of her hierarchical user profile

(i.e., Cafe, Pizza, Greek, and Museum), and the fine-grain preference score would be her preference

towards the leaf nodes of her hierarchical user profile.

3.4.4 Composite Intensity Value. Having distance-based intensity value Ivd and popularity-based

intensity value Ivp , we can combine them in one intensity score as follows, with γ the scaling factor:

Ivd,p = γ · I
v
d + (1 − γ ) · Ivp , γ ∈ [0, 1] (4)

We can further combine Ivd,p with profile-based Ivu in a manner similar to Equ. 4 and obtain a

value that combines the profile preference, the popularity and the distance of the venue from the

current location of the user. More specifically:

Ivu,p,d = α · I
v
u + (1 − α ) · Ivd,p , α ∈ [0, 1] (5)

Eq. 5 combines three different elements (user preference through Ivu , venue popularity through Ivp
or Ivp,π and geography through Ivd ) into a single intensity score. This combined score is the composite

MPG intensity value of v, Ivk . Here, we would like to emphasize that the order with which we

combine the three intensity values (i.e., Ivu Ivp (or Ivp,π ) and Ivd ) to obtain Ivk (or Ivk,π ) does not impact

the recommendations of MPG. This is due to the fact that MPG outputs a total order of the venues
based on these three factors. The absolute values themselves for Ivk will be different, but the order

will always be the same. Furthermore, to provide an additional degree of personalization, each of

the above functions includes adjustable trade-off parameters (i.e., α , γ , λ, ω) that are personalizable

with respect to user interest.

Based on the above discussion, the results of the composite intensity value (i.e., Equation 5)

can be obtained in constant time O(1). Therefore, the overall runtime per query for computing

composite intensity value for each user query is linear with respect to the number of the initial set

candidate venues involved in the user’s range query.

3.5 The Semantic Similarity Measurement
In order for MPG to produce semantically diverse results, there must be a way to measure the

semantic distance between two venues. Due to the ambiguous nature of venues, it is challenging to

obtain a precise measure between an arbitrary pair of venues. To address this challenge, we propose

a two-part semantic similarity measure that combines both the categorical information of the venue
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and the semantic of the venue’s name to produce the accuracy measure of semantic similarity

between any pair of venues. Next, we discuss the details of our semantic distance function.

3.5.1 Category Tree. As mentioned previously, MPG leverages the Foursquare Category Hierarchy

[1] to derive the user preferences and build user profiles. However, such information can also be

used to determine the similarity among venues. In particular, MPG accelerates both operations by

constructing a category tree to capture the category structure of venues in Foursquare as a tree. Each

internal node in the category tree represents a type of venue, where each internal node represents

the subcategory of the parent node with each leaf node representing the actual venue. There are

in total of 10 categories at the top-level of this hierarchy. Each internal node in a category tree

contains the following attributes: ID of the category it represents, the name of the category, a

pointer to the parent node, and a list of pointers to each of its children nodes. Since a category

tree can have an unlimited number of degrees, all of the children node pointers are stored as hash

tables, with the key being venue ID and the value is the actual pointer.

The user profiles are further derived from the preference hierarchy, as described above in Section

3.3. The preference hierarchy consists of the top-level categories and the leaf nodes of the category

tree (Figure 3). The category tree can be used to calculate the similarity distance between two

venues vi and vj as follows:

SimT ree (vi ,vj ) = 1 −
Ancestors_Path

Lonдest_Path
(6)

where Ancestors_Path is the number of common ancestors between the venues vi and vj and

Longest_Path is the number of nodes on the longest path to the root from either vi and vj .

3.5.2 Name Semantics. Although the category tree is able to measure the similarity between two

venues, this measurement is not very accurate as it only provides a coarse granularity distance

between two venues. Specifically, this measurement cannot distinguish the difference between two

venues that are under the same subcategory, for example, “McDonald’s” and “Burger King”, as both

of them share the exact same ancestors.

Our hypothesis is that the names of venues reflect their identity/semantics in a finer granularity

than their category type. Therefore, to overcome this limitation, MPG utilizes Word2Vec [45], an

advanced NLP technique, which supports fine granularity distance calculation between two venues

by going beyond syntactic comparisons. Word2Vec provides the implementation of two word-vector

representation computing models: Continuous Bag-of-Words model (CBOW), which predicts the

current word based on the sourcing words, and Continuous Skip-gram model, which seeks to use

the current words to predict surrounding words. Both of these models are based on the Neural Net

Language Model.

With Word2Vec, the similarity of word representations goes beyond simple syntactic regularities.

Specifically, word vectors capture many linguistic regularities. For example, after obtaining the

word representation in vector space, the resulting vector can have the following properties, such

that vector(‘King’) - vector(‘Man’) + vector(‘Woman’) results in a vector that is closest to the

vector(‘Queen’). MPG uses CBOW model to generate all word vectors.

The difference between two words under Word2Vec are calculated through the cosine similarity

of two-word vectors, such that cosine similarity is defined as following:

SimV ec (A,B) =

∑n
i=1AiBi√∑n

i=1Ai
2

√∑n
i=1 Bi

2

(7)

where n is the length of vector, Ai and Bi are elements of vector A and B, respectively.
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The current word vectors we adopted support phrases that consist of up to two words. For venue

names that have more than two words or are not contained in the word vectors, we split the phrases

into single words and then obtain word vectors for each individual word in the phrases. The final

vector of a phrase is obtained through the average of all vectors for each word in this phrase. Since

the accuracy of Word2Vec strongly depends on the quality of the word vectors, a large real-world

corpus is needed in order to obtain high-quality word vectors. We have experimented with various

corpuses in an attempt to generate the highest quality word vectors. The best suitable word vectors

we obtained were generated from the entire English Wikipedia that consists of 55 GB of plain text.

The resulting word vectors contain over 4 million entries. In order to effectively query the word

vectors, MPG stores all the word vectors in memory as a hash map.

Similar to category-tree based similarity, the Word2Vec based similarity has its own biases. We

were able to overcome these biases of the individual similarity metrics by combining them (Eqs. 6

and 7) and measuring the similarity between two venues vi and vj as follows:

Sim(vi ,vj ) =
SimT ree (vi ,vj ) + SimV ec (A,B)

2

(8)

where A and B are representing the vector representation of venue vi and vj , respectively.

Note that for efficiency purposes, both Category Tree and Word2Vec have been cached in main

memory as hash tables. This allows MPG to compute the above composited semantic distance (i.e.,

Equation 8) in constant time for each venue and, in turn, enable a linear runtime complexity for

each user query.

3.6 Spatial Indexing Structure
One of the main operations in MPG is to generate a set of nearby neighbors. In order to speed up this

process, MPG utilizes the widely adopted M-tree spatial index structure [13]. M-tree uses triangle

inequality for efficient range queries, similar to those required in MPG. An M-tree is a balanced

tree index that is designed to handle a large scope of multi-dimensional dynamic data in general

metric spaces. An M-tree partitions the space in such a way that it generates spherical boundary

regions around some of the indexed items, called pivots, with some bounding radius r . Each internal

node has at most N entries and contains the following attributes: a pivot pv , the bounding radius r

around pv , a pointer pt to the subtree that is rooted in the pivot pv , and the distance between pv and

its parent pivot. The distance of a subtree from pv is guaranteed to be within the bounding radius

r . Each leaf node in the tree has two attributes: the item that is being indexed and the distance

between this leaf node and the parent pivot. The efficiency of M-tree has been proven in a large

body of existing works (e.g., [19]), and a detailed cost model for M-Tree’s search complexity can be

found in [14].

4 MPG’S SERENDIPITY ALGORITHMS
In this section, we introduce the key algorithmic components of MPG, particularly the venue and

route recommendation algorithms, which produce relevant, diverse, and yet unpredictable results

within a specified latency requirement.

4.1 Venue Recommendation Algorithm
As discussed earlier in Section 1, serendipity is an important concept in helping recommendation

algorithms improve user satisfaction, which is focused on recommending items that are relevant

while unexpected. To achieve the conflicting objectives of serendipity in recommend relevant
while unexpected venues, we incorporated the serendipity under the algorithmic framework of

our previously proposed algorithm Preferential Diversity (PrefDiv) [23] that produces a set of
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recommendations, which balances the trade-off between relevance and diversity in an efficient

manner. In fact, PrefDiv provides parameter A to tune the balance between relevance and diversity

in the returned result set of recommendations R. When A = 1, R would simply be the top k items

from the initial set, i.e., the items with the k highest intensity values, and when A = 0, R contains

k dissimilar items from the initial set. Since PrefDiv is an iterative algorithm, in the case A is in

between 0 and 1, the final results will contain at least A ∗ k items from every iteration, and in each

iteration, A will be divided by half.

The basic logic of PrefDiv (Algorithm 1) is as follows: it first sorts the objects in the initial set

O = {o1, ....,on } in descending order of their intensity values and splits them into groups of k objects.

In each iteration, it evaluates the objects in a group for diversity, starting with the group that

contains the highest intensity objects (Lines 4 & 5). Item oi with the highest Ioiu in the group TO
is moved into the final result set R, if there is no object in R similar to oi , i.e., simϱ (oi ,R) is empty;

otherwise it is marked as “Eliminated”. Also, all objects in simϱ (oi ,TO ) are marked as “Eliminated”.

While there are still objects left in TO that are not being marked as “Eliminated”, it processes the

next unmarked one oj with the highest I
oj
u in the same manner (Lines 6 - 13). Note that the Accept ()

function on Line 9 always returns True for PrefDiv, as it is designed for pPrefDiv, as discussed below.
PrefDiv ends an iteration by finalizing the moving of objects into R according to A, as mentioned

above. If fewer than the required A ∗ k iter objects were moved in R, then the difference s is covered

by moving the top s objects with the highest intensity values that have been marked as “Eliminated”

in TO into R (Lines 14 - 16). The iterations continue until either k objects are selected (|R | = k), or if

all items inO are examined. If the size of R is still less than k , k − |R |, items with the highest intensity

values that have been marked as “Eliminated” will be selected and added to R (Lines 17 - 22).

The adoption of PrefDiv helps to ensure the recommended results are relevant to the user’s

intent. However, PrefDiv is a deterministic algorithm, and thus, it does not incorporate the concept

of serendipity. To introduce serendipity in PrefDiv, we devise a non-deterministic version of

PrefDiv, coined, Probabilistic Preferential Diversity (pPrefDiv). pPrefDiv offers serendipity through

probability weighted by relevance. In contrast to PrefDiv, when a venue x is qualified to be one of

the recommendations for a range query q, x is not automatically included in the result set (Line 9:

Accept (x ) = True). Instead, pPrefDiv decides whether or not x can be added to the result based on

the following probability:

p (x is accepted) =
CI (x )

Argmaxi :O CI (i )
(9)

where CI (x ) is the composited intensity value of Ivd , I
v
p and Ivu of a venue x , and O is the set of all

venues within q. In the case of pPrefDiv, this probability (i.e., Eq. 9) is computed for each x by the

Accept () function on Line 9 of Algorithm 1. If x is accepted (Line 9), it will be presented as one of the

recommendations. Otherwise, x will be discarded, and pPrefDiv would proceed to the next venue.

For example, assume O = {o1, ....,on } is the initial set of venues, R is the set of result that pPrefDiv
is producing, ou is an unmarked venue that has a composited intensity value of 0.6, which is

currently the highest among all unmarked venue in O , and there is no object in R similar to oi
(i.e., simϱ (oi ,R) is empty). According to PrefDiv, ou should be included in the result-set. However,

pPrefDiv would use intensity value weighted probability to determine the acceptance of ou . For

instance, if the highest composited intensity value in O to be 0.8, then ou would have a probability

of 0.6/0.8 = 75% to be included in the result-set.

The introduction of randomness by means of a composited intensity value-based probability

allows pPrefDiv to incorporate serendipity into the venue recommendations, while still preserving

the high-intensity value and semantic distance feature of the PrefDiv algorithms.
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ALGORITHM 1: PrefDiv/pPrefDiv Main

Require:
1: Set of objects O , a size k , a radius ϱ and A tuning parameter

Ensure:
2: One subset R of O
3: S ← ∅
4: while there exists unmarked items in O and |R | < k do
5: S ← Pick k items with highest composited intensity from O
6: for all oi ∈ R do
7: mark ∀oj ∈ simϱ (oi , S ) as “Eliminated"

8: for all unmarked items oi in S do
9: if Accept (oi ) then
10: R = R ∪ oi , s.t. oi ∈ S is unmarked and Ioiu ≥ I

oj
u : ∀oj ∈ S

11: for all unmarked ou ∈ S do
12: if ou ∈ simϱ (oi , S ) then
13: mark ou as “Eliminated”

14: while number of unmarked items in S < A · k do
15: R = R ∪ oi , s.t. oi ∈ S is unmarked and Ioiu ≥ I

oj
u : ∀oj ∈ S

16: A = A · 0.5
17: if first iteration then
18: create new set G ← ∀oj ∈ S , s.t. oj is marked

19: O = O − (O ∩ S )

20: if |R | < k and ∀oj ∈ O , s.t. oj are marked then
21: while |R | < k do
22: R = R ∪ oj , s.t. oj ∈ G and I

oj
u ≥ Ioiu : ∀oi ∈ G

23: Return R

Time Complexity According to the above discussion (Algorithm 1), we can observe that the worst

case complexity of pPrefDiv isO (kN ). Fortunately, as the size of k is usually a small number, pPrefDiv
should typically behave as a linear algorithm. Furthermore, as we will show in our empirical studies

(Section 6), depending on the diversity constraints, pPrefDiv typically does not need to examine

all original items. That is, a very small set of items would be sufficient enough to produce R if the

radius is appropriately defined.

4.2 Route Recommendation Algorithm
By employing pPrefDiv, MPG is capable of producing informative recommendations, which signifi-

cantly benefits the user’s exploration of cities. However, the best route that the user can take to

visit these recommended venues remains to be decided. Thus, MPG further supports route recom-

mendations that are constructed based on the recommended venues with variable length.

To incorporate serendipity in the recommendation of routes, for a user-defined route length k ,

where k is the number of venues that comprise a route, we utilize random walks to generate sets of

initial routes.

Random Walks The random walks are performed on a weighted graph between the venues.

The weightwe of edge e considers the distance between the current location of the user, the number

of visits to the venue, and the user’s preference towards a certain type of venue. The probability

that our random walk will go through edge e is proportional to 1/w
γ
e , where γ is a system parameter.
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The weight assigned is a tunable parameter that users can explore. Before generating the final route

recommendations, we perform a number of ξ random walks to yield the initial set of candidate

routes. Such serendipity incorporated by the random walks is essential to enable the MPG to yield

unexpected, yet interesting route recommendations to the user. Since the complexity for generating

one random walk path is simply O(k), the total time complexity for random walks-based routing is

simply O(ξk) per each user query.

Using this initial set of ξ routes, we determine our final recommendations by introducing the

quantitative measurements of serendipity. Since serendipity implies that the recommended routes

should be unexpected by the user, therefore, to capture this unexpectedness, we first have to

determine the most intended (i.e., expected) route, and then measure the difference between the

recommended route and the most intended route. As we have modeled the user’s intention using

the intensity score, thus, the routes r ∗I constructed based on the ranking of the intensity value

naturally represents the most intended route.

HighestRelevence We propose HighestRelevence as the method to construct routes based on the

ranking of intensity value. For a given set of object O, such that |O | = k , and a length k′, where

k′ < k , HighestRelevence constructs a route of length k′ by selecting the first k′ objects with highest

composited intensity value from O, then order each object in descending order according to their

combined intensity value. Whenever possible HighestRelevence always seeks to separate two

venues with the same category (according to the category tree), thus to improve the usability of

the route by preventing two venues with the same category to be visited in sequence.

Serendipity Metric To measure the serendipity of a given route r , we first find the set of

overlapping venues Or ,r ∗I between r and the route that maximized the intensity value r ∗I . Based on

the set of overlap venues we compute the Overlap Factor (OvF) between r and r ∗I as following:

OvF (r , r ∗I ) = 1 −
|Or ,r ∗I |

|r |
(10)

Then we compute the Normalized Longest Common Subsequence (NLCS) between r and the route

that maximized the overall intensity value r ∗I as follows:

NLCS (r , r ∗I ) =
|Lr ,r ∗I |

|r |
(11)

Thus, the serendipity σr of r would be:

σr = (1 − NLCS (r , r ∗I )) ∗OvF (r , r
∗
I ) (12)

The idea for quantifying the serendipity of a route by measuring its normalized longest common

subsequence and overlap factor with the route r ∗I that has the maximum overall intensity value is

because r ∗I is the most anticipated route based on prior knowledge. Therefore, routes with large

deviation from the most anticipated route can be considered as less expected, and thus, have higher

serendipity.

Pareto Front The quality of the recommended venues with respect to the relevance is ensured

by the venue recommendation algorithm employed. However, as the length of the routes could

be much shorter than the number of recommended venues, diversity becomes an issue as routes

that consist of only venues which are semantically close to each other (e.g., belongs to the same

category). Such routes are typically considered as not interesting routes. To prevent this issue,

rather than optimizing over a single dimension, MPG computes the Pareto Front of the random

walks generated based on their serendipity σr , as described above (Eq. 12) and their diversity δr
[24]. The Pareto Front includes the non-dominated points, which is a set of points that can no

longer be improved along one dimension without sacrificing the others, i.e., a route r is part of the

Front iff σr ≥ σr ′ and δr ≤ δr ′ , ∀r
′

∈ R, where R is the set of the random walks.
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Fig. 4. EPUI Input Panel Fig. 5. EPUI Profile Panel

Fig. 6. EPUI Algorithms Panel Fig. 7. EPUI Display Results

Given the fact that the computed Pareto Front might include a large number of routes, we divide

it into n equal parts (through projections on the dimension with the maximum range) where n

can be adjusted by the user, and choose a representative route for each part of the front based on

the shortest distance to be covered. This ensures our system will provide the user with multiple

alternative routes that capture different levels of the trade-off between both serendipity and diversity

dimensions.

5 PROTOTYPE IMPLEMENTATION
We have implemented a prototype MPG both as a web service and a mobile app for Android devices.

We further developed a testbed, namely, EPUI 2
(Experimental Platform for Urban Informatics) [26]

to evaluate the effectiveness of our proposed mobile service MPG and explore our ideas for capturing
serendipity.

EPUI consists of a user-friendly front-end interface and an efficient back-end server that incor-

porates our proposed venues recommendation algorithms as well as other components of MPG.
Further, EPUI supports a number of different approaches for the venue and tour recommendations

based on the user’s current location, which enables the user to compare the recommendations of

different recommendation engines by both presenting the recommended venues and tours visually

on the map as well as displaying evaluation metrics through summary dashboards.

Specifically, EPUI implements the following well-known venue recommendation algorithms:

DisC Diversity [19], K-Medoid, and Random Selection based recommendation approach. In addi-

tion to these algorithms, EPUI enables the user to compare the performance of different venue

recommendations and route construction approaches, including our proposed MPG service, as well

as the user’s own customized algorithm to facilitate the research and development in both venue

2
An introduction video can be found at http://tiny.cc/sf0d7y.
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recommendation and route construction. For example, while we have implemented the same diver-

sity scheme for all algorithms, our implementation is flexible and allows for different diversity and

indexing schemes that can easily be adjusted by the user.

The front-end of EPUI is constructed from javascript and PHP with the help of Google Maps API

for visualizing the results on a map. It communicates with the back-end server through JSON, and

currently supports the cities of New York, San Francisco and Pittsburgh. The recommended venues

or POIs are numbered and colored to match the number and the color of the algorithm making

the recommendation, along with different provisions to drive or walk to those recommendations.

The interface consists of five different panels: “Input", “Profile", “Algorithms", “Path" and “Analysis"

(Figures 4-6).

The “Input" panel provides the options for the user to specify the inputs that describe the basic

information for each query, such as the radial distance they are willing to travel, the number of

venues they would like to get returned, and the types of venues they are interested in exploring

(Figure 4).

The “Profile" panel provides the options for the user to specify their own preferences by selecting

any of the predefined profiles (i.e.,ArtLover, FoodLover, OutdoorsLover, etc.) (Figure 5), or to customize

a selected preference profile by adjusting the values on the corresponding entry of the category

tree.

The “Algorithms" panel (Figure 6) allows users to choose, customize and upload the recommen-

dation algorithm(s) that would be involved in the location query. To upload an algorithm, EPUI

simply requires the user to providing the name and the corresponding template java program,

and then it will be include in the algorithms list along with other existing algorithms. For each

algorithm, the user has an option for adjusting the composition of the ranking (Eq. 5) and semantic

distance (Eq. 8) function.

The “Analysis" panel visualizes the performance characteristics of the recommended venues

from the selected algorithms in tabular form as well as in a scatterplot. The listed characteristics in

terms of quality are the relevance score of the recommended venues, their diversity and the radius

of gyration for each set of the recommended venues. We also report the run time taken for each

algorithm as an indicator of interactivity.

The “Path" panel (Figure 7) allows users to select the construction method of the routes based

on sets of recommended venues and a route network graph G. Once a route construction method

has been selected, it would determine the visit sequence of each recommended venues. Later the

route that connects each venue (according to the specified sequence) would be constructed based

on the weights assigned on G. Furthermore, users is able to assign any weights to the edges of G by

upload their customized weight modules as well as specify their desired trade-off between weights

that are currently assigned to each edge of G. Finally, this panel also includes a statistics table that

would display basic informations (e.g., originate, destination) or evaluation measures (e.g., distance,

risk, relevance, diversity) according to user’s configuration.

6 PERFORMANCE EVALUATION
In this section, we present the detail evaluation of our proposed mobile service MPG using our

experimental platform EPUI and real-life data. Before discussing our findings, we introduce the

datasets used in our experimental evaluation.

6.1 Datasets
In our experiments, we used data collected across five months from Foursquare. Foursquare is a

major digital, location-based social network where the main interaction among its users is the

voluntary sharing of one’s whereabouts through check-ins. Foursquare has a rich, user-curated
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(a) NYC Venues Distribution (b) SF Venues Distribution (c) PIT Venues Distribution

Fig. 8. Spatial visualization of datasets population for an indicative 3x3 partitioning.

venue database through which users can choose to notify their friends of their current location.

Furthermore, as mentioned in Section 19, we have used a Word2vec model that is trained on the

entire English Wikipedia. Note, this is the only MPG component that requires training data for

model training, and since it is used as a semantic distance measure, we did not create a separate

English Wikipedia testing data to test the performance of the word vector obtained from Word2vec.

In particular, our study utilizes the following information:

Venue database: Weused Foursquare’s public venueAPI and queried information for 14,011,045
venues. Each reading has the following tuple format: <ID, latitude, longitude, # check-ins,
# unique users, type>. The purpose of this dataset is two-fold: (a) obtain a database of all

points-of-interest (POIs) in a city, and (b) to obtain information that can be used as a proxy for

the quality of a venue (e.g., the number of unique users that have checked-in to the venue or the

total number of check-ins). We have queried the Foursquare venue database and have obtained the

relevant information for all the venues in New York City (NYC), San Francisco (SF), and Pittsburgh

(PIT) (depicted in Figure 8).

Figure 8 shows the population for the three respective cities when splitting into nine equal-width

partitions. The total number of venues for each city is i) 471052 in NYC, ii) 73623 in SF, and iii)

33975 in PIT, and the standard deviation among the buckets for each city is i) 80K in NYC, ii) 8.6K

in SF, and iii) 5.5K in PIT.

User check-in information: User preferences can be indirectly revealed through their historic

visitations (e.g., frequent visits at Chinese restaurants by Pam is a strong signal for her appeal to

this cuisine). In order to build realistic user profiles for our evaluations, we used a dataset collected

by Cheng et al. [12] that includes geo-tagged, user-generated content from a variety of social media

between September 2010 and January 2011. This dataset includes 11,726,632 Foursquare check-ins

generated by 188,450 users.

6.2 Evaluation of POIs Recommendation
In this section, we will provide a detailed comparison between our proposed pPrefDiv with a

number of baseline algorithms (as listed in Table 1) for POIs recommendations.

6.2.1 Methodology. In our evaluation, we have employed as baselines a number of algorithms,

including DisC Diversity, which is the state-of-the-art diversification algorithm that optimizes the

coverage of the result-set. We also included one well-known clustering algorithm K-Medoids [49],

which aims to group a set of data objects into clusters through some distance measure, so each

object within a cluster are close to each other and objects outside of the cluster are disclosed to

the objects inside the cluster. In our experiment, we have implemented K-Medoids based on [49].
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Table 1. MODEL ABBREVIATION

Models Description

PD(composite) Uses composite intensity value as the relevance score for PrefDiv.
pPD(composite) Uses preference-based intensity value as the relevance score for pPrefDiv.
DisC Only uses the result of DisC Diversity [19] as the final ranking without using PrefDiv.
K-Medoids Only uses the result of K-Medoids as the final ranking without using PrefDiv.
Random Only uses the randomly selected result as the final ranking without using PrefDiv.

Since K-Medoids does not capture the relevance in any regard, thus, we improved the performance

of K-Medoids in balancing the relevance VS. diversity trade-off by choosing the object with the

highest intensity value as the final recommendation from each of its k clusters. This improvement

significantly enhances the performance of the K-Medoids with respect to relevance while exhibiting

the minimum decrease in diversity. In addition, we also employed the random selection of venues

as another baseline to show the effectiveness of our proposed methods.

For all algorithms involved in our experiments, we utilized the semantic distance measure (Eq.

8) as the way to measure the distance between two given points. Table 1 summarizes all models

employed in our experiments, and the values of the parameters used are summarized in Table 2.

We ran all our experiments on a computer with Intel Core i7 2.5Ghz CPUs, 16GB Memory,

and 512GB SSD and used the Foursquare datasets described in Section 6.1. We created individual

Foursquare user profiles as described above and three super-user profiles with more fine-grained

preferences by merging the profiles: i) 1000 Foursquare users (Super-user A); ii) 500 Foursquare

users (Super-user B); and iii) 350 Foursquare users (Super-user C). Note that the Super-user A

contains both Super-user B and Super-user C, where Super-user B and Super-user C are two disjoint

sets of profiles.

6.2.2 Experimental Evaluation Metrics. In our experimental evaluation, we use three well-known

metrics:Normalized Relevance [54],Average Similarity Distance (based on semantic distancemeasure,

Eq. 8), and Coverage [18] .

Definition 7. (Normalized Relevance). Let O be a set of venues and O∗k ⊆ O such that |O∗k | = k .
The Normalized Relevance of O∗k is defined as the total relevance score of O∗k over the sum of top-k
highest relevance scores of O .

In our experiments, Normalized Relevance is represented through two type of intensity values,

Normalized Composite Intensity Value (NCI) and Normalized Preference-based Intensity Value (NPI).

We defined Normalized Composite Intensity Value as:

NCI (x ) =
CI (x )

Argmaxi :O CI (i )
(13)

where CI (x ) is the composited intensity value (Eq. 5) of a venue x , and O is the set of all venues

within the currently range query q.

Normalized Preference-based Intensity Value is defined as:

NPI (x ) =
PI (x )

Argmaxi :O PI (i )
(14)

where PI (x ) is the Preference-based intensity value (Eq. 2) of a venue x , andO is the set of all venues

within the currently range query q.

The reason to employ NCI and NPI as the relevance measure is to show how much the relevance

has been preserved with respect to the given utility function. By comparing the aggregated intensity
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Table 2. PARAMETER CONFIGURATION

Parameters Value

λ 0.5

µ 0.7

γ 0.7

α 0.5

ω 0.5

ξ 50

A 0.3

ϱ 0.7

K 10 - 50

Radius 1.5 km

Number of Locations 15, 50

Number of Categories of POIs Selected 5, 10

score of the recommended representative subset O∗k with the k most relevant item (i.e., item with

highest intensity according to the given utility function) of the original set O , one can clearly know

the degree of the intensity value being preserved in the current representative subset O∗k .

Definition 8. (Average Similarity Distance) Let O be a set of venues, the average similarity
distance of O represents the average of the pairwise distances of the venues in O .

Due to the fact that two distinct instances in our data set may be semantically duplicate venues

(e.g., two difference Starbucks), our experiments normalize Average Similarity Distance (ASD)

to take into consideration that different methods may return as a result of a list of venues with

semantic duplicates rather than a set and expressed as Redundancy Normalized Pairwise Distance

(RNPD):

RNPD (L) = (1 −
|Unique (L) |

|L|
) ∗ASD (15)

where Unique (O ) represents O without duplicates.

The reason to employ RNPD as the diversity measure is to show how each item contained in a

given representative set O∗k is different compared to the rest of the items in O∗k . The most intuitive

way to do so is to measure the pairwise distance (with a given distance measure) between each

pair of items, which is essentially the ASD defined above. Since recommending unique venues is

important in the case of venue recommendation, we included a penalty (i.e., (1 −
|Unique (L) |

|L|
)) for

recommending two or more duplicate venues in the recommendation result set, which forms the

Redundancy Normalized Pairwise Distance (RNPD).

Definition 9. (Coverage) Let O be a set of venues, O∗k ⊆ O such that |O∗k | = k and S ⊆ O be defined
as the union of simϱ (vi ,O ) for all vi ∈ O∗k . The coverage of a subset O

∗
k is defined as the percentage of

venues in S over the total number of venues in O , i.e., |S |/|O |.

As discussed with more detail in [18], the reason to use coverage for evaluating the degree of

coverage provided by a representative subset O∗k is simply as it naturally represents the percentage

of the item has been covered by O∗k with respect to a given radius ϱ.

6.2.3 Experimental Results. In this section, we present the evaluation of all models in our exper-

iments. Specifically, we will show a comprehensive set of comparisons between our proposed

pPrefDiv and other alternative algorithms that show the capability of pPrefDiv in handling the

POIs recommendation.
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(c) Relevance: NCI

Fig. 9. Compare the relevance of different recommendation algorithms for NYC, SF and PIT (Super-user A).
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(c) Diversity: RNPD

Fig. 10. Compare the diversity of different recommendation algorithms for NYC, SF and PIT (Super-user A).
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Fig. 11. Compare the Coverage of different recommendation algorithms for NYC, SF and PIT (Super-user A).

As we have demonstrated previously, PD(composite) has exhibited the best performance when

compared to other PrefDiv based models. We extend the same composition of the intensity value

to the non-deterministic variance pPrefDiv (1), which is a variance of PrefDiv that incorporates the

serendipity. Further, we compare PD(composite) (i.e., PrefDiv) and pPD(composite) (i.e., pPrefDiv)

to other well-known algorithms to show the performance of both PrefDiv and pPrefDiv based

recommendation engine when compared to other existing alternatives.

Figures 9a, 9b, and 9c shown the average normalized composite intensity value (NCI) of all models

for New York City (NYC), San Fransisco (SF), and Pittsburgh (PIT). In these results, both PrefDiv and

pPrefDiv have constantly outperformed other alternatives in all three cities. In particular, PrefDiv

and pPrefDiv have outperformed random by up to 263%, DisC by up to 93%, and K-Medoids by up

to 36%. Among all involved algorithms, K-Medoids has Performed second best after the PrefDiv
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Fig. 12. Compare the Runtime of different recommendation algorithms for different cities (Super-user A).

and pPrefDiv, which is due to the reasons that we have implemented K-Medoids in a way that

enhanced its ability to capture the relevance. Random achieves the worst performance because

the number of highly preferred venues is much less than the non-preferred venues; thus, blindly

selecting venues would not deliver a good performance in terms of relevance.

Figures 10a, 10b and 10c illustrated the Redundancy Normalized Pairwise Distance (RNPD) of

all models for all three cities. Here we have seen that all algorithms have achieved overall better

performance for RNPD when compare to NCI. This is as expected since all involved algorithms

except Random have been optimized towards the diversity. We noticed that Random also performs

very well with respect to RNPD, which can be explained as follows. Since the number of neighbors

of given venues (in terms of semantic distance) is always going to be much less than non-neighbors,

those it is much easier for Random to generate a set of results that are semantically diversity

than to generate a set of semantically similar results. Here, we have seen that although PrefDiv

and pPrefDiv did not outperform all other alternatives, however, the price that both PrefDiv and

pPrefDiv have paid to achieve the high relevance score (in terms of relevance and diversity trade-off)

is extremely small. When compared to the K-Medoids, which achieves the highest performance in

semantic diversity, PrefDiv and pPrefDiv are still just slightly behind.

Figures 11a, 11b and 11c demonstrate the performance of Coverage of all models. In this set of

results, we have seen that DisC and Random achieve the best performance in terms of coverage.

This is as expected as the DisC utilized a greedy-based approach that is specifically optimized

towards the coverage. As for the random, since it builds the result-set by evenly sample the venues

across all candidate venues in a given spatial query, thus, it has a high likelihood to achieve excellent

coverage when dealing with datasets where data objects are distributed evenly across space. In the

case of urban datasets, since semantically closer venues are more or less distributed evenly across

the city to prevent excessive competition, thus, enable random to achieve high coverage. However,

the difference between PrefDiv (as well as pPrefDiv) with random and DisC is not significant.

Considering the performance advantage that PrefDiv and pPrefDiv have gained in the relevance,

therefore both PrefDiv and pPrefDiv still served as a much better venue recommendation engine

than other alternatives.

Figures 12a, 12b and 12c demonstrate the runtime of all models for New York City, San Fransisco,

and Pittsburgh. Since the POIs recommendation involves humans in the loop, it is extremely

important for the system to maintain an interactive response time. To achieve such a goal, it

requires the algorithm to be as efficient as possible. From these experiments, we can see that both

PrefDiv and pPrefDiv have outperformed DisC and K-Medoids in runtime by orders of magnitudes.

The only alternative that is faster than our PrefDiv and pPrefDiv is the Random method; this is
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Fig. 13. Relevance vs. Diversity (NYC)
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Fig. 14. Relevance vs. Diversity (SF)
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Fig. 15. Relevance vs. Diversity (PIT)

because it does not require any complex computations. Such a huge difference in efficiency has

undoubtedly made the PreDiv and pPrefDiv to be better choices for POIs recommendations.

Figures 13, 14 and 15 present three scatter plots fromNew York City, San Fransisco, and Pittsburgh

respectively that showed the capability of each algorithm in balancing the trade-off between

relevance and diversity. Each point in these three plots also represents an average of 15 different

locations queries. For each algorithm, we have drawn 15 points based on three super-user profiles.

Thus, each super-user profile is responsible for five points, and each of these five points corresponds

to a different result-set size. As cycled in red, these results have clearly shown that both our PrefDiv

and pPrefDiv have delivered the best performance in terms of both relevance and diversity as the

points generated by both algorithms are located on the most upper right corner of the plot.

From our empirical studies, we have observed that six of the eight tunable parameters listed in

Table 2 are task-dependent parameters (i.e., λ, µ, γ , α , ω, ξ ), which means that they are much more

sensitive to different recommendation tasks (e.g., recommend venues/POIs, recommend movies, or

recommend documents) than different users or datasets. For this reason, the provided default values

for each of these six parameters in Table 2 can serve as a good starting point for any real-world

venues/POIs recommendation tasks.

The other two tunable system parameters (i.e., A, ϱ), which are required by the PrefDiv algorithm,

are user and datasets dependent. To address this issue, we are currently investigating methods to

facilitate the tuning of these parameters and automatically compute the optimal value for these
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two parameters based on the given context [22]. These new optimizations of PrefDiv would be

incorporated seamlessly into MPG as well as any other application that utilizes PrefDiv.

6.3 Evaluations of Route Construction
We further study the cost of incorporating serendipity through the random walk in route recom-

mendations and evaluate the performance of different route construction schemes.

6.3.1 Routing Schemes. In particular, we propose four specific schemes to combine our ran-

dom walk based routing method with our venue recommendation engines. These schemes are: i)

PrefDiv+RandomWalk; ii) pPrefDiv+RandomWalk; iii) pPrefDiv+ShortestDistance; and iv) pPref-

Div+HighestRelevence.

PrefDiv+RandomWalk: This scheme aims to incorporate serendipity in route recommendation

by combining a random walk based non-deterministic routing method with the deterministic venue

recommendation engine PrefDiv. In PrefDiv+RandomWalk, 50 random walks would be performed

based on the result-set of PrefDiv to generate 50 initial routes, each of length K ′. Later, one random

route with the best overall performance in terms of the average composited intensity value and

travel distance is selected from the Pareto Front (constructed using all 50 initial routes) as the final

recommendation. Therefore, this scheme combines deterministic venues recommendation with the

non-deterministic route recommendation.

pPrefDiv+RandomWalk:The pPrefDiv+RandomWalk scheme is similar to the previous scheme

except that the non-deterministic algorithm pPrefDiv has been employed as the recommenda-

tion engine to achieve serendipity in both venue and route recommendation level. Thus, this

scheme combines non-deterministic venues recommendation with the non-deterministic route

recommendation.

pPrefDiv+ShortestDistance: For this scheme, serendipity is incorporated only in venue rec-

ommendations. As such, the shortest distance-based routing method is employed to replace the

random walk based routing. Particularly, once the set of recommendations have been generated by

pPrefDiv, the shortest route with size K ′ is constructed from these recommended venues, which

minimize the psychical distance according to the Euclidean distance.

pPrefDiv+HighestRelevence: This scheme is the same as the pPrefDiv+ShortestDistance

scheme, except that the route is constructed according to the ranking of the venue’s average

composite intensity value. Similar to the above scheme, this scheme combines deterministic venues

recommendation with the non-deterministic route recommendation.

Baseline schemes: To evaluate the trade-off between relevance, travel distance and serendipity,

for a given set of recommended venues V , st. |V | ≤ k and a length of the route K ′, st K ′ ≤ K ,

we introduce two additional deterministic routing methods, i) highest relevance routing, and ii)

shortest distance routing. The former, introduced in Section 4.2, takes the given set of recommended

venues and forms a route recommendation by visiting the top K ′ venues with the highest composite

intensity value according to their ranking of composited intensity value (i.e., normalized relevance).

The latter constructs the shortest travel distance route of size K ′ fromV in a greedy fashion. Further,

we combine these two routing methods with PrefDiv to form as baseline two deterministic schemes,

namely, PrefDiv+HighestRelevence and PrefDiv+ShortestDistance.

6.3.2 Evaluation Metrics. To measure such costs we use the normalized relevance (Def. 7) of all
venues contained in the route, the average similarly distance (Def. 8) of each pair of venues in the

route, and the total physical distance that user has to travel by following the route. As explained in

Sec 4.2, to capture serendipity, we use the degree of serendipity (Eq. 12) of each route generated by

MPG.
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(c) Relevance: NCI

Fig. 16. Compare relevance of different routing algorithms for NYC, SF and PIT with Super-user A.
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Fig. 17. Compare diversity of different routing algorithms for NYC, SF and PIT with Super-user A.

Similar to Section 6.2.2, we have used the average composite intensity value as a measure of

Normalized Relevance and Redundancy Normalized Pairwise Distance for Average Similarity

Distance.

6.3.3 Experimental Results. We now present the evaluation of all route recommendation schemes.

Figures 16a, 16b and 16c illustrates the average normalized composite intensity value (i.e., relevance

score) of routes generated from each scheme for New York City, San Francisco, and Pittsburgh,

respectively. In this set of experiments, all schemes are normalized with respect to the Pref-

Div+HighestRelevence, which is the upper bound for the relevance scores. From these experiments,

we observed that both random walk and shortest distance-based schemes perform comparably

with respect to the relevance for all three cities. In addition, the serendipity-based scheme (i.e., Pref-

Div+RandomWalk and pPrefDiv+RandomWalk) still maintained, on average, 82% of the composited

intensity value when compared to the upper bound. This indicates that the serendipity introduced

by employ random walk as a routing algorithm did not significantly affect the relevance of the

routing. This is expected since all schemes constructed their routes based on the highly relevant

recommendations produced by our venue recommendation algorithms (i.e., PrefDiv and pPrefDiv).

Figures 17a, 17b and 17c show the Average Similarity Distance between each schemes. The

results presented here are normalized with respect to the upper bound of the average redundancy

normalized pairwise distance for each range query and result-set size involved in the experi-

ment. From these results, PrefDiv+RandomWalk and pPrefDiv+RandomWalk demonstrate the

highest performance in maintaining the diversity of the generated routes. This is due to the rea-

son both HighestRelevence and ShortestDistance optimize towards a certain aspect of the result,

such as maximizing relevance or minimizing travel distance, these optimizations often come at
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Fig. 18. Compare serendipity of different routing algorithms for NYC, SF and PIT with Super-user A.
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Fig. 19. Compare travel distance of different routing algorithms for NYC, SF and PIT with Super-user A.

the price of sacrificing other contradictory aspects. However, the random walk does not suffer

from this issue as it is not optimized towards any specific aspects. Amount all schemes, both

PrefDiv+HighestRelevence and pPrefDiv+HighestRelevence achieve the worst with respect to the

diversity, which is expected, since venues that are highly relevant to a user’s preference have a

higher chance to be semantically close venues.

Figures 18a, 18b and 18c demonstrate the performance with respect to the serendipity for each

schemes. These results indicated that the randomwalk based schemes achieved the highest serendip-

ity. One interesting observation from these experiments is that incorporating the serendipity in

either the venue recommendation or the route construction alone is still able to introduce a con-

siderable amount of increase in the serendipity of the constructed routes. Further, incorporating

the serendipity into both venue recommendation and route construction (i.e., through pPref-

Div+RandomWalk) does not achieve a noticeable improvement over the PrefDiv+RandomWalk.

This shows that the randomness incorporated in the venue recommendation and route construction

does not monotonically increase with respect to the amount of randomness of the scheme.

Figures 19a, 19b and 19c shown the average travel distance of the routes produced by each

scheme. From these figures, we observed that compared to the shortest distance-based scheme,

the random walk based scheme does increase the travel distance. However, exploring cities with

shortest routes does not necessarily indicate more interestingness. In fact, users may benefit more

from longer travel distance when exploring a city, as it helps them to discover more places around

the city. We also noticed that PrefDiv+HighestRelevence and pPrefDiv+HighestRelevence had

produced routes that are shorter than random walk based schemes. This is due to the fact that the

popularity of a venue is considered as part of it’s composited intensity value, as popular venues tend
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to be co-located with each other in a relatively small region (e.g., downtown, shopping complex,

etc), thus, reduced the total travel distance for relevance focused routing schemes.

7 CONCLUSIONS AND FUTURE WORK
In this paper we proposed and designed MPG, a mobile service that aims at three objectives: i)

to provide a set of diverse and surprisingly interesting venue recommendations that are better

aligned with user preferences; ii) to achieve sub-second interactive runtime in providing venue

recommendations with large dataset; and iii) to form routes within venues recommended by

our proposed venue recommendation engine while still maintaining balance between Relevance,
Diversity, and Serendipity.
We achieved our first objective through the design of MPG, which incorporates the user habits,

the reach willing to cover, the types of venues interested in exploring, the popularity, the diversity

of venues with multiple venue recommendations engines. The second objective is achieved with the

capability of pPrefDiv to efficiently produce the venue recommendations and the use of multiple

optimizations (e.g., efficient query indexing structures, hashing). The third objective is achieved

by proposing a set of routing schemes each target at different objectives, each routing scheme is

a unique combination of one venue recommendation algorithms (e.g., PrefDiv or pPrefDiv) and
one routing algorithms (e.g., random walk, shortest distance) that incorporates difference levels of

serendipity while preserving the relevance and diversity aspects of the routes.

To evaluate our proposed mobile service MPG, we designed the EPUI (Experimental Platform

of Urban Informatics) testbed, which provides user-friendly interfaces for both end-users and re-

searchers. Our experimental evaluation through EPUIwith large Foursquare datasets. Our proposed

PrefDiv and pPrefDiv algorithms have enabled sub-second interactive response time while still

maintaining excellent balancing between Relevance and Diversity.

Recently, MPG and EPUI were extended to support route construction while optimizing multiple

simultaneous objectives (e.g., diversity, safety, happiness, serendipity) [25]. Furthermore, the ex-

tended EPUI also serves as a testbed for exploring and evaluating venues and route recommendation

solutions by enabling researchers to upload their own algorithms and compare them to well-known

algorithms using different performance metrics.
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