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Abstract—Smartphones are nowadays equipped with a number of sensors, such as WiFi, GPS, accelerometers, etc. This capability
allows smartphone users to easily engage in crowdsourced computing services, which contribute to the solution of complex problems in
a distributed manner. In this work, we leverage such a computing paradigm to solve efficiently the following problem: comparing a query
trace Q against a crowd of traces generated and stored on distributed smartphones. Our proposed framework, coined SmartTrace+,
provides an effective solution without disclosing any part of the crowd traces to the query processor. SmartTrace+, relies on an in-situ
data storage model and intelligent top-K query processing algorithms that exploit distributed trajectory similarity measures, resilient to
spatial and temporal noise, in order to derive the most relevant answers to Q. We evaluate our algorithms on both synthetic and real
workloads. We describe our prototype system developed on the Android OS. The solution is deployed over our own SmartLab testbed
of 25 smartphones. Our study reveals that computations over SmartTrace+ result in substantial energy conservation; in addition, results
can be computed faster than competitive approaches.

Index Terms—Crowdsourcing, Trajectory Similarity Search, Smartphones, Longest Common Subsequence, Android OS.
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1 INTRODUCTION

Crowdsourcing refers to a distributed problem solving model
where a population of undefined size, engages in the solution
of a complex problem for monetary or ethical (i.e., intellec-
tual satisfaction) benefit through an open call. Examples of
commercial crowdsourcing services include Gwap.net’s ESP
image tagging game, reCAPTCHA.net’s book correction ser-
vice and specialized marketplaces for assigning crowdsourc-
ing tasks (e.g., Amazon’s Mechanical Turk, Gigwalk.net and
oDesk.com). In addition, academic crowdsourcing frameworks
and techniques are currently underway in most computer
science fields including data management [19], [33], network
management [29], source-code development [34], computa-
tional linguistics [46] and active learning [8].

All aforementioned crowdsourcing frameworks are inher-
ently participatory, as they require the active participation of
users in the solution of the assigned task. The widespread
availability of smartphone and tablet devices featuring geo-
location and other sensing capabilities (e.g., proximity, ambi-
ent light, accelerometer, camera, microphone, etc.) are provid-
ing new means for opportunistic crowdsourcing frameworks;
these reside in the background requiring no user intervention.
Examples of this new paradigm include Google’s WiFi Ac-
cess Point logging service running on Android Smartphones,
which populates Google’s Geo-location database [21] and
VTrack [40], which allows smartphone users to estimate their
road traffic by continuously sharing their list of nearby WiFi
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access points. This paradigm also includes frameworks such
as Ear-Phone [38], which enables the construction of fine-
grained noise maps from volunteer smartphone users sharing
data captured by their microphone, PotHole [17], which allows
smartphone users to share their vibration and location data in
order to enable street hole identification; and a wide range of
other compelling applications [30], [16], [4], [11].

In this paper, we present a crowdsourced trace similarity
search framework, called SmartTrace+, which enables the
execution of queries in the form: “Report the users that
move more similar to Q, where Q is some query trace. The
notion of similarity captures the traces (i.e., trajectories) that
differ only slightly, in the whole sequence, from the query Q.
Our framework enables the execution of such queries in both
outdoor environments (using GPS) and indoor environments
(using WiFi Received-Signal-Strength), without disclosing the
traces of participating users to the querying node1. Our frame-
work can be utilized in large-scale urban and transit planning
applications, which would otherwise be limited by data dis-
closure constraints [42], [49], social networking applications
for smartphones [50], habitant monitoring [31] and others.

As an illustrative example, consider a transit authority that
plans its bus routes and wants to know whether a specific route
is taken by at least K users between 8:00-9:00am. In such a
scenario, one is interested in asking a crowd of users in some
target area to participate with their local trace history through
an open call. In particular, the users can passively participate in
the resolution of the query for monetary benefit or intellectual
satisfaction, without disclosing their traces to the authority.

There are already centralized trajectory search services
such as Microsoft’s GeoLife Project (see Figure 1 left),
GPS-Waypoints.net, ShareMyRoutes.com, and their academic

1. Software available at: http://smarttrace.cs.ucy.ac.cy/
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counterparts [26], to perform trajectory search and retrieval.
However, these services assume that the user trajectories are
stored on a centralized or cloud-like infrastructure prior to
query execution. On the other hand, the techniques proposed
in this work are decentralized and maintain the data in-situ
(i.e., on the smartphone that generated the data). When a
query is posted, our algorithms collect a set of scores from
participating nodes (as opposed to collecting their location
continuously) and derive the answer intelligently based on
these scores only without unveiling the target trajectories to
the query processor. While this cannot take advantage of
global knowledge structures available in a centralized setting
(e.g., catalogs, indexes, etc.), our setting has the following
advantages:

i. Smartphones have both expensive communication medi-
ums but also asymmetric upload/download links, thus
by continuously transferring data to the query processor
can both deplete the precious smartphone battery faster,
increase user-perceived delays, but can also quickly
degrade the network health2.

ii. Continuously disclosing user positional data to a central
entity might compromise user privacy in serious ways.
This creates services that have recently raised many
concerns, especially for social networking services (e.g.,
Facebook, Buzz, etc.) and smartphone services3.

In the proposed SmartTrace+ framework, the tuples of
each target trajectory Ai, are compared against the loca-
tions of query Q within some temporal and spatial window.
SmartTrace+, circumvents expensive similarity executions by
executing low-cost linear-time (i.e., O(|Ai|)-time) computa-
tions on the smartphones in a pre-processing step. It then uses
either an iterative top-K processing algorithm or a non-iterative
counterpart, without ever retrieving the target trajectories to
the centralized query processor. We validate our algorithms in
respect to energy and time both analytically and empirically.

This paper builds on our previous work in [48], [14],
in which we offered a preliminary presentation of the
SmartTrace+ framework for disclosure-free GPS trace-search
in smartphone networks. In this paper, we introduce several
new improvements and contributions summarized as follows:

• In addition to the iterative SmartTrace (ST) retrieval
algorithm, we also offer a non-iterative algorithm, called
Non-Iterative SmartTrace (NIST). The latter algorithm
operates in two phases and reduces substantially response
time at the expense of a slight increase in network traffic.

• We provide an analytical study for the performance and
convergence properties of our algorithms. In particular,
we develop an Energy/Time model that is utilized to
derive the analytical properties of our framework. The
analytical study is validated through our trace-driven
simulation and experimentation with a real programming
cloud of smartphones.

• We present the building blocks of a real prototype
system we have developed in Google’s Android OS

2. “Customers Angered as iPhones Overload AT&T”, Jenna Wortham, The
New York Times (online), Sept. 2, 2009.

3. “Tracking File Found in iPhones”, Nick Bilton, The New York Times
(online), April 20, 2011.
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Fig. 1. This work is motivated by the fact that smart-
phones nowadays can log on local storage trajectories
for extensive periods of time. Our objective is to enable
efficient online querying of these traces without reveal-
ing the target trajectories to the query processor. Left:
Traces captured by Microsoft’s Geolife project [49] (query
denoted as Q). Right: Our system model.

for smartphones. We also discuss our user interfaces,
communication protocol, application-level features and
design choices.

• We introduce an extensive experimental study and we
present experimental evidence for the motivation and
efficiency of the ST and NIST algorithms using a trace-
driven experimental methodology. We utilize mobility
patterns from Microsoft’s Geolife project and car tra-
jectories from Oldenburg. Finally, we deploy our actual
implementation over our SmartLab testbed consisting of
25 real smartphone devices.

The remainder of the paper is organized as follows: Sec-
tion 2 provides our system model and formulates the problem.
Section 3 presents the SmartTrace+ framework and its two
top-K query processing algorithms, ST and NIST. Section 4
presents a detailed performance analysis of our framework,
while Section 5 outlines our prototype system implemented in
Android. Section 6, presents our experimental methodology
and evaluation for both simulation and real executions over
our testbed. Finally, Section 7 reviews the related work and
Section 8 concludes the paper.

2 PROBLEM FORMULATION

In this section we start out by providing the notation used
in the paper. We shall then formalize our system model and
formulate the problem. Finally, we will briefly provide some
background material on trajectory similarity matching and
some motivating micro-benchmarks. Our main symbols are
summarized in Table 1.

2.1 System Model

Let {A1, A2, ..., Am} denote a set of m smartphone users
moving in the xy-plane (see Figure 1 right). At each discrete
time instance, object Ai (∀i ≤ m) generates a spatio-temporal
record Aij = (tij , xij , yij), where tij denotes Ai’s temporal
dimension and xij , yij Ai’s spatial dimensions. Consequently,
a trajectory can be thought of as a continuous sequence of l
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such records, i.e., Ai = (Ai1, Ai2, · · · , Ail) (l also denoted as
|Ai|). Here the complete trace of a trajectory Ai is stored in
its entirety locally on a smartphone (i.e., on flash memory). A
smartphone (or tablet) is a feature-rich device (e.g., dual-core
CPU) that utilizes batteries, thus has limited computational
resources and also networking operations are expensive in
terms of energy. Additionally, the link is asymmetric with the
uplink being much slower than the downlink (typically one
order of magnitude).

An assumption underlying this work is that processing and
networking operations are equally expensive in terms of energy
and must be avoided. Our current figures, presented at the
end of Section 6.1, indicate that networking operations on
smartphones and tablets are approximately twice as expensive
as processing tasks (i.e., ≈ 300mW vs. 600mW). The same
figure also holds for wireless sensor devices (e.g., Xbow’s
TelosB uses 23mW and 69mW for CPU and networking [2],
respectively). For more powerful mobile devices with high-
power and high-frequency processors (or several processors),
such as laptops, the costs are usually reversed e.g., 30W
for CPU vs. 19W for networking. Nevertheless, in all afore-
mentioned devices, both processing and networking functions
are equally important, thus this work aims to minimize the
utilization of both parameters equally.

Let us now consider an arbitrary snapshot similarity query
Q = (Q1, Q2, · · · , Qf ), where f << l (f also denoted as
|Q|), which aims to uncover the K most relevant trajectories
to Q, for a user-defined constant K . Q might either be initiated
by a smartphone and propagated towards the querying node
QN , or might be initiated at QN . In order to provide a robust
measure of the similarity between Q and Ai (i ≤ m), one has
to accommodate to both spatial and temporal variations in the
trajectory pattern. Although we shall explain these similarity
measures more precisely in the next subsection, let us for the
moment assume that there is some function LCSS(Q,Ai),
which performs the trajectory comparison between Q and A i

accurately, but at a high computational cost. LCSS(Q,A i)
returns a score in the range [0..1] (where 1 denotes highest
similarity). In a smartphone network setup, LCSS(Q,A i) can
either be conducted in a centralized fashion (i.e., after trans-
ferring all m trajectories to QN ), or in a decentralized fashion
(i.e., after having each smartphone conducting LCSS(Q,A i)
locally and then returning back the outcome.)

Through our analytical and empirical analysis we show that
the Centralized approach performs poorly in terms of energy
and response time. In addition, its operation poses significant
privacy risks, because users need to share their complete
trajectory with QN . Similarly, the Decentralized approach also
performs poorly in terms of energy consumption as it invokes
expensive trajectory comparison metrics on all smartphone
participants. The SmartTrace+ approach we propose in this
work performs well both in respect to query response time and
energy consumption on the smartphones. More importantly,
SmartTrace+ never reveals the complete user trajectories,
because it only returns matching scores and tentatively the
matched subsequence of length |Q|, where |Q| << l.

TABLE 1
Symbol Description

Symbol Definition
QN The Querying Node
Q Query trajectory
K Number of requested results
A Target trajectory stored on smartphone
m Number of trajectories
l Trajectory length (discrete points)

LCSS(Q,A) Trace similarity function
δ Time matching window for LCSS(Q,A)
ε Spatial matching window for LCSS(Q,A)

LCSS(MBEQ, A) Function bounding above LCSS(Q,A)
LCSS(LBQ, A) Function bounding below LCSS(Q,A)

2.2 Background on Trajectory Similarity

Point-to-Point Matching: The fastest way to compute the
similarity between two arbitrary trajectories, A and B, is
to use any of the Lp-Norm distances (e.g., Manhattan (L1),
Euclidean (L2) or Chebyshev (L∞)). Using the Lp-Norms,
one can match the data points of A and B at identical time
positions and derive the distance in only O(l)-time, where l is
the minimum length of the compared trajectories. Although the
Lp-Norm distances can be calculated very efficiently, these are
neither flexible to out-of-phase matches (e.g., if we have two
identical trajectories but either one moves earlier in time) nor
tolerant to noisy data (e.g., we have two identical trajectories
but either one has a slight deviation in its spatial movement).
Time-shifted Matching: In order to support out-of-phase
matching in trajectories one could exhaustively compare each
point of one trajectory to all the points of the other tra-
jectory. Although such a method, which has an O(l 2)-time
cost, would yield the optimal matching points between the
two trajectories, it is computationally expensive on resource-
limited devices. Example techniques belonging to this class of
techniques include the Longest Common Subsequence (LCSS),
utilized in this work and explained in more detail next, the
Dynamic Time Warping (DTW) [7], the Edit Distance on Real
Sequences (EDR) [28] and the Edit Distance with Real Penalty
(ERP) [27]. All aforementioned techniques have a similar
quadratic execution cost and exhibit differences which are not
important in the context of this work. In particular, DTW uses
a different recursion step than LCSS but is still non-metric,
while EDR and ERP add time shifting support to the Lp-
Norms, thus are metric distances, being more appropriate for
cases where the triangle inequality is important.

In order to expose the quadratic execution cost of the time-
matching methods mentioned above, we have implemented
all of them in the Android operating system and tested our
implementation on five different smartphone units. For ease
of exposition we also present the time for executing the
linear L2 distance. Figure 2, shows that LCSS is the most
efficient among the presented time-matching methods being
2.2− 2.6x faster than DTW, 4.2− 6.0x times faster than ERP
and 5.9−8.0x times faster than EDR. This is attributed to the
fact that DTW, ERP and EDR have a more expensive recursion
step (i.e., three recursive clauses as opposed to only two found
in LCSS, see [28], [27]). Additionally, ERP and EDR are
worse than DTW as the former two perform some additional
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HTC Hero (528MHz Qualcomm MSM7600A)�
HTC Desire (1GHz Qualcomm S1 QSD8250)

HTC Incredible S (1GHz Qualcomm S2 MSM8255)
Motorola Xoom Tablet (1GHz dual-core Nvidia Tegra 2 T20)

Samsung Galaxy SII (1.2GHz dual core ARM Cortex-A9)

Fig. 2. Trajectory matching on popular smartphones.
Our micro-benchmark reveals that LCSS is the most
energy efficient approach among the O(l2)-time matching
functions that support time shifting.

distance computations compared to DTW. In summary, the
performance on the fastest and slowest phone, respectively,
was: LCSS: 0.4s to 24s, DTW: 1.2s to 53s, ERP: 2.7s to 102s
and EDR: 3.6s to 144s.

It is important to mention that the ideas presented in
this work are orthogonal to the chosen similarity func-
tion. In particular, one could substitute LCSS(Q,A i), with
DTW (Q,Ai), ERP (Q,Ai) or EDR(Q,Ai) and still provide
high quality matching at the same quadratic cost. Yet, one
should also provide a function that would correctly bound
above each of these similarity functions individually. In this
work, we provide a linear-time bounding method that only ap-
plies to LCSS (i.e., LCSS(MBEQ, Ai)). Providing methods
that bound above the rest functions of this class, in linear or
lower-order time, remains outside the scope of this work.
Longest Common Subsequence (LCSS): We shall now de-
fine the LCSS function more carefully. This matching function
has been extensively used in many 1-dimensional sequence
problems, such as string matching. The 2-dimensional adap-
tation of LCSS using the L∞4 is defined as following:

Definition 1: Given integers δ and ε, the Longest Com-
mon Sub-Sequence similarity LCSSδ,ε(A,B) between two
sequences A and B is defined as:

LCSSδ,ε(A,B) =




0, if A or B is empty
1+ LCSSδ,ε(Head(A),Head(B))

if |ax:l1 − bx:l2 | < ε and
|ay:l1 − by:l2 | < ε and |l1 − l2| < δ

max(LCSSδ,ε(Head(A),B),LCSSδ,ε(A,Head(B)))

otherwise

where δ and ε are application-specific parameters
that allow flexible matching in the time domain and
the space domain, respectively, and Head(A) =
((ax:1, ay:1), · · · , (ax:l−1, ay:l−1)). LCSS deals with both
aforementioned limitations of the Lp-Norm distances, because
these cases are simply dropped from the matching.

4. We could also use L1 or L2 for the recursion step.
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Fig. 3. A visual illustration of the linear-time matching
between the query Q and the target trajectory A, using
LCSS(MBEQ, A). The total matching is measured as the
sum of points where A crosses the Minimum Bounding
Envelope (MBE) of Q.

Bounding Above LCSS: Even though LCSS offers many
desirable properties, its quadratic time complexity constitutes
this method inefficient for long trajectories, such as those
studied in this work. One idea to overcome this complexity,
is to construct a Minimum Bounding Envelope (MBE) of the
query Q5 by replicating each trajectory point Q[i] for δ time
instances before and after time i and also replicate each point
Q[i] for ε space instances above and below Q[i]. Notice,
that MBEQ covers the area between the high part of the
envelope, formally defined as EnvHigh[i] = max(Q[j] +
ε), |i − j| ≤ δ and the low part of the envelope, formally
defined as EnvLow[i] = min(Q[j] − ε), |i − j| ≤ δ. The
LCSS(MBEQ, Ai) function [44] can then be computed using
the following definition (also see Figure 3):

LCSS(MBEQ, Ai) =

|Ai|∑
j=1

{
1 if Ai[j] within envelope
0 otherwise

Lemma 1 (LCSS(MBEQ, Ai) Correctness): For any two
trajectories Q and A the following holds: LCSS(Q,Ai) ≤
LCSS(MBEQ, Ai).

Proof: By construction, MBEQ covers the area between
EnvLow and EnvHigh. This area includes the points of Q
plus all the points within an ε spatial and a δ temporal window
around Q. Therefore, no possible matching between points of
A and Q will be missed. It follows that LCSS(Q,Ai) ≤
LCSS(MBEQ, Ai) �
Bounding Below LCSS: The obvious benefit of
LCSS(MBEQ, Ai), compared to LCSS(Q,Ai), is that
the former function can be computed in linear, as opposed,
to quadratic time. Motivated by the same incentive, in this
section we define a simple adaptation of LCSS(Q,Ai), such
that it provides a lower bound on LCSS(Q,Ai), again in
linear time. Such a method, denoted as LCSS(LBQ, Ai),
conducts a computation of LCSS(Q,Ai) (i ≤ m) for δ equal
to zero, which is the same to L∞ provided in Definition 1
and consequently performs in linear time with respect to A i.
Although the utilization of such a lower bound is not clear
at this point, we shall later show in Section 3.3, how such

5. MBE is constructed in our setup on the local Ai, rather than Q.
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a lower bound can facilitate the identification of the correct
answer-set to the problem we discuss in this paper.

Lemma 2 (LCSS(LBQ, Ai) Correctness): For any two tra-
jectories Q and A the following holds: LCSS(LBQ, Ai) ≤
LCSS(Q,Ai).

Proof: it follows directly from the definition of
LCSS(LBQ, Ai) that is equal to LCSS0,ε(Q,Ai). �

3 THE SMARTTRACE+ FRAMEWORK

In this section we start out with an outline of the SmartTrace+

framework and the two retrieval algorithms that lie at its
foundation (i.e., ST and NIST). We also formally prove the
correctness and convergence properties of the two presented
algorithms.

3.1 Outline of Operation

First note that the similarity query Q is initiated by some
querying node QN (or alternatively at some smartphone that
propagates its Q towards QN ). QN then disseminates Q to
a crowd of active smartphone users in a pre-specified spatial
boundary. Upon receiving Q, each candidate smartphone ex-
ecutes locally one or more inexpensive matching functions.
In particular, the first algorithm we propose (i.e., ST) only
calculates an upper bound on the matching of the query to
the local trajectory. The second algorithm we propose (i.e.,
NIST) calculates both an upper bound (ub) and a lower bound
(lb) on the matching of the query to the local trajectory.
Let the UB = (ub1, · · · , ubm) and LB = (lb1, · · · , lbm)
score vectors of all nodes be denoted as METADATA and
the actual trajectories stored locally on each smartphone as
DATA. Obviously, DATA is both disclosure-sensitive and also
orders of magnitudes larger than METADATA, thus DATA
needs to remain on the smartphones during query resolution.
The objective of both the ST and the NIST algorithms we
propose, is to intelligently exploit the METADATA scores in
order to identify the K highest ranked answers without pulling
DATA to QN .

3.2 The SmartTrace (ST) Algorithm

The first algorithm we developed, SmartTrace (ST), is a novel
iterative algorithm for retrieving the K most similar trajecto-
ries to a query trajectory Q. Our proposed scheme performs
well both in respect to response time and energy, but also
does so without ever revealing the complete target trajectories
to QN (i.e., it only returns the matched subsequence, if any.)
Additionally, the identity of a user is not revealed (we use the
notion of a non-unique screen name), unless the user decides
to do so.

Description: In step 1 of the ST algorithm (see Algorithm
1), QN instructs all m nodes to invoke the computation of
the linear-time function LCSS(MBEQ, Ai) (i ≤ m), which
bounds above the expensive LCSS(Q,Ai) function. Using
the above method, ST circumvents the massive deployment
of the expensive similarity function LCSS(Q,Ai), presented
in Section 2.2, which performs local stretching in both time

Algorithm 1 : SmartTrace (ST)
Input: Query Trajectory Q, m Target Trajectories, Result Cardinality K
(K << m), Iteration Step Increment λ.
Output: K trajectories most similar to Q.
At the query node QN:

1) Upper Bound (UB) Computation: Instruct each of the m smart-
phones in the crowd to invoke a computation of the linear-time
LCSS(MBEQ, Ai) (i ≤ m).

2) Collection of UB: Receive the UBs of all m trajectories participating
in the query and add those scores to the METADATA vector stored on
QN . Let METADATA be sorted in descending order based on the UB
scores.

3) Identify Candidates: Find the λ + 1 (λ ≥ K) highest UBs in
METADATA, and add the identities to an empty set S (denoted as
the candidate set). If an element has already been added to S, during
a previous iteration do not add it again.

4) Full Computation: Ask each element in the S-set to compute
LCSS(Q,Ai), in a decentralized manner, and then send back the
next λ full similarity scores.

5) Termination Condition: If the (λ+1)-th UB is smaller than the K-th
largest full match then stop; else goto step 3 in order to identify the
next λ candidates.

6) Ship Matching: If the termination condition has been met, ship the
respective matches to QN , based on some local trace disclosure policy.

and space to overcome the temporal and spatial distortions in
trajectories.

In step 2, QN retrieves these upper bounds and adds them
in descending order to a local METADATA vector. By doing
this, QN obtains a quick summary of the trajectories similar
to Q. Steps 3 to 5 are executed iteratively until convergence. In
particular, during step 3, QN adds the identities of the objects
with the λ+1 highest upper bounds to a set named S. These
objects provide the first line of candidates for the answer set,
as these objects have the highest LCSS(MBEQ, Ai) value.
The given objects will be analyzed more carefully in the next
step of the algorithm in order to determine the correct top-
K set. Notice that the objects in the S-set, do not again
define the final top-K result. In particular, it is absolutely
possible that some arbitrary object in the S-set with a high
LCSS(MBEQ, Ai) score has a low full score LCSS(Q,Ai).
Consequently, the algorithm can still not converge.

The λ parameter, which applies to the ST algorithm only, ex-
presses an application-specific confidence in the METADATA
bounds. In particular, when the METADATA vector contains
tight upper bounds, then λ might be set to a small value.
So this parameter defines how aggressively some application
wants to determine the top-K results. It will be proven next
that ST will not perform more than O(m/λ) iterations in the
worst case.

In step 4, QN asks each smartphone in the S-set, to
compute the full scores (if a smartphone has been con-
tacted in a previous iteration we do not contact it again.)
In particular, each smartphone is asked to locally compute
LCSS(Q,Ai), where Ai is stored locally, transmitting the
value of LCSS(Q,Ai) towards QN (i.e., the decentralized
way). Alternatively, we could have also fetched the trajectories
of the S-set to the sink and then compute LCSS(Q,A i)
∀Ai ∈ S (i.e., the centralized way), however this would
violate both the trace disclosure constraint and also degrade
the response time of the algorithm to a level comparable to the
slow centralized algorithm. Notice that the fourth step of the
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algorithm applies only to the elements in the S-set, as opposed
to all m elements so this is really much cheaper in terms of
energy consumed on the smartphone as |S| << m.

In step 5, we determine whether the algorithm has reached
the termination condition. In particular, we check if the (λ+1)-
th highest UB is smaller than the K-th highest full matching
value. If this is the case, then we can safely terminate the
execution of the algorithm being sure that the correct top-K
has been identified. If this condition does not hold (i.e., when
the UB of an object X is larger than the K-th highest full
matching value Y ), then we are enforced to perform another
iteration as the answer is not deterministic (i.e., either X or Y
can be the K-th answer). Consequently, we increase the step
increment λ so that it identifies the next λ candidates in the
next round.

In the final step, which occurs only once at the very end, we
might ship each matched subsequence Amatch

i (|Amatch
i | <<

|Ai|) to QN , which can then return it to the user. Notice, that
the identified nodes Ai (i ≤ K) might choose not to share
the matching or share it based on some local trace disclosure
profile [12], in order to preserve k-anonymity and other higher
anonymity schemes. In any case, neither QN nor the querying
user will ever see the complete trajectory of participating users.

Example: Consider the example scenario of Figure 4. Assume
that Q seeks to retrieve the top-2 most similar trajectories
(K = 2). Initially, QN sends Q to all nodes. Each node then
computes an upper bound of its trajectory, in respect to Q,
and sends this value to QN. Subsequently, QN proceeds by
determining the trajectories with the λ+1 highest METADATA
entries, i.e., {A4, A2, A0}, adding the λ trajectories to the S-
set, i.e., S = {A4, A2} (steps 2-3). In step 4, QN asks the
smartphones in S to compute the full matching of Q to A i

(Ai ∈ S) without unveiling their Ai. The full matching scores,
which are transmitted to QN , are: LCSS(Q,A4) = 23 and
LCSS(Q,A2) = 22. Since the (λ+1)-th highest UB (A0, 25)
is larger than the K-th highest full match (A2, 22), the termi-
nation condition is not satisfied in the fifth step. Therefore, the
second iteration of the ST algorithm is initiated to compute the
next λ, (λ = 2), full matching scores: LCSS(Q,A0) = 16,
LCSS(Q,A3) = 18. Now the termination has been satisfied
because the new (λ+1)-th (i.e., 2λ+ 1) highest UB (A9, 18)
is smaller than the K-th highest full match (A2, 22). Finally
we tentatively might return the top-2 matched subsequences
of trajectories with the highest full matches to the user
(i.e., {(Amatch

4 , 23), (Amatch
2 , 22)}). Even if we return these

subsequences to the querying node, it is important to mention
that these are not the complete trajectories A4 or A2, but only
the subsequences that correspond to the matching (e.g., one
route out of their two year history log, given that the owner
has agreed to release them.)

Theorem 1 (ST Correctness) The ST algorithm always
returns the most similar objects to the query trajectory Q.

Proof: Let A denote some arbitrary object returned as an an-
swer by the ST algorithm (A ∈ Result), and B some arbitrary
object that is not among the returned results (B /∈ Result).
We want to show that LCSS(Q,B) ≤ LCSS(Q,A) always
holds. Assume that LCSS(Q,B) > LCSS(Q,A). We will

A4,30
A2,27
A0,25
A3,20
A9,18
A7,12
....

id,lb(ID,UB)

A4,23
A2,22
A0,16
A3,18

DATAMETADATA
Q
A0
A3
A9
A7
A4
A2

λ+1

FullM =
LCSS(Q,Ai)

λ

λ

λ

....

UpperM =
LCSS(MBEQ ,Ai)

Fig. 4. Example execution of the ST algorithm.

show that such an assumption leads to a contradiction. In our
analysis, we cover the two possible cases: i) B is not in the set
of candidate objects (denoted as S-set) during the third step;
and ii) B becomes part of the S-set during some arbitrary
iteration of the algorithm in the third step. We will show that
both cases yield a contradiction.
Case 1 (A ∈ S and B /∈ S): Since B /∈ S, then UB(Q,B) <
LCSS(Q,X), where X is the K-th highest object in the array
LCSS, by the termination condition of the algorithm (Step 5).
Thus, LCSS(Q,B) ≤ UB(Q,B) < LCSS(Q,X) < ... <
LCSS(Q,A), because object A is in the final Result. Hence,
it holds that LCSS(Q,B) < LCSS(Q,A), a contradiction.
Case 2 (A ∈ S and B ∈ S): Since both objects A and B are
now part of S, the full scores of A and B are known, by step 4
of the algorithm. By the initial assumption we know that only
object A belongs to the final Result. Thus, LCSS(Q,B) ≤
LCSS(Q,A), a contradiction �
Theorem 2 (ST λ-Convergence) Algorithm ST performs
O(m/λ) iterations in the worst case.

Proof: To prove the statement of the theorem we assume that
all upper bound values in METADATA are larger than the K-
th highest full matching value (i.e., the K-th highest value in
LCSS). In this case, the termination condition of step 5 is
satisfied at the very end. Consequently, ST performs O(m/λ)
iterations in the worse case �

3.3 The Non-Iterative SmartTrace (NIST) Algorithm

In this subsection, we extend the iterative ST retrieval algo-
rithm with a non-iterative counterpart, called Non-Iterative
SmartTrace (NIST). The NIST algorithm operates in two
phases only, as opposed to a O(m/λ)-bounded number of
phases needed by ST, thus dramatically improves response
time at a slight increase in network traffic. Similarly to the ST
algorithm, the NIST algorithm identifies the correct answer set
with neither revealing the complete target trajectories to QN
(i.e., it only returns the matched subsequence) nor revealing
the identity of a participating user (i.e., unless the user decides
to do so.) Contrary to the ST algorithm, the NIST algorithm has
the following unique characteristics: (i) It uses both an upper
bound (UB) and a lower bound (LB) in order to determine
whether the top K trajectories have been found; and (ii) Full
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Algorithm 2 : Non-Iterative SmartTrace (NIST)
Input: Query Trajectory Q, m Crowd Trajectories, Result Cardinality K
(K << m)
Output: K trajectories most similar to Q.
At the query node QN:

1) UB and LB Computation: Instruct each of the m smartphones in the
crowd to invoke a computation of the linear-time LCSS(MBEQ, Ai)
and LCSS(LBQ, Ai) (i ≤ m) functions, respectively.

2) Collection of UB and LB: Receive the UBs and LBs of all m
trajectories participating in the query and add those scores to the
METADATA vector stored on QN . Let METADATA be sorted in
descending order based on the UB scores.

3) Identify Candidates: Find the K-th highest LB in METADATA setting
it as the cut-off threshold τ . Add the identities of the K trajectories
Ai with LBi ≥ τ to an empty set S (denoted as the candidate set).
Enumerate the remaining m − K trajectories adding to the S-set the
identity of any Ai that has an UBi ≥ τ .

4) Full Computation: Ask each element in the S-set to compute
LCSS(Q,Ai), in a decentralized manner, and then send back their
full similarity scores. Finally identify the real top-K answers based on
these scores.

5) Ship Matching: Tentatively ship the respective matches to QN , based
on some local trace disclosure policy.

matching values are computed in one final step, rather than
iteratively.

Description: In step 1 of the NIST algorithm (see Algorithm
2), QN instructs all m nodes to invoke concurrently in a
single scan of Ai, the computation of the LCSS(MBEQ, Ai)
function and the LCSS(LBQ, Ai) (i ≤ m) function.

In step 2, QN retrieves the UBs and LBs and adds them
to the local METADATA vector in descending order in respect
to UB. By doing so, QN obtains a quick summary of the
trajectories similar to Q. Subsequently, in step 3, QN locates
the K-th highest LB in METADATA identifying this value as
the cut-off threshold τ . The intuition is that any trajectory with
an upper bound value below τ can safely be pruned away
without affecting the top-K result. Specifically, all trajectories
with an UBi ≥ τ are added to an empty set S denoted as the
candidate set.

In step 4, QN asks each element in the S-set to locally
compute LCSS(Q,Ai), and transmit this single value per
node towards QN . Contrary to the decentralized algorithm,
this step executes LCSS(Q,Ai) only on a limited number of
smartphones (i.e., those with UBs exceeding the τ threshold.)
In the final step, we might ship each matched subsequence
Amatch

i (|Amatch
i | << |Ai|) to QN and subsequently to the

user, if this is compatible with the trace disclosure profile of
the user.

The intuition behind the NIST algorithm, compared to the
ST algorithm, is that the termination condition can be identified
based on τ , rather than the full matching. Therefore, we are not
required to incrementally ask the smartphones to compute full
matching values and send them to QN , incurring additional
network traffic and energy consumption, but we can ask them
all together in a single step.

Example: Initially, QN sends Q to all nodes, which subse-
quently initiate the computation of the linear-time LB and UB
scores in respect to Q (step 1). These scores are subsequently
transmitted over to QN (step 2) and organized in a max-heap
structure based on the UB values. Figure 5 shows these bound

A4,22,30
A2,21,27
A0,15,25
A3,13,20
A9,14,18
A7,10,12
....

id,lb
(ID,LB,UB)

A4,23
A2,22
A0,16

DATAMETADATA
Q
A4
A2
A0
A3
A9
A7

τ

FullM =
LCSS(Q,Ai)

....

LCSS(MBEQ ,Ai)
LCSS(LBQ ,Ai)

Fig. 5. Example execution of the NIST algorithm.

values for our working example that has K=2.
In step 3 of the NIST algorithm, QN locally proceeds by

determining the τ cut-off threshold, which is 21 in our example
(i.e., the K-th highest lower bound value.) All trajectories A i

with an UBi larger than τ are added to the empty S-set. In
particular, since UB4 = 30, UB2 = 27 and UB0 = 25 the
candidate set is formed as follows: S = {A4, A2, A0}. The
remaining trajectories can safely be pruned-away as UB3 =
20, UB9 = 18 and UB7 = 12 are all smaller than τ = 21.

The full matching scores of the fourth step, which are trans-
mitted to QN , are: LCSS(Q,A4) = 23, LCSS(Q,A2) = 22
and LCSS(Q,A0) = 16. Based on these final scores, QN can
derive A4 and A2 as the correct answer, Finally, we tentatively
might return these trajectories to the user that posted the query
if A4 and A2 are not restricted by their owners and if the
querying node decides to do so.

Theorem 3 (NIST Correctness) The NIST algorithm always
returns the most similar objects to the query trajectory Q. �

For brevity, we have omitted the proof of this theorem,
which is similar to that of Theorem 2, with the difference
that we utilize the cut-off threshold τ to trigger the stopping
condition of the algorithm.

4 ANALYTICAL EVALUATION

In this section we analytically derive the performance of the
ST and NIST algorithms in respect to Time and Energy. We
adopt worst-case analysis as it provides a bound for all input.
Our experimental evaluation in Section 6, shows that our
algorithms perform under realistic and real datasets much more
efficiently than the projected worst-case.

4.1 Cost Model

Let m smartphone users {A1, · · · , Am} participate in the
execution of query Q, initiated at QN . Let the maximum
length among all trajectories be denoted as l and |Q| << l, as
explained earlier. All smartphones are connected to QN for the
complete duration of Q’s execution through some established
connection (e.g., persistent TCP socket).

We are interested in deriving analytically the Time (T ) and
Energy (E) costs for resolving Q. T is defined as the length
of time it takes for Q to be sent to the m users plus the length
of time it takes for the final top-K result to be received at
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QN (i.e., the user-perceived latency for resolving Q, formally
T = MAXm

i=1(Ti) as the smartphones operate in parallel.) On
the other hand, E is defined as the total energy cost incurred
on each smartphone for answering Q (i.e., the client-perceived
energy consumption). Notice that the total time a smartphone
spends on a query, as opposed to T , is naturally captured by
E , which is equal to

∑m
i=1(Poweri × Ti), where Power is

measured in Watts (i.e., Volts × Amperes).
Notice that in our cost analysis we deliberately do not focus

on the Messaging and Bandwidth costs, because measuring
these in isolation will not expose the relevant complexities of
a smartphone network environment, as explained in Section 1.
For instance, a protocol with a high message complexity might
transmit many small-size messages, thus consuming very little
bandwidth. For ease of exposition, our analysis should use the
notation {E|T }CPU , {E|T }TX and {E|T }RX , to denote the
energy or time cost for processing, transmitting and receiving
one trajectory point (TX and RX also capture the incurred
processing costs during communication and are approximately
equivalent.) Our analysis will present the energy and time costs
per participating device (i.e., user-perceived costs). We will
ignore any other irrelevant energy consumption costs, such as
LCD, Bluetooth, etc. Finally, the network between the server
and the devices is bounded by a fixed uplink capacity, thus
the time to concurrently upload m trajectories is defined as a
function of m.

4.2 Performance Analysis

Lemma 3 (Centralized Performance): The Centralized algo-
rithm has an Energy and Time complexity of O(l · E TX) and
O(m · l · T TX), respectively. �
Lemma 4 (Decentralized Performance): The Decentralized
algorithm has an Energy and Time complexity of O(δ·l·E CPU )
and O(δ · l · T CPU ), respectively. �

We have omitted the proof for Lemmas 3 and 4, as these are
trivial and follow directly from the definition of the respective
techniques and our system model.

Lemma 5 (ST Performance): The ST algorithm has an
Energy and Time complexity of O(δ · l · ECPU ) and O(mλ ·
δ · l · TCPU ), respectively.
Proof (direct): In the first (1) step, each node receives Q,
which costs |Q| · ERX (|Q| << l) energy. Then each Ai

invokes the linear-time LCSS(MBEQ, Ai) (i ≤ m) com-
putation, which costs |Q| · ECPU , as LCSS(MBEQ, Ai) can
be computed in O(min(l, |Q|)) and |Q| << l. Finally, each
node transmits back a single scalar value (i.e., E TX ). The
second and third steps of the algorithm have no smartphone-
side incurred costs. Steps 4 and 5 are executed in m/λ
iterations in the worse case. In each of the iterations, we
have the following costs: In step 4, the λ identified nodes
execute the LCSS(Q,Ai) (i ≤ m) computation and that
costs δ · (|Q| + l) · ECPU , as LCSS has a time complexity
of O(δ · (l1 + l2)). Yet, this cost incurs on only a few nodes
(i.e., λ << m). When this operation completes, a single scalar
value is shipped from each of the λ nodes to QN costing E TX .
Step 5 has again no smartphone-side incurred energy cost as it
takes place on QN . Also step 6 is computed only once at the
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Fig. 6. Projecting the Time and Energy upper bounds for
various trajectory lengths.

very end and costs |Q|·ETX . By adding up all aforementioned
values in an asymptotic manner yields an energy complexity
of O(δ · l · ECPU ), as all other factors are small order and can
thus be eliminated.

Similarly to the above analysis, the time complexity of ST
is defined as O(mλ · δ · l · TCPU ), as we are now only waiting
for the slowest node during the computation of LCSS(Q,A i)
and we conduct this m/λ times at most �
Lemma 6 (NIST Performance): The NIST algorithm has an
Energy and Time complexity of O(δ · l · ECPU ) and O(δ · l ·
T CPU ), respectively.
Proof (direct): Similarly to ST in the first (1) step, each
node receives Q, which costs |Q| · ERX (|Q| << l) energy.
Then each Ai invokes the linear-time LCSS(MBEQ, Ai)
and LCSS(LBQ, Ai) (i ≤ m) computations, which cost
|Q| · ECPU , as both functions are computed in the same scan
with an O(1) cost per point (i.e., for LCSS(MBEQ, Ai)
we compare against the pre-constructed envelope and
LCSS(LBQ, Ai) is a closed-form equation.) Subsequently,
each node transmits back a single scalar value (i.e., E TX )
in the second step. In the third step QN locally identifies
the τ cut-off threshold, thus incurs no smartphone-side costs.
In the fourth step, each node in the candidate S-set is asked
to perform a LCSS(Q,Ai) computation. By adding up all
aforementioned values in an asymptotic manner yields an
energy complexity of O(δ · l · ECPU ), similarly to the D and
ST algorithms. The time complexity for NIST is defined as
MAXm

i=1(δ · l · T CPU
i ) ∈ O(δ · l · T CPU ), as the computation

is carried out in parallel on all devices �
Discussion: We shall next summarize our key findings regard-
ing the Time and Energy upper bounds of the four algorithms,
C, D, ST and NIST. Those findings are complemented by a
simulation of the respective bounds in Figure 6, with time
and energy constants derived from our experimental testbed
in Section 6. The first observation from the analytical bounds
and the curves of Figure 6 (left) is that C has the highest worst-
case time bound, of O(m · l · T TX), since multiple concurrent
uploads limit the bandwidth available to each device. ST has
the second worst-case time bound of O(m

λ ·δ · l ·TCPU), since
the algorithm might execute the LCSS method consecutively
for m/λ times in the worst-case. Fortunately, this worst-
case scenario never occurred in our experimental evaluation
of Section 6. Contrary to C and ST, NIST and D maintain
the lowest time bounds than the other two methods as these
solely rely on the time it takes to execute LCSS on the longest
participating trajectory, locally on each smartphone.

The second observation is that C continues to expose
the worst-case energy bound of O(l · E TX), compared to
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Fig. 7. Screenshots of the SmartTrace+ client for outdoor
environments with GPS and indoor environments with
RSS signals.

O(δ · l · ECPU ) exposed by the other three methods. Clearly,
the determining factor is that E TX is approximately one
order of magnitude larger than E CPU , as processing a single
trajectory point can be conducted much more efficiently than
transmitting the same point over an expensive wireless link.

5 THE SMARTTRACE+ PROTOTYPE SYSTEM

In this section we describe a prototype system we have
developed for SmartTrace+ using the Android OS. We provide
an overview of the communication protocol and the Graphical
User Interface. Additional deployment details can be found
in [14].

5.1 Overview

Our client-side software is developed on top of the ubiquitous
Android OS and its installation package (i.e., APK) has a
size of 1,106KB. Our code is written in JAVA and consists
of approximately 9,000 lines-of-code (LOC). In particular,
our server-code uses ≈ 3,470 LOC and runs over JDK 6
and Ubuntu Linux, while our smartphone code uses ≈ 5,530
LOC plus ≈ 250 lines of XML elements that go the Manifest
file (settings) and the user interface XML descriptions. In the
future, we plan to port the computationally and IO-intensive
tasks outside the VM by implementing them in native (C) code
using the Android NDK.

5.2 Graphical User Interface (GUI)

Our prototype GUI provides all the functionalities for a user
participating in SmartTrace+. The GUI is divided into an
outdoor and an indoor interface, respectively as shown in
Figure 7. The outdoor interface uses WGS84 encoded GPS
trajectories along with the Android Google Maps API, in order
to visualize the traces on a map. The indoor interface uses our
proprietary WiFi Access Point (AP) format, which captures
multi-dimensional signal strength values collected from nearby
APs (i.e., each AP is identified by its network MAC address
and its signal strength is measured in dBm.)

At a high level, our GUI enables the following functions: i)
record traces on local storage and plot those on the screen for
the outdoor case, ii) configure various logging and querying
features (e.g., K, δ and ε); iii) connect to a SmartTrace+ server
and query the traces stored on other connected nodes, and iv)
switch between online and offline mode to change between
experimentation and real operation.

5.3 Protocol

In this section, we provide an abstraction of the TCP/IP-
based data transmission protocol that lies at the foundation
of SmartTrace+. We implemented a text-based protocol, as
opposed to a binary protocol, for portability reasons (i.e.,
endianness). We also did not chose an XML-based protocol
implementation for performance reasons.

In the scenario that follows, a user A1 connects to a
Query Node (QN ), with a screen-name cs7239, requesting
the execution of a top K=1 query using the SEARCH com-
mand (we assume the execution of the ST algorithm). QN
responds with an MD5 query-ID hashcode, which serves
as the query identifier. Notice that each request to QN is
preceded by an +OK or -ERR <code> message, denoting
the status of the request. Subsequently, QN , requests the
execution of the ST algorithm over four other connected nodes,
e.g., A4, A5, A8, A9. In particular, A4 initially executes the
LCSS(MBEQ, A4) method, with the UB method, and then
LCSS(Q,A4), with the LCSS method.

All connected nodes conduct the operation and return to
QN a VAL message which includes the query-id, type (1:ub,
2:lb,ub or 3:real score) as well as a 4-byte double value. After
finalizing the computation, QN returns the top-K result to A1.
Finally, in our example A1 also asks for the complete matched
trajectory using an out-of-band RETR command. The matched
subsequence is routed to A1 through QN with the TRAJ
command, given that A4 has a trace-sharing option enabled
in its local profile.

QN (to A1): +OK READY
A1 (to QN): USER cs7239
A1 (to QN): SEARCH <k> <query-trace>
QN (to A1): +OK <query-ID>
QN (to A4): UB <query-ID> <query-trace>
A4 (to QN): +OK VAL <query-ID> 1 30.0
QN (to A4): LCSS <query-ID>
A4 (to QN): +OK VAL <query-ID> 3 23.0
-- repeat in parallel for all nodes A5,A8,A9
QN (to A1): +OK <results>
-- tentative ship matching step
A1 (to QN): RETR <query-ID>
QN (to A4): RETR <query-ID>
A4 (to QN): TRAJ <query-ID> <result-trace>
QN (to A1): TRAJ <query-ID> <result-trace>

6 EXPERIMENTAL EVALUATION

In this section we present an extensive experimental evaluation
of the ST and NIST algorithms. Our experiments are conducted
in two modes: i) Trace-driven Simulation on a PC; and ii)
Trace-driven Deployment on our SmartLab Cluster of 25 real
smartphones. We start our description with our experimental
methodology and then proceed with the presentation of our
results.

6.1 Methodology

Datasets and Queries: We use the following three datasets:

i) Oldenburg [9]: This medium-scale dataset includes 2,000 car
trajectories moving in the city of Oldenburg [9]. The average
length of each trajectory is 11, 731± 7, 193 points, while the
maximum trajectory length is 42,500 points. Each query for
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the above dataset is randomly derived from the initial dataset.
Our queries have an average size of 100 points.

ii) GeoLife-A [49], [50]: This large-scale dataset, by Microsoft
Research Asia, includes 1,100 trajectories of a human moving
in the city of Beijing over a life span of two years (2007-2009).
The average length of each trajectory is 190, 110± 126, 590
points, while the maximum trajectory length is 699,600 points.
Notice that 95% of the GeoLife dataset refers to a granularity
of 1 sample every 2-5 seconds or every 5-10 meters. Our
queries are randomly sampled from the dataset and have an
average size of 67 points.

iii) GeoLife-B [49], [50]: This smaller-scale dataset, again by
Microsoft Research Asia, has been derived to accommodate
the hardware limitations of our programming cloud testbed. In
particular, this dataset includes 25 trajectories whose average
trajectory length is 25, 058 ± 3, 062 points, the maximum
trajectory length is 25,850 points and the query length is 100
points.

Algorithms and Metrics: We compare the SmartTrace (ST),
Non-Iterative SmartTrace (NIST), Decentralized (D) and Cen-
tralized (C) algorithms, under a variety of settings using the
datasets described earlier. Our cost metrics are: Time (T ) and
Energy (E), as documented in Section 4, for varying m, K
and λ parameters. For the C method, we do not take into
account the time and energy spent on finding the answers on
the query processor. The reason for neglecting this cost is
that a centralized query processor can be ”infinitely” powerful
with an ”infinite” power source (i.e., compared to the power-
limited smartphones). Whenever we test one parameter, the
complementary parameters are fixed to the following values:
m to 2,000 and 1,100 for the Oldenburg and the GeoLife
datasets, respectively, K to 2 and λ to 50 for the ST algorithm.
The δ and ε parameters are kept constant for each dataset
as those are application specific (i.e., they attempt to capture
a reasonable matching scenario given the spatio-temporal
coordinates in their respective dataset). Varying δ and ε should
not affect our execution scenario in any sense, as this would
simply vary the matching granularity in all algorithms. All
measurements are averaged over 10 consecutive runs.

Network and Energy Model: Our communication protocol
is associated with a 45 byte header (including node identifier,
session identifier and other application specific parameters). In
our setting, a spatio-temporal DATA point (18 bytes) consists
of a timestamp that occupies 8 bytes, two 4-byte fields for
the GPS coordinates and another 2 bytes for direction. In
reality this overhead might be even higher (e.g., GeoLife
trajectories include elevation, speed, heading direction and
accuracy.) However, we omit these additional attributes as
they are not necessary for computing the basic edition of our
algorithm that relies only on the spatio-temporal attributes.
Had we used them should have boosted the competitive
advantage of ST and NIST over C and D even more. The
METADATA comprise only a single 4-byte real field per node
for the UB, LB or LCSS matching value. QN runs on a single
host that connects to the m smartphones using an 802.11b
network link that has a TCP downlink of 1022kbps and a

TCP uplink of 123kbps, a 237ms TCP handshake latency
and application handshake latency of 493ms (as measured
with [1]). Our energy profile has been derived by running
SmartTrace+ instances using PowerTutor [36]. In particular,
CPU Idle (OS running) = 175mW, CPU Busy (Processing)
= 369mW, WiFi Idle (Connected) = 38mW and WiFi Busy
(Uplink 123Kbps, -58dBm) = 600mW.

6.2 Series 1: Varying the Number of Trajectories (m)

In the first experimental series we investigate the performance
and scalability of our approach in respect to m. Figure 8
presents our Time (T , left) and Energy (E , right) results
for the Oldenburg (top) and GeoLife-A (bottom) datasets,
respectively. In order to generalize our conclusions to larger
datasets in this series, we have synthetically increased the size
of both these datasets, up to m = 100, 000, by keeping the
same distribution in the base dataset. We will start out with
our main findings that concern the Oldenburg and Geolife-A
datasets and then explain the results for scaling these datasets.

Analysis of Response Time (T ): The plots in the left column
show that both the NIST and D algorithms consume one order
of magnitude less T than the C algorithm, while ST consumes
somehow higher but is still more efficient than C. In particular,
for Oldenburg we observe the following average time values
in seconds for the bars in our plot: NIST=36 ± 7, D=39 ±
7, ST=170± 95 and C=809± 478; while for GeoLife-A, we
observe the following time values in seconds: NIST=614±35,
D=768± 2, ST=1, 963± 550 and C=8, 623± 3, 804 seconds,
respectively. The above results are attributed to the fact that
NIST, ST and D mainly rely on local processing, while C relies
on transmission, as this was shown in our analytical study.

The reason why ST performs worse that D, is that ST
performs one LCSS(Q,A) iteration per round in an incremental
fashion, while D conducts LCSS(Q,A) on all nodes in a single
step. Such an oblivious act by D, consumes a lot of energy,
as shown in the Energy plot analysis.

A final interesting observation regarding the time plots, is
that although the worst-case time complexity of NIST looks
the same with the respective time complexity of D, our exper-
iments reveal that NIST is faster than D for the two datasets,
by 3 seconds and 154 seconds, respectively. By carefully
analyzing our traces, we found that this is attributed to the
variable length of trajectories in our datasets. In particular,
D is always condemned to perform the worst-case (i.e., to
process the longest trajectory in its computation), while NIST
will process these very long traces only if they belong to the
top-K result.

Although in our setup a query is expected to be localized
in a specific area with a limited number of users, for com-
pleteness, we have also validated our findings for very large
target deployments (i.e., up to 100K nodes). Our findings in
the same plots of Figure 8, show that the general trends remain
the same. We additionally notice that the ST algorithm now
obtains an execution time that is somehow too large for a
realistic querying system (i.e., close to 2 hours). Contrary, the
NIST algorithm maintains a reasonable response time (i.e., 47s
and 10min, respectively), for even such large-scale scenarios.
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Fig. 8. Series 1: Varying the number of trajectories (m). Time and Energy results for Oldenburg and GeoLife-A.
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Fig. 9. Series 2: Energy (left) and Time (right) results for varying K in Geolife-A.

Analysis of Energy Consumption (E): While somebody
might claim that the competitive advantage of NIST over D, in
respect to T , is not that great (i.e., 8% and 21%, respectively),
we shall next also study the incurred energy costs per device.

For the Oldenburg dataset (i.e., Figure 8 right/top), we
observe that there is a 70% and 62% percent advantage of ST
and NIST over D, in respect to E . This result validates that the
D algorithm consumes large amounts of energy while both ST
and NIST minimize this amount significantly. The same plot
also shows that NIST is somehow more energy demanding than
ST. This happens as the ST algorithm executes LCSS(Q,A)
on fewer nodes while NIST conducts LCSS(Q,A) on usually
more nodes, thus has a higher possibility of processing longer
trajectories. The above discussion reveals the trade-off be-
tween the two algorithms, i.e., “ST is slower but consumes
less energy, while NIST is faster but consumes more energy”.
Consequently, one might chose either algorithm, depending on
the primary optimization criterion.

Another observation is that the C algorithm spends all its
energy on network operations, i.e., O(l · E TX), while NIST,
ST and D spend the bulk of their energy on smartphone-side
processing operations. In fact, the networking costs for these

algorithms is as small as 2.59mJ per query (this is why they
don’t show up in the plots). The above result, confirms that
the network overhead of the ST algorithm is not high, as it
transmits smaller size packets as opposed to the large and
monolithic packets used by C. One final observation is that
the D algorithm will execute the LCSS(Q,Ai) function on all
nodes, thus the aggregate energy costs are orders of magnitude
higher than the respective energy costs for the NIST algorithm,
which executes LCSS(Q,Ai) on only those nodes in the S-set.
Similar conclusions to the above, can also be drawn for the
Geolife-A dataset in Figure 8 right/bottom.

In order to gain a deeper understanding on the energy
savings of our algorithms, we have calculated the size of the
candidate S-set, constructed during the operation of the ST
and NIST algorithms, respectively. Our findings indicate that
the average “|S-set| / m” ratio, where m is the number of all
trajectories, in Oldenburg is 24% and 33%, for ST and NIST,
respectively. For Geolife-A the average “S-set / m” ratio is
24% and 29% for ST and NIST, respectively. For all four cases
the standard deviation is around 4%. This suggests that NIST
will consume more energy than ST, in processing the larger
S-set, as confirmed by our energy plots.
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Fig. 10. Series 3: Varying the iteration step increment (λ) in SmartTrace. Number of iterations and Time Results for
Oldenburg and GeoLife-A.

6.3 Series 2: Varying the Size of the Answer-set (K)

In the second experimental series, we investigate the perfor-
mance and scalability of our approach in respect to K . For
brevity, we will only present the results for the GeoLife-
A dataset, but the respective Oldenburg results look very
similar. We will additionally not cover the observations already
discussed previously.

Figure 9, shows that the performance of all four algorithms
is independent of K for both the T and E results. For this
experiment K is increased from 2 to 10, which refers to
≈1% of m. The results in this series are confirmed by our
analytical study where we have shown that all four algorithms
are independent of K (see Lemmas 3-6). In particular, the
E-complexity of both ST and NIST is O(δ · l · ECPU ), while
the T -complexity of ST and NIST is O(m

λ · δ · l · TCPU) and
O(δ · l · T CPU ), respectively. However, in practice we should
expect that both the ST and NIST algorithms would perform
worse than C or D, if K is very large as they involve some
messaging overhead. Yet, top-K queries are not designated for
large values of K as this is explained in Section 7. Also these
workloads are not useful in our setting as a user would be
overwhelmed with many less relevant answers.

6.4 Series 3: Varying the Iteration Step Increment (λ)

In the third series, we present an improved study over our prior
work in [48]6, of how the iteration step increment λ affects
the convergence of the ST algorithm. In particular, we present
the number of iterations (and the respective time) the given
algorithm takes for different values of λ and m.

Figure 10 shows our results for the Oldenburg and GeoLife-
A datasets, respectively. The first observation is that the more
aggressive λ gets, the quicker the ST algorithm converges. In
particular, we observed that the two datasets feature an average
number of iterations equal to 6.05 and 3.55, respectively, for
λ = 50. Additionally, we also observe that the number of
iterations grows almost linearly by increasing m. Both afore-
mentioned observations are explained by the result of Theorem
2, where we showed that ST requires O(m/λ) iterations in
the worse case. Interestingly, we mention that this worse case
has not happened in any of our experiments, but setting this
parameter optimally through some learning phase will be a
subject of future research.

The time plots in the same figure Figure 10, validate that
ST is inversely proportional to λ, i.e., Lemma 5 showed that
TST ∈ O(mλ ·δ · l ·TCPU ). Notice that in the given experiment

6. The improvements relate to our implementation of MBE and a more
accurate way to generate the query-set.

λ is ranging between 1% - 5% of m, which is larger than
the K value we used in this study (i.e., up to 1%). Had we
been more aggressive would certainly improve the response
time but would have incurred unecessary LCSS computations
on many nodes not in the answer-set. Although setting λ in
an optimal manner would require some additional structures,
configuring it to approximately 5% of m worked great for
the tests we have conducted. Finally, we observe that the
λ-independent algorithm NIST performs faster than all ST
versions, but requires more energy as explained previously.

6.5 Series 4: Prototype Evaluation

In the final experimental series, we deploy instances of our
real prototype system in Android over our SmartLab testbed 7.
We utilize the same δ and ε settings with smaller K and λ
parameters (i.e., 1), due to the smaller size of the dataset. In
order to measure power consumption in a meaningful way, we
utilize PowerTutor [36], which has an average error less than
10%. All messaging goes through the 802.11b WiFi interface.
Notice that Android uses a standard Linux Kernel 2.6 and each
program runs within a Dalvik Java Virtual Machine, which
limits the memory heap of an application to 24MB.

The Time (T ) and Energy (E) results for our evaluation
using the GeoLife-B dataset are summarized in Table 2. In
respect to T , our first observation is that NIST is indeed the
fastest approach for retrieving the top-K answers from the
distributed devices, as it performs in 24 seconds on average.
The second observation is that ST behaves better than the
D algorithm. By analyzing the logs we found that for this
series ST converged with the answer very quickly (i.e., in 2
rounds), thus did both not execute LCSS(Q,A) on many nodes
and also had a lower probability of running the LCSS(Q,A)
method on a long trajectory. One final observation is that the
C algorithm still requires the most time to answer the query,
although it behaves somehow better than what we observed in
the simulations.

In respect to E , we observe that our results are compatible
with the general trends that were analyzed in our previous
series. In particular, it is confirmed that the ST algorithm is
the most efficient among its competitors with NIST being
more energy demanding (i.e., by 38%), while both D and
C increase the gap from ST by 67% and 74%, respectively.
Energy efficiency is becoming an important parameter in data
management systems [41] and SmartTrace+ is addressing this
parameter in its core execution algorithms.

7. Available at: http://smartlab.cs.ucy.ac.cy/
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TABLE 2
Series 4: Evaluating our prototype on SmartLab.

Algorithm Time (T ) (Seconds) Energy (E) (Joules)
C 68 17.4543
D 36 13.7668
ST 28 4.5763

NIST 24 7.3186

7 RELATED WORK

In this section we provide related research work for
both spatio-temporal query processing and distributed top-
K query processing, both of which lie at the foundation of
SmartTrace+.

Spatio-temporal queries have been an intense area of re-
search over the years [3], with the development of efficient
access methods [25], [44], [32] and similarity measures, such
as Dynamic Time Warping (DTW) [7], the Longest Common
Subsequence (LCSS) [15], variants of Lp-norms such as Edit
Distance with Real Penalty (ERP) [27] and Edit Distance on
Real Sequences (EDR) [28]. These metrics have been pro-
posed for predictive [39], historical [44] and complex spatio-
temporal queries [22]. All these techniques, as well as the
frameworks for spatio-temporal queries [6], [43], [24], work
in a completely centralized setting. The same applies to online
trajectory searching services such as GeoLife, GPS-Waypoints,
Sharemyroutes and their academic counterparts [26], which
assume that user trajectories are aggregated and stored on
a centralized or cloud-like infrastructure. Notice that for a
centralized setting, the problem definition is considerably
different, than the decentralized scenario we consider in this
work, as QN maintains all trajectories locally and global-
knowledge statistics can be maintained in local catalogs.
Additionally, in a centralized setting the query processor can
utilize spatial or spatio-temporal trajectory index structures,
such as the R-trees (e.g., utilized in [26] and [20]), STR-trees
or TB-Trees [37], in order to speed up the retrieval answers,
assuming that the trajectories have already been transferred
to the query processor. On the other hand, in a decentralized
setting all of these come at a significant messaging cost and
require high levels of data-disclosure.

In our previous work in [47], we have already paved the way
towards trajectory processing techniques in a distributed man-
ner (i.e., without percolating each and every user geo-location
to a central authority.) However, those were both agnostic in
terms of energy and time constraints that arise in a smartphone
network, but also in respect to the trajectory trace disclosure
issues (i.e., they assumed that the query processor can arbi-
trarily access the distributed trajectories.) More importantly,
our previous work assumed that trajectories where vertically
fragmented across n distributed sites (i.e., each distributed site
holds subsequences of one or more trajectories), while this
work focuses on the horizontally fragmented case (i.e., each
smartphone holds the complete trajectory locally.)

Top-K queries have been studied in a variety of con-
texts including middleware systems [18], web accessible
databases [10] and stream processors [5]. An excellent survey
for relational database environments appears in [23]. It has
been shown in several studies [10], that top-K query processing

is meaningful only if the predicate parameter K refers to a
small subset of the complete answer set (e.g., up to 1%). For
larger values of K , it is more beneficial if the query optimizer
retrieves the complete answer set.

8 CONCLUSION

This work presented a crowdsourced framework for executing
distributed similarity search queries on trajectories that are
stored in-situ on smartphones. SmartTrace+ enables the execu-
tion of such queries in both outdoor environments (using GPS
coordinates) and indoor environments (using WiFi Received-
Signal-Strength measurements), without disclosing the traces
of participating users to the querying node. We have evaluated
our algorithms on both synthetic and real workloads. Our al-
gorithms reach the same results as the fully-centralized and the
fully-decentralized approaches, while consuming considerably
less energy and returning the results faster. Our experimental
results also confirm our analytical study. In the future we
plan to conduct a large-scale field study of a crowdsourcing
service for transit planning using our prototype system that
will be released as an open-source project. We finally also
intend to embed additional trajectory similarity metrics to our
framework and to assess their quality.
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