
### "Data Storage In Wireless Sensor Databases" Demetris Zeinalipour Department of Computer Science University of Cyprus"



eNEXT WG1 Workshop on Sensor and Ad-hoc Networks

University of Cyprus - UCY, Nicosia, 13-14 March 2006

\* Presented work was conducted at the University of California – Riverside,



http://www2.cs.ucy.ac.cy/~dzeina/

## **Presentation Goals**

- To present a new perspective on data management and query processing related issues in sensor networks.
- This is an **overview talk** of various individual aspects that are important in this context.
- It does not focus on networking related technologies, but rather on how to organize the information generated by sensors in an energy-efficient manner.





### **Sensor Networks & The Silicon Era**

- Applications:
  - Environmental and habitant monitoring
  - Seismic and Structural monitoring, ....
- Result:
  - Non-Intrusive/Non-Disruptive technology that enables the human to monitor and understand the physical world.



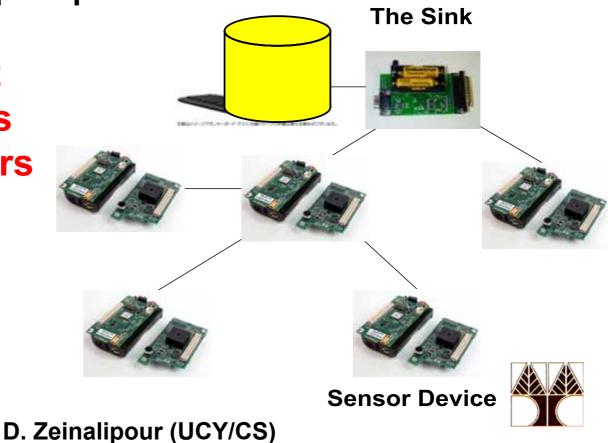
**Environmental Monitoring** 



Structural Monitoring



## The typical SensorNet Framework


### **Sense and Send Paradigm**

Sensors acquire environmental parameters and transmit these to the sink at pre-specified intervals

#### A Database that collects readings from many Sensors

Centralized:

- Storage, Indexing
- Query Processing
- Triggers, etc..



## The typical SensorNet Framework

#### **Data Acquisition**

TinyDB (SIGMOD'03) and Cougar (CIDR'03) Frameworks:

- Provide a declarative SQL-like approach for accessing data.
- Are suitable for continuous queries.
- Push aggregation in the network (TAG OSDI'02) but keep much of the processing at the sink.

SELECT  $\{AGG(expr), attrs\}$ FROM {table} WHERE {selectPreds} GROUP BY attrs HAVING {havePreds} EPOCH DURATION i

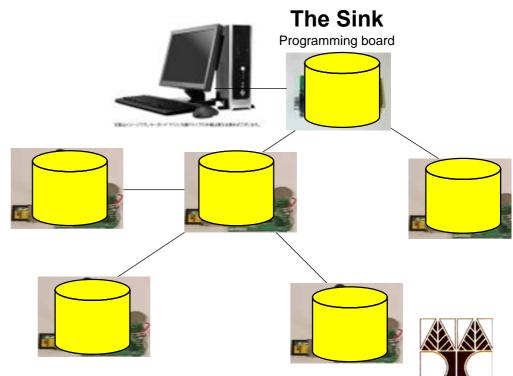
But Many applications do not require the query to be

evaluated continuously...



## **Our Model: In-Situ Data Storage**

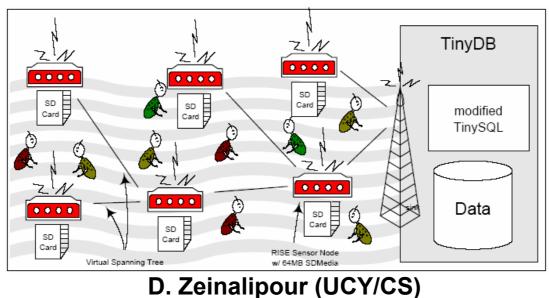
D. Zeinalipour (UCY/CS)


- 1. Sensors acquire readings from their surrounding environment.
- 2. The data remains In-situ (at the generating site) in a sliding window fashion.
- 3. When Users want to search/retrieve some information they perform on-demand queries.

#### A network of

#### **Sensor Databases**

- Distributed Storage
- Distributed Query Processing


**Objective: To minimize the utilization of the radio** 





## **Our Motivation**

- The Bio-complexity and James Reserve projects at UC-Riverside, where biologists want to utilize non-intrusive, not necessarily online, technologies to monitor CO<sub>2</sub> levels in the soil, rather that in laboratory recreations.
- Scientists do not need answers to their queries at all times.
- However a query execution has to adhere to the distinct characteristics of a Wireless Sensor Environment (minimize communication, local processing and aggregation, etc).







## **Challenges of the In-Situ Model**

- How to efficiently store information locally
   Solution: We build the RISE Sensor that features an external flash memory Giga-scale storage)
   [IEEE/ACM IPSN'05, IEEE SECON'05, ACM Senmetrics'05]
- How to efficiently access a Giga-Scale storage medium of a Sensor Device?

Solution: We build the MicroHash Index Structure [IEEE NetDB (ICDE'05), USENIX FAST'05 ]

How to find the most important events without pulling together all distributed relations?
 Solution: We build the Threshold Join Algorithm
 [IEEE DMSN'05 (VLDB'05)]





## Talk Outline

- **1. The RISE Hardware Platform.**
- 2. Indexing on Flash Memory of a Sensor Device.
- 3. Distributed top-k Query Processing.
- 4. Conclusions and Future Work.





### A) The RISE Hardware Platform

The *RISE (Riverside SEnsor)* has been built as the prototype sensor platform demonstrating the In-Situ Data Storage Paradigm

- High performance, low power, state of the art platform
- Built around the **Chipcon CC1010** (System on Chip)
- Incorporates **TinyOS v1.1** (with nesC v1.2alpha1)
- Gigabyte scale High capacity flash data storage (SD-Card)
- Multitude of sensors (Temperature, Carbon dioxide, Humidity, etc)
- Integrated radio transceiver Compatible with MICA for interoperability and investigation into the nature of heterogeneous networks.







### A) The RISE Hardware Platform

#### The RISE Sensor Specs

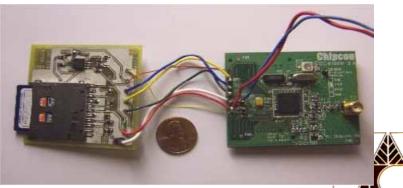

| Characteristic                    | Capability                   |  |
|-----------------------------------|------------------------------|--|
| MCU                               |                              |  |
| Processor                         | 24 MHz 8051 core             |  |
| On-Chip Flash Memory              | 32 KB                        |  |
| Current (On,Idle,Off) at 14 MHz   | 14.8 mA, 8.2 mA, 0.2 $\mu$ A |  |
| Radio (RF Transceiver)            |                              |  |
| Communication Rate                | 76.8 kbits/s                 |  |
| Communication Range               | 250m at 868/915 MHz          |  |
| Current (Receive,Send at 10dBm)   | 11.9 mA, 26.6 mA             |  |
| SD Card & SPI Bus                 |                              |  |
| SPI bus rate                      | Up to 3 Mbps                 |  |
| Data page size                    | 512 bytes                    |  |
| Data block size                   | 16 KBytes                    |  |
| Current (Read,Write,Delete)       | 1.17mA, 37 mA, 57µA          |  |
| Time (Read, Write, Delete) (512B) | 6.25ms, 6.25ms, 2.26ms       |  |

 Table 1. Characteristics of the RISE platform.



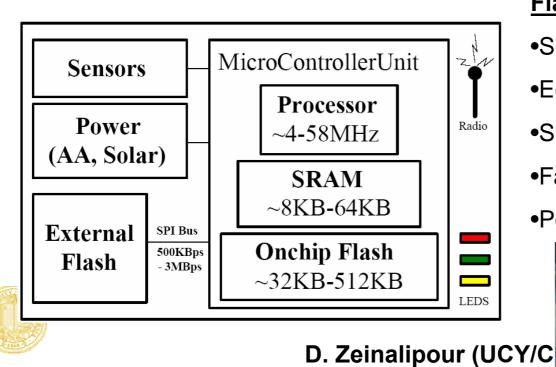
#### The RISE Storage board (RISE v2) [IEEE SECON'05, SenMetrics'05]

- 1. Data in RISE v1 is stored on the external SDMedia (NAND flash).
- 2. NAND flash is not suitable for accessing data at a byte granularity.
- 3. RISE Storage Board features NOR flash (efficient byte-level granularity) and the SDMedia Card.
- 4. It complements RISE v1



## Talk Outline

**1. The RISE Hardware Platform.** 


2. Indexing on Flash Memory of a Sensor Device.

- 3. Distributed top-k Query Processing.
- 4. Conclusions and Future Work.





- **Task:** *"Find from local storage all records that satisfy some query predicate"* (e.g. temp=95F)
- The most prevalent volatile medium for a Sensor Devices is Flash Memory.

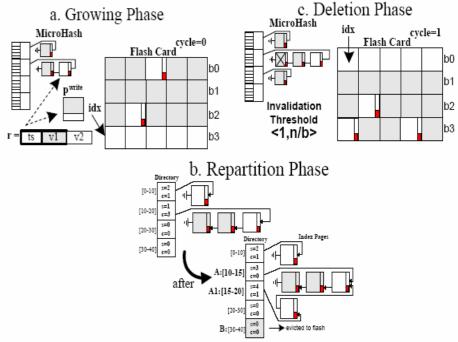


Flash (NAND) Advantages

- •Simple Cell Architecture
- •Economical Reproduction
- Shock Resistant
  - •Fast Read Times
  - Power Efficient



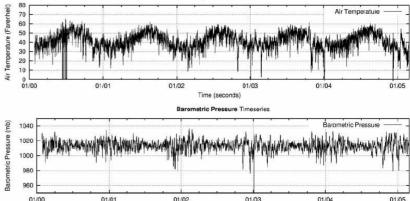



# Why is Flash so different from other Storage Mediums (disks, ram, etc)?

- (1) **Read-Constraint:** Reading data stored on flash memory can be performed at granularity ranging from a single byte to a whole block (typically 8KB-64KB).
- (2) Delete-Constraint: Deleting data stored on flash memory can only be performed at a block granularity (i.e. 8KB-64KB).
- (3) Write-Constraint: Writing data can only be performed at a page granularity (typically 256B-512B), after the respective page (and its respective 8KB-64KB block) has been deleted.
- (4) Wear-Constraint: Each page can only be written a limited number of times (typically 10,000-100,000).






- There is no related work on Local Indexes for Sensor
   Device Databases (most research focuses on Magnetic Disk and Main Memory Databases)
- We developed the MicroHash Index [FAST'05] which is an efficient structure to this problem.
- We also developed efficient Search algorithms that locate information stored on flash.
- Main Idea: Minimize
   expensive random
   access deletions



- We have implemented all these algorithms in nesC, the programming language of TinyOS.
- Extensive trace-driven simulations using 5-year long temperature/humidity datasets from the University of Washington.
- We also used datasets from the Great Duck Island Study in Maine (UC-Berkeley)











- Finding a record by a value (e.g. temp=95F) can be performed in constant time.
- Finding a record by timestamp (e.g. 14/3/06 10:30:00) can be performed in 3-6 page reads.

**Great Duck Island Study** 

| Index On    | Overhead         | Energy       | ScaleSearch   |
|-------------|------------------|--------------|---------------|
| Attribute   | Ratio $\Phi(\%)$ | Index $(mJ)$ | Avg Page Read |
| Light       | 26.47            | 4,134        | 4.45          |
| Temperature | 27.14            | 4,172        | 5.45          |
| Thermopile  | 24.08            | 4,005        | 6.29          |
| Thermistor  | 14.43            | $3,\!554$    | 5.10          |
| Humidity    | 7.604            | 3,292        | 2.97          |
| Voltage     | 20.27            | 3,771        | 4.21          |

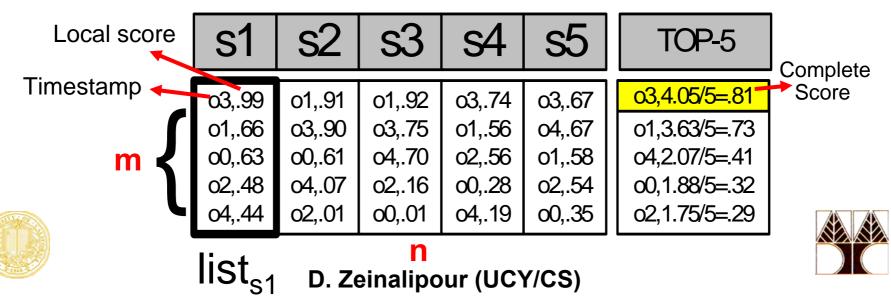
Note: Storing records without index 3042mJ





## Talk Outline

- **1. The RISE Hardware Platform.**
- 2. Indexing on Flash Memory of a Sensor Device.
- 3. Distributed top-k Query Processing.
- 4. Conclusions and Future Work.






### 3) Distributed Top-K Query Processing

#### Motivating Example (Problem Formulation)

- Assume that we have n=5 sensor each of maintains locally a sliding window of m=5 readings. (See table)
- **TOP-1 Query:** "On which timestamp did we have the highest temperature across all sensors?"
- Note: Score(o<sub>i</sub>) can only be calculated if we combine the readings from all 5 sensor.



#### Current Approach: TAG

 Aggregate the lists before these are forwarded to the parent

- 3: This is essentially the TAG approach (Madden et al. OSDI '02)
- Advantage: Only (n-1) messages



D. Zeinalipour (UCY/CS)



TOP-

1234

1,2,3,4,5

4.5:

 $5 \cdot \square$ 

2,3,4,5:

 $V_5$ 

 $\mathbf{V}_3$ 

## TJA Step 1 (LB Phase)

- Each node sends its **top-k**<sub>1</sub>) LB Phase 1,2,3,4,5results to its parent.
- Each intermediate node performs a **union** of all received lists (denoted

as T): Query: TOP-1

v2v3v5v4 <u>01, 91</u> <u>o3, 74</u> <u>o3, 99</u> <u>01, 92</u> <u>03, 67</u> 01,66 03,90 03,75 01, 56 04,67 00,63 00,61 04,70 02,56 01, 58 02,48 04,07 00, 28 02,54 02, 16 04,44 02,01 00,01 04, 19 00,35

5:  $v_5$  Empty  $O_{ij}$   $O_{ccupied} O_{ij}$ 

4,5:

 $V_2$ 

3:

 $V_3$ 



## TJA Step 1 (HJ Phase)

- Disseminate **T** to all nodes
- Each node sends back everything with score above all objectIDs in **T**.
- Before sending the objects, each node tags as incomplete scores that could not be computed exactly (upper bound)

vЗ

<u>01, 92</u>

03,75

o4,70

02, 16

00,01

v2

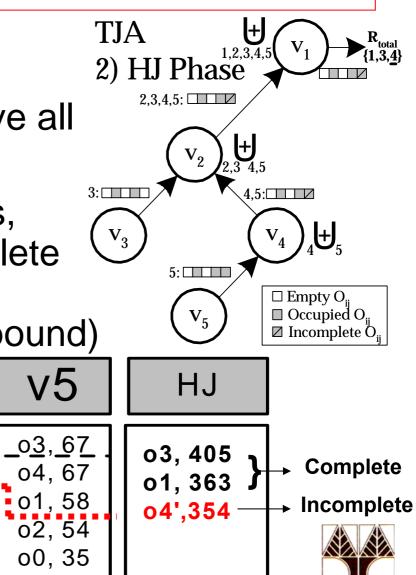
<u>01, 91</u>

03,90

00, 61

04,07

02,01


<u>o3, 99</u>

01,66

00,63

02, 48

04, 44



D. Zeinalipour (UCY/CS)

v4

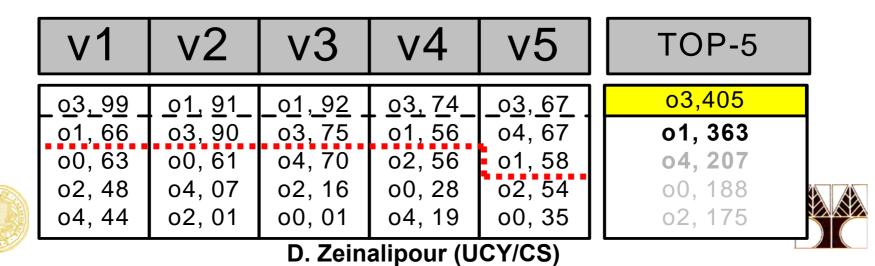
<u>o3, 74</u>

01, 56

02,56

00,28

04,19


## TJA Step 1 (CL Phase)

#### Have we found K objects with a complete score?

**Yes:** The answer has been found!

**No:** Find the *complete score* for each incomplete object (all in a single batch phase)

- CL ensures correctness!
- This phase is rarely required in practice.



## Talk Outline

- **1. The RISE Hardware Platform.**
- 2. Indexing on Flash Memory of a Sensor Device.
- 3. Distributed top-k Query Processing.

#### 4. Conclusions and Future Work.





## **Conclusions and Future Work**

- In-Situ Data Storage is a new approach for data management in Sensor Networks
- We want to incorporate the presented ideas in a unified In-Situ Storage and Retrieval Management System, similar to TinyDB, but distributed.





### **Related Publications**

#### Indexing on Flash Memory

– MicroHash Index:

**D. Zeinalipour-Yazti**, S. Lin, V. Kalogeraki, D. Gunopulos, W. Najjar **"MicroHash: An Efficient Index Structure for Flash-Based Sensor Devices"**, 4th USENIX Conference on File and Storage Technologies (<u>FAST'2005</u>), San Francisco, CA, 2005.

Indexing Spatiotemporal Records MicroGF – Online Compression Algorithms:
 S. Lin, D. Zeinalipour-Yazti, V. Kalogeraki, D. Gunopulos, W. Najjar "Efficient Indexing Data Structures for Flash-Based Sensor Devices", under review.

#### TOP-K Query Processing & In-Situ Data Storage

- D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos, V. Kalogeraki, V. Tsotras, M. Vlachos, N. Koudas, D. Srivastava "The Threshold Join Algorithm for Top-k Queries in Distributed Sensor Networks", Proceedings of the 2nd international workshop on Data management for sensor networks <u>DMSN</u> (VLDB'2005), Trondheim, Norway, 2005.
- D. Zeinalipour-Yazti, S. Neema, D. Gunopulos, V. Kalogeraki and W. Najjar, "Data Acquision in Sensor Networks with Large Memories", IEEE Intl. Workshop on Networking

Meets Databases NetDB (ICDE'2005), Tokyo, Japan, 2005.



**D. Zeinalipour-Yazti**, V. Kalogeraki, D. Gunopulos, A. Mitra, A. Banerjee and W. Naj "Towards In-Situ Data Storage in Sensor Databases", 10th Panhellenic Conference on Informatics (**PCI'2005**) Volce, Greece, 2005 **D. Zeinalipour (UCY/CS)** 

### **Related Publications (cont.)**

#### RISE Hardware platform

- A. Banerjee, A. Mitra, W. Najjar, D. Zeinalipour-Yazti, V. Kalogeraki and D. Gunopulos "*RISE Co-S : High Performance Sensor Storage and Co-Processing Architecture*", Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, (SECON'2005), Santa Clara, California, USA, to appear in 2005.
- A. Mitra, A. Banerjee, W. Najjar, D. Zeinalipour-Yazti, V. Kalogeraki and D. Gunopulos, "High-Performance Low Power Sensor Platforms Featuring Gigabyte Scale Storage", IEEE/ACM 3rd International Workshop on Measurement, Modelling, and Performance Analysis of Wireless Sensor Networks SenMetrics'2005, (collocated w/ MobiQuitous'2005), San Diego, CA, to appear in 2005.
- S. Neema, A. Mitra, A. Banerjee, W. Najjar, D. Zeinalipour-Yazti, D. Gunopulos, V. Kalogeraki, "NODES: A Novel System Design for Embedded Sensor Networks", IEEE Intl. Conference on Information Processing in Sensor Networks (IPSN'2005) (Demo), Los Angeles, CA, to appear in 2005.





# "Data Storage In Wireless Sensor Databases"

**Demetris Zeinalipour** Department of Computer Science University of Cyprus\*

# **Thank You!**

eNEXT WG1 Workshop on Sensor and Ad-hoc Networks

University of Cyprus - UCY, Nicosia, 13-14 March 2006

\* Presented work was conducted at the University of California – Riverside.





http://www2.cs.ucy.ac.cy/~dzeina/