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Abstract— Smartphone devices have emerged into powerful
computational platforms equipped with multitude of sensors and
capable of generating vast amounts of data (geo-location, audio,
video, etc.) On the other hand, these devices operate on a strict
energy budget, thus have a limited lifetime on a single charge.
Consequently, we need to identify new energy-aware algorithms
and techniques to provide innovative, feature-rich applications
and services. In this white paper, we start out by providing recent
trends in Smartphone technology and Smartphone networks.
Our description is succeeded by an anatomy of the energy costs
associated with data processing in a Smartphone Network. We
conclude with prominent research directions in energy-aware
data management for Smartphone networks.

I. I NTRODUCTION

The widespread deployment of Smartphone devices fea-
turing geo-location (e.g., AGPS, Cell tower and WLAN
positioning) and other sensing capabilities (e.g., proximity,
ambient light, accelerometer, camera, microphone, etc.) along
with Internet connectivity through WLAN, WCDMA/UMTS
(3G), HSPA (3.5G) and LTE/WiMAX (4G) networks, have
brought a revolution in location-oriented mobile applications
and services. IMS Research and Comscore reported over
225M Smartphone sales in February 2010 (i.e., RIM, Apple,
Microsoft, Google and Palm) and according to the Focal Point
Group, handheld smart devices (including mobile phones and
PDAs) could number 1 billion in 2010.

We define a Smartphone Network as “a set of Smartphone
devices that communicate in an unobtrusive manner, without
explicit user interactions, in order to realize a collaborative
or social task.” There is already a proliferation of innovative
applications founded on Smartphone networks. One example
is opportunistic and participatory sensing [6], [2], [3], where
applications can task mobile nodes in a given region to provide
information about their vicinity using their sensing capabil-
ities. Another example is road traffic delay estimation [9]
using WiFi beams collected by Smartphone devices rather than
invoking energy-demanding GPS acquisition. On the social
site, Google Latitude enables users to track the places theyand
their social network have visited. The given service already
reports millions of users, despite the controversial privacy
concerns. Similarly, mobile social networking applications like
Foursquare, Gowalla and Loopt enjoy enormous success in the
Smartphone community.

A Smartphone is a battery-operated device, thus has a
limited lifetime on a single charge. Consider a recent 4.3-

inch Smartphone device, which features a rechargeable 3.7V
lithium-ion battery at a capacity of 1730 mAh (i.e., 1.73 *
3600 seconds * 3.7V = 23,044 Joules). Such a device is
advertised to offer 450 minutes (i.e., almost 8 hours) of talk
time using WCDMA and up to 355 hours (i.e., almost 15
days!) in stand-by mode. These number assume that the users
are not running any of their favorite applications nor use power
hungry features such as a bright LCD, GPS, WiFi, 3G/4G and
others. But even in the absence of all aforementioned features
and applications, the lifetime of a Smartphone is considerably
lower due to location, movement, signal strength, cell traffic
and battery age. Consequently, this brings the energy lifetime
of a Smartphone on a single charge, down to a day or so,
depending on the Smartphone vendor and model. Finally,
external battery chargers are not very practical for mobile
users and fuel cells for smartphones have not reached the wide
masses either (e.g., Aquafairy’s AF-M3000 model requires
only water to generate electricity that can charge an i-Phone
in 90 minutes!)

Consequently, we need to identify new energy-aware al-
gorithms and techniques to provide innovative, feature-rich
applications and services. We start our description out with
some measurements we obtained using a real Smartphone.
These measurements provide an anatomy of energy costs
associated with data processing on a Smartphone, enabling
the following two observations: i) Local processing is an
expensive operation with respect to energy consumption and
must be avoided whenever possible; and ii) Data transfer over
a wireless link (3G or WiFi) is again an expensive operation
and must be avoided whenever possible. We conclude with
prominent research directions in energy-aware data manage-
ment for Smartphone networks.

II. ENERGY ANATOMY OF A SMARTPHONE

In this subsection we present a set of real measurements we
obtained from a prototype trajectory similarity search system
implemented for Android smartphones [4]. Our experimental
platform is an Android-based HTC Hero 2.1 Smartphone
equipped with 802.11b/g and a Qualcomm MSM 7200A 528
MHz processor. We use benchmarking tools like 3gtest [1] and
PowerTutor [8] to quantify the energy drain of a Smartphone
device.



TABLE I

THE ENERGY ANATOMY OF A SMARTPHONE

Basic Operation on Smartphone Power
(mW = mJ/s)

CPU Idle (OS running) 175 mW
CPU Busy (Processing) 369 mW
WiFi Idle (Connected) 38 mW

WiFi Busy (Uplink 123Kbps, -58dBm) 600 mW
3G Busy 800 mW

LCD Bright. (low,hig) 300-900 mW
Function (len(trace) = 100K 18B points) Time

Transmit(trace, server) (from Smartphone) 112 seconds
Compare(query, trace) (on Smartphone) 111 seconds

In our benchmarking scenario, we are interested in trans-
ferring a GPS trajectory [11] of 100,000 18bytes data points
to the query processor prior query execution. Notice that by
sampling a GPS sensor every 2 seconds for one (1) year,
and assuming no failures or downtimes on the Smartphone,
would yield over 15M points, occupying more than 270MB of
storage. We isolated the cost of uploading a single trajectory
from the Smartphone to a TCP socket server over 802.11b
with an uplink of 123kbps (as measured by [1]). The given
operation took us 117 seconds (i.e., almost 2 minutes!),
draining over 70 Joules of energy.

On the other hand, we also tried to conduct the query
execution on the Smartphone device. Such a function was
very processing intensive (i.e., quadratic in respect to the
trajectory size), as it required the comparison of the query
trajectory against the local trajectory of every Smartphone
participating in the query resolution. We’ve isolated the time
and energy cost for computing the similarity function on a
single Smartphone unit. This operation took us 111 sec. (again
almost 2 minutes!) and amounted to over 41 Joules of energy.

Consequently, we make the following observations: i) The
asymmetric download/uplink bandwidth in these environments
severely hampers the massive upload of data to a server,
even under trajectory compression techniques; and ii) Local
processing is an expensive operation with respect to energy
consumption and must be avoided whenever possible. Notice
that both aforementioned costs are accounted for a single de-
vice participating in a query, thus the costs for N smartphones
participating in a query execution are much higher. Table I
provides a detailed summary of our preliminary findings.

III. R ESEARCHDIRECTIONS

In light of the above characteristics, we shall next identify
predominant data management directions for energy efficiency
in Smartphone Networks. As energy is not the sole dimension
in the multi-objective optimization space of smartphone net-
works, additional characteristics, such as Query Processing,
Efficient Data Dissemination Strategies Plans, Privacy - Secu-
rity and Trust, Uncertainty, Flash Storage, Data Compression,
etc. need to be taken into account in designing next generation
frameworks for these environments.

A. Handle Data on the Cloud
In the Mobile Cloud Computing paradigm, Smartphone

applications offload their energy-demanding functionality to
powerful servers that take care of CPU-intensive tasks (e.g.,
voice recognition with Google Voice for iPhone or orientation
processing for augmented reality apps), storage (e.g., dropbox
for smartphones), network-intensive tasks (e.g., Gmail for
Smartphone) and many others. This new paradigm is growing
by 88% from 2009 to 2014 reaching a market of 9.5 billion
USD, according to Juniper Research. This model has the
following trade-off: it provides a lower duty cycle on the
Smartphone device but at the same time also incorporates
additional network traffic to communicate the results to the
cloud. Additionally, this model suffers from low privacy levels.
In particular, disclosing user data to a central entity might
compromise user privacy in serious ways. That creates services
that have been critized seriously in recent years [5].

B. Handle Data on the Device
In the In-situ Computing Model [10], [7], [4] Smartphone

apps store their generated data (e.g., images, recordings,
sensed parameters) on the device flash storage for latter usage.
The Motorola Atrix 4G Smartphone offers 1GB of main
memory and up to 48GB of secondary flash media. The
local storage and indexing possibilities are certainly much
more extensive with 48GB (i.e., the English version of whole
Wikipedia repository is only 27GB!). Also search and retrieval
(i.e., read workloads) over flash media is extremely energy
efficient (as opposed to write workloads). This model has
the following trade-off: it provides good privacy and energy
levels but at the same time also minimizes user interactions.
Consequently, to make this a viable approach would require
hybrid approaches that apply concepts from distributed sys-
tems, distributed databases and peer-to-peer computing. Addi-
tionally, that would also require testbeds (such as SmartNet)
for realistically measuring energy as opposed to emulations
currently available.
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