
May 31, 2008

Parallel Processing Letters
c© World Scientific Publishing Company

Metadata Ranking and Pruning for Failure Detection in Grids ∗

Demetrios Zeinalipour-Yazti

Pure and Applied Science, Open University of Cyprus, 1304, Nicosia, Cyprus

Harris Papadakis

Institute of Computer Science, Foundation of Research and Technology - Hellas, Heraklion,
Greece

Chryssis Georgiou, Marios D. Dikaiakos

Department of Computer Science, University of Cyprus, 1678, Nicosia, Cyprus

ABSTRACT

The objective of Grid computing is to make processing power as accessible and easy to
use as electricity and water. The last decade has seen an unprecedented growth in Grid
infrastructures which nowadays enables large-scale deployment of applications in the
scientific computation domain. One of the main challenges in realizing the full potential
of Grids is making these systems dependable.

In this paper we present FailRank, a novel framework for integrating and ranking
information sources that characterize failures in a grid system. After the failing sites have
been ranked, these can be eliminated from the job scheduling resource pool yielding in
that way a more predictable, dependable and adaptive infrastructure. We also present
the tools we developed towards evaluating the FailRank framework. In particular, we
present the FailBase Repository which is a 38GB corpus of state information that char-
acterizes the EGEE Grid for one month in 2007. Such a corpus paves the way for the
community to systematically uncover new, previously unknown patterns and rules be-
tween the multitudes of parameters that can contribute to failures in a Grid environment.
Additionally, we present an experimental evaluation study of the FailRank system over
30 days which shows that our framework identifies failures in 93% of the cases and can
achieve this by only fetching 65% of the available information sources. We believe that
our work constitutes another important step towards realizing adaptive Grid computing
systems.

Keywords: Data Ranking Algorithms, Computational Grids, Failures, Scheduling

1. Introduction

Grids have emerged as wide-scale, distributed infrastructures that comprise het-

erogeneous computing and storage resources, operating over open standards and

∗This work is supported in part by the European Union under projects CoreGRID (# IST-2002-
004265) and EGEE (#IST-2003-508833). A Preliminary version of this paper has appeared in [32]
and [33]. The second author was supported by a CoreGRID REP Fellowship during 2008.

1

May 31, 2008

2 Parallel Processing Letters

distributed administration control [13, 14]. Grids are quickly gaining popularity,

especially in the scientific sector, where projects like EGEE (Enabling Grids for

E-sciencE) [8], TeraGrid [25] and Open Science Grid [23] , provide the infrastruc-

ture that accommodates large experiments with thousands of scientists, tens of

thousands of computers, trillions of commands per second and petabytes of stor-

age [8, 25, 23]. At the time of writing, EGEE assembles over 250 sites around the

world with more than 30,000 CPUs and 18PB of storage, running over 25,000 con-

current jobs and supporting over 100 Virtual Organizations.

While the aforementioned discussion shows that Grid Computing will play a

vital role in many different scientific domains, realizing its full potential will re-

quire to make these infrastructures dependable. As a measure of dependability of

grids we use the ratio of successfully fulfilled job requests over the total number

of jobs submitted to the resource brokers of a grid infrastructure. The FlexX and

Autodock data challenges of the WISDOM [30] project, conducted in August 2005,

have shown that only 32% and 57% of the jobs completed successfully (with an

”OK” status). Additionally, our group conducted a nine-month characterization

of the South-Eastern-Europe resource broker (rb101.grid.ucy.ac.cy) in [6] and

showed that only 48% of the submitted jobs completed successfully. Consequently,

the dependability of large-scale grids needs to be improved substantially.

Detecting and managing failures is an important step toward the goal of a de-

pendable grid. Currently, this is an extremely complex task that relies on over-

provisioning of resources, ad-hoc monitoring and user intervention. Adapting ideas

from other contexts such as cluster computing [21], Internet services [19, 20] and

software systems [22] seems also difficult due to the intrinsic characteristics of grid

environments. Firstly, a grid system is not administered centrally; thus it is hard

to access the remote sites in order to monitor failures. Moreover we cannot easily

encapsulate failure feedback mechanisms in the application logic of each individual

grid software, as the grid is an amalgam of pre-existing software libraries, services

and components with no centralized control. Secondly, these systems are extremely

large; thus, it is difficult to acquire and analyze failure feedback at a fine granular-

ity. Lastly, identifying the overall state of the system and excluding the sites with

the highest potential for causing failures from the job scheduling process, can be

much more efficient than identifying many individual failures. Of course the latter

information will be essential to identify the root cause of a failure [20], but this

operation can be performed in a offline phase, and thus it is complementary to our

framework.

In the FailRank architecture, feedback sources (i.e., websites, representative low-

level measurements, data from the Information Index, etc.) are continuously coa-

lesced into a representative array of numeric vectors, the FailShot Matrix (FSM).

FSM is then continuously ranked in order to identify the K sites with the highest

potential to feature some failure. This allows the system to automatically exclude

the respective sites from the job scheduling process.

May 31, 2008

Metadata Ranking and Pruning for Failure Detection in Grids 3

The advantages of our approach are summarized as follows: (i) FailRank is a

simple yet powerful framework to integrate and quantify the multi-dimensional pa-

rameters that affect failures in a grid system; (ii) our system is tunable, allowing

system administrators to drive the ranking process through user-defined ranking

functions; (iii) we eliminate the need for human intervention, thus our approach

gives space for automated exploitation of the extracted failure semantics; (iv) we

expect that the FailRank logic will be implemented as a filter outside the Grid job

scheduler (i.e., Resource Broker or Workload Management System), thus imposing

minimum changes to the Grid infrastructure.

2. Background on Grid Computing

In this section we will describe the anatomy of a Grid system and detail all the

components pertinent to the operation of a Grid site. In particular, we will focus on

Grid computing in the context of the EGEE project although other architectures

feature a similar framework. We also describe the main causes of unsuccessful job

executions in a grid system.

2.1. The Anatomy of a Grid

A Grid interconnects a number of remote clusters, or sites. Each site features het-

erogeneous resources (hardware and software) and the sites are interconnected over

an open network such as the Internet. Figure 1 illustrates the anatomy of a typical

grid (rectangles represent hardware while ellipses the services). The figure shows

how sites with different capabilities and capacities are contributing their resources

to the Grid infrastructure. In particular, each site features one or more Worker

Nodes, which are usually rack-mounted PCs. The Computing Element shown in the

same figure runs various services responsible for authenticating users, accepting jobs,

performing resource management and job scheduling. Additionally, each site might

feature a Local Storage site, on which temporary computation results can reside,

and local Software libraries, that can be utilized by executing processes. The Grid

middleware is the component that glues together local resources and services and

exposes high-level programming and communication functionalities to application

programmers and end-users. For instance EGEE uses the gLite middleware [16],

while NSF’s TeraGrid is based on the Globus Toolkit [15]. A Grid system also

features some global services which are described in the next subsection.

2.2. Lifecycle of Grid Jobs

A Grid job, or computation, consists of a set of input files that defines the elements

of a given computation (code, custom libraries, input files, etc). Grid jobs can be

classified as CPU-intensive and data-intensive, depending on the type of work per-

formed. For clarity we divide the lifecycle of a grid job into the following three

conceptual phases:

May 31, 2008

4 Parallel Processing Letters

W i d e � a r e a N e t w o r kW o r k e rN o d eW o r k e rN o d eW o r k e rN o d eW o r k e rN o d e S t o r a g eN o d eC o m p u t i n gE l e m e n t S t o r a g eE l e m e n tG r i d S i t e
I n f o r m a t i o nS e r v i c e

W o r k e rN o d eW o r k e rN o d eW o r k e rN o d e S t o r a g eN o d eC o m p u t i n gE l e m e n t S t o r a g eE l e m e n tG r i d S i t e W o r k e rN o d eW o r k e rN o d eC o m p u t i n gE l e m e n t G r i d S i t eM o n it o r .A g e n t M o n it o r .A g e n t M o n it o r .A g e n t
R e s o u r c eB r o k e rR e p l i c aC a t a l o gU s e rI n t e r f a c eu s e r

S o f t w a r e S o f t w a r e S o f t w a r e
Fig. 1. The Anatomy of a GRID Infrastructure.

(i) Assignment Phase: Jobs are submitted to a Grid by users through some

authenticated remote workstation, denoted as the User Interface (UI). Besides ob-

taining the output from completed jobs, the UI might also provide supplementary

functionality for requesting the status of a job and the status of resources in the

system. Jobs submitted to the UI are directed to some Resource Broker (RB), a

central global grid service that performs matching between requests and available

resources using the matchmaking approach [24]. Being able to quickly identify fail-

ures, would obviously be very helpful information to the RB as it would be able to

avoid bottlenecks and resources leading to errors. Although this is not currently pos-

sible, our work sets the foundation towards this goal. The matchmaking performed

by the RB is based on the information provided by another central service, the

Information Index, which provides information about the state of grid resources. If

the matchmaking is successful, the job is sent to the respective computing elements

for execution.

(ii) Execution Phase: During job execution, if any input files are necessary, these

have to be pushed to a remote grid site at runtime. Alternatively these files could

have been pushed to the grid site during the assignment phase. In both occasions,

a service called the Replica Catalog maintains the location of various replicas of a

file held in remote Storage Elements.

(iii) Completion Phase: When the job completes successfully, the user is in-

formed through the User Interface with a set of output files that are a superset of

the command line outputs, had the job run on a standalone computer. Although

the user will be notified in the event of a failure, there is no indication about the

possible cause.

2.3. Causes of Failures

In this section we identify the main causes of failures in Grid infrastructures. These

observations are extrapolated from the experiences we acquired by operating an

May 31, 2008

Metadata Ranking and Pruning for Failure Detection in Grids 5

EGEE grid site that consists of: (i) a Regional Resource Broker (3.6GHz/1GB

RAM), (ii) a Regional Information Service which features the same aforementioned

characteristics, (iii) a 72 CPU cluster of Worker Nodes which utilizes a blend of

2.6GHz AMD Opteron and 2.8GHz Xeon CPUs, and (iv) a Storage Element which

features 4x250GB disk space in RAID 5. Our analysis takes into account 37,860 job

submissions (≈19K normalized CPU hours), between March 2005 and June 2006.

We combine our observations with others obtained by fellow-researchers [30, 18] to

conclude the following:

Grid component failures: One or more of the components involved in the Grid

infrastructure could malfunction due to hardware failures (e.g., hard drive burns,

RAM or motherboard failures, power supply failures and overheating) and software

faults (e.g., O/S mis-configurations and middleware bugs). Such problems may result

to a total collapse of a component (crash failure) or to a component becoming

partially unresponsive or extremely slow.

Network failures: Network links could cause permanent or transient network dis-

connections leading to a loss, corruption or delay of messages and data transfers.

Network disconnections may result to total inaccessibility of a Grid component, a

condition that is equivalent to a crash failure of that component. Network access

mis-configuration (firewall changes or updates) lead to the same effect.

Information faults: The information provided by the Grid Information Service,

which provides state information about the distributed grid sites, may be erroneous

or obsolete due to administrator errors, software faults, and network delays. As

a result, the Resource Broker, a central service that performs matching between

resources and requests based on this information, may take sub-optimal decisions

that result to excessive delays in job processing or even to failures in job execution.

Excessive delays: In the large, shared and dynamic Grid infrastructure, unusual

workload conditions, like those triggered by flash crowds and denial of service at-

tacks, may lead to long queuing delays in Computing or Storage Elements, to re-

duced Grid service throughput, and to long network delays in data transfers. Such

conditions may result to job turnaround times that are substantially longer than

those expected by Grid users. A similar effect may arise also because of the het-

erogeneity of the Grid: jobs may end-up being executed on very slow resources,

resulting to unacceptably slow execution times. Because of the resource virtualiza-

tion imposed by many Grids, end-users have limited control over the performance

characteristics of resources allocated to their jobs.

3. Monitoring Failures in a Grid Environment

In this subsection we overview typical failure feedback sources provided in a grid

environment. These sources contain information that is utilized by our system in

order to deduct, in an a priori manner, the failing sites. Our discussion is in the

context of the EGEE infrastructure, but similar tools and sources exist in other

grids [25, 23].

Meta-information sources: Several methods for detecting failures have been de-

May 31, 2008

6 Parallel Processing Letters

ployed so far. Examples include (for a detailed description see [27]): (i) Information

Index Queries: these are performed on the Information Service and enable the ex-

traction of fine-grained information regarding the complete status of a grid site; (ii)

Service Availability Monitoring (SAM) [31]: a reporting web site that is maintained

for publishing periodic test-job results for all sites of the infrastructure; (iii) Grid

statistics: provided by services such as GStat [17]; (iv) Network Tomography Data:

these can be obtained by actively pinging and tracerouting other hosts in order

to obtain delay, loss and topological structure information. Network tomography

enables the extraction of network-related failures; (v) Global Grid User Support

(GGUS) ticketing system [9]: system administrators use this system to report com-

ponent failures as well as needed updates for sites. Such tickets are typically opened

due to errors appearing in the SAM reports; (vi) Core Infrastructure Center (CIC)

broadcasts [5]: allow site managers to report site downtime events to all affected

parties through a web-based interface; and (vii) Machine log-files: administrators

can use these files to extract error information that is automatically maintained by

each grid node.

Active benchmarking: Deploying a number of lower level probes to the remote

sites is another direction towards the extraction of meaningful failure semantics. In

particular, one can utilize tools such as GridBench [26, 28], the Grid Assessment

Probes [4] and DiPerF [7], in order to determine in real time the value of certain

low level and application-level failure semantics that can not be furnished by the

meta-information sources. For example, the GridBench tool developed by our group

provides a corpus of over 20 benchmarks that can be used to evaluate and rank the

performance of Grid sites and individual Grid nodes.

Both the Meta-Information Sources and the Active Benchmarking approaches have

a major drawback: their operation relies heavily on human intervention. As Grid in-

frastructures become larger, human intervention becomes less feasible and efficient.

As we would like Grid Dependability to be scalable, our proposed architecture does

not rely on human intervention but instead provides the means for acquiring and

analyzing the data from the above resources in an automated manner.

4. The FailRank System

In this section we describe the underlying structure that supports the FailRank

system. We start out with an architecture overview and then proceed with basic

definitions in order to formalize our description. We follow with the description of

the failure ranking mechanism deployed in FailRank.

4.1. Architecture Overview

The FailRank architecture (see Figure 2), consists of four major components: (i) a

FailShot Matrix (FSM), which is a compact representation of the parameters that

contribute to failures, as these are furnished by the feedback sources; (ii) a temporal

sequence of FSMs defines an FSM timeseries which is stored on local disk; (iii) a

May 31, 2008

Metadata Ranking and Pruning for Failure Detection in Grids 7

FailRank ArchitectureGrid Sites Feedback
Sources

FSM

Top-K
Ranking
Module

FSM Timeseries (Storage)

Data
Exploration

Tools

R
e
s
u
l
t
s

Fig. 2. The FailRank System Architecture: Feedback sources are continuously coalesced
into a representative array of numeric vectors, the FailShot Matrix (FSM). FSM is then
continuously ranked in order to identify the K sites with the highest potential to feature
some failure.

Top-K Ranking Module which continuously ranks the FSM matrix and identifies

the K sites with the highest potential to run into a failure using a user defined

scoring function; and (iv) a set of data exploration tools which allow the extraction

of failure trends, similarities, enable learning and prediction. FailRank is tunable

because it allows system administrators and domain experts to drive the ranking

process through the provisioning of custom scoring functions.

4.2. Definitions and System Model

In this section we will provide some definitions and our system model upon which

we will structure our presentation in the subsequent sections.

Definition 1 (FailShot Matrix (FSM)): Let S denote a set of n grid sites

(i.e., S = {s1, s2, ..., sn}). Also assume that each element in S is characterized by

a set of m attributes (i.e., A = {a1, a2, ..., am}). These attributes are obtained by

the feedback sources described in Section 3. The rows in Table 1 represent the

sites while the columns represent the respective attributes. The jth attribute of

the ith site is denoted as sij . The j-th attribute specifies a rating (or score) which

characterizes some grid site si (i ≤ n) at a given time moment. These ratings are

extracted by custom-implemented parsers, which map the respective information

to real numerical values in the range [0..1] (1 denotes a higher possibility towards

failure). The m× n table of scores defines the FailShot Matrix (FSM), while a Site

Vector is any of the n rows of FSM.

A graphical illustration for some synthetic example is given in Table 1. The

figure shows five sites {s1, ..., s5} where each site is characterized by five attributes:

CPU (% of CPU units utilized), DISK (% of storage occupied), QUEUE (% of job

queue occupied), NET (% of dropped network packets) and FAIL (% of jobs that

don’t complete with an ”OK” status).

Definition 2 (FSM Timeseries): A temporal sequence of l FailShot Matrices

defines an FSM Timeseries of order l.

Keeping a history of the failure state for various prior time instances is important

May 31, 2008

8 Parallel Processing Letters

as it enables the automatic post-analysis of the dimensions that contributed to

a given failure, enables the prediction of failures and others (Section 7 provides

an overview). It is important to notice that the FSM timeseries can be stored

incrementally in order to reduce the amount of storage required to keep the matrix

on disk. Nevertheless, even the most naive storage plan of storing each FSM in its

entirety, is still much more storage efficient than keeping the raw html/text sources

provided by the feedback sources. In constructing FailBase, described in Section 5,

we found that the FSM representation saves us approximately 350GB of storage

per month.

4.3. The Ranking Module

Although the snapshot of site vectors in FSM greatly simplifies the representation

of information coming from different sources, observing individually hundreds of

parameters in real time in order to identify the sites that are running into trouble

is still a difficult task. For example a typical LDAP query to the Grid Information

Service returns around 200 attributes. Monitoring these parameters in separation is

a cumbersome process that is very expensive in terms of human resources, can rarely

lead to any sort of a priori decision-making and is extremely prone to mistakes and

human omissions. Instead, automatically deducting the sites with the highest poten-

tial to suffer from failures is much more practical and useful. Since this information

will be manipulated in high frequencies, we focus on computing the K sites with

the highest potential to suffer from failures rather than finding all of them (K is a

user-defined parameter). Therefore we don’t have to manipulate the whole universe

of answers but only the K most important answers, quickly and efficiently. The

answer will allow the Resource Broker to automatically and dynamically divert job

submissions away from sites running into problems as well as notify administrators

in advance (compared to SAM & tickets) to take preventive measures for the sites

more prone to failures. Finally, we developed a mechanism for selective extraction

of monitoring information for selecting those K sites, which we describe later on.

This mechanism is capable of reducing the information we need to fetch and process

by approximately one third.

Scoring Function: In order to rank sites we utilize some aggregate scoring function

which is provided by the user (or system administrator). For ease of exposition we

use, similarly to [2], the function:

Score(si) =
m

∑

j=1

wj ∗ sij (1)

where sij denotes the score for the jth attribute of the ith site and wj (wj >

0) a weight factor which calibrates the significance of each attribute according to

the user preferences. For example if the CPU load is more significant than the

DISK load, then the former parameter is given a higher weight . Should we need to

capture more complex interactions between different dimensions of FSM we could

May 31, 2008

Metadata Ranking and Pruning for Failure Detection in Grids 9

construct, with the help of a domain expert, a custom scoring function or we could

train such a function automatically using historic information (Section 6.3 conducts

an evaluation of this parameter). It is expected that the scoring function will be

much more complex in a real setting (e.g., a linear combination of averages over n′

correlated attributes, where n′ << n).

Table 1: The FailShot Matrix (FSM).

Site CPU DISK QUEUE NET FAIL

s1=USC-LCG2 0.63 0.61 0.01 0.28 0.35

s2=TAU-LCG2 0.66 0.91 0.92 0.56 0.58

s3=ELTE 0.48 0.01 0.16 0.56 0.54

s4=UCL-CCC 0.99 0.90 0.75 0.74 0.67

s5=CY01-KIMON 0.44 0.07 0.70 0.19 0.67

Example: In order to stimulate our description, consider the example of Ta-

ble 1. In order to infer the overall rank for two site vectors, such as s2 =

{0.66, 0.91, 0.92, 0.56, 0.58} and s4 = {0.99, 0.90, 0.75, 0.74, 0.67}, we apply the scor-

ing function with wj = 1 (i.e., all dimensions are of equal importance), and find

that s2 = 3.63 and s4 = 4.05.

In order to minimize the computation of the scoring function, which potentially

has to join hundreds of columns in each run, we can utilize the Threshold Algorithm

(TA) [12]. TA is one of the most widely recognized algorithms for finding the K

highest rank answers in database and middleware scenarios. Suppose that we are

interested in finding the K = 1 objects with the highest score. TA starts out by

performing a parallel access to the n lists of the Sorted-FSM table, which is similar

to Table 1 with the exception that each column is sorted in descending order of

the value. While an object si is seen, TA performs a random access to the other

lists to find the exact score for si using the given scoring function. In our working

example the exact score would be computed for the two objects in the first row

(i.e., s4 = 4.05 and s2 = 3.63) since sorted access is executed on a row-at-a-time

basis. It then computes a threshold value τ as the sum of all scores in the first row

(i.e., τ = .99 + .91 + .92 + .74 + .67 = 4.23). Since τ is larger than both scores of

s4 and s2, the TA algorithm performs another iteration in which the threshold τ is

refined as the sum of scores across the second row (i.e., τ = 3.54). It also computes

the exact score for s5 = 2.07 (the only unresolved object in the second row). Now

the algorithm finds at least K=1 objects above the threshold (i.e., s4≥τ and s2≥τ)

and therefore terminates. It is easy to prove that no other object can have a score

above s4 thus the score function calculation can be omitted for these objects.

5. The EGEE FailBase Repository

In the previous section we outlined the main components of the FailRank archi-

tecture. In this section we present the tools we developed in order to evaluate the

May 31, 2008

10 Parallel Processing Letters

proposed architecture. In particular, we present the FailBase Repository which is a

38GB corpus of state information that we constructed and which characterizes the

EGEE Grid for one month in 2007. Such a corpus paves the way for the community

to systematically uncover new, previously unknown patterns and rules between the

multitudes of parameters that can contribute to failures in a grid environment.

5.1. Overview

FailBase currently contains 32 days of monitoring data obtained from tests executed

on the EGEE Grid Infrastructure between 16/3/2007 and 17/4/2007. The trace

was collected at the High Performance Computing systems Lab (HPCL) at the

University of Cyprus. We utilized a dual Xeon 2.4GHz CPU machine with 1GB of

RAM connected to the European Academic Network (GEANT) at 155Mbps.

The trace maintains information for 2,565 Computing Element (CE) queues.

It is important to note that resource brokers perform the matchmaking between

the requests and the available and appropriate queues at the CE-queue granularity

rather than on individual nodes. Thus, we focus on characterizing failures at the

same granularity as well. Each CE-queue is stored in an individual folder that

currently contains 72 attributes (i.e., files) and each file characterizes the CE-queue

it is stored in. For example, ce101.grid.ucy.ac.cy jobmanager-lcgpbs-atlas

is the directory that contains measurements specific to the ATLAS experiment job

queue that is maintained on the Computing Element ce101.grid.ucy.ac.cy.

Each of the files in the CE-queue folders can be thought of as a timeseries

(i.e., a sequence of [timestamp,value] pairs) for the given attribute using a time

step of approximately 1 to 10 minutes (varies according to the type of source). We

currently share the Failbase repository with the researchers of our group using the

UNIX filesystem interface which maintains openness and portability. In the future

we have plans to store the information in a relational database on the EGEE grid in

order to allow researchers from other institutes to access and manipulate the stored

information using the expressive power of the Structured Query Language (SQL).

5.2. Meta-information Sources

We shall next describe the adopted methodology for acquiring the 72 failure-related

attributes from the respective meta-information sources:

(i) Service Availability Monitoring (SAM): We obtained approximately 260MB of

data in raw html form (one html file for each CE) using the UNIX system utility

curl. We then processed these pages using a set of perl scripts and generated 18

attributes. These attributes contain information such as the version number of the

middleware running on the CE, results of various replica manager tests and results

from test job submissions.

(ii) Information Index Queries (BDII): We used the ldapsearch system utility tool to

perform approximately 2 million LDAP queries on the Information Index hosted on

May 31, 2008

Metadata Ranking and Pruning for Failure Detection in Grids 11

 0

 20

 40

 60

 80

 100

 120

 140

2927252321191715131197531

R
T

T
 (

se
co

nd
s)

Time (days)

Round Trip Time

CE-queue: ce01.kallisto.hellasgrid.grjobmanager-pbs-ops

RTT Delay

 0

 1

 2

 3

 4

 5

 6

 7

 8

2927252321191715131197531

P
ac

ke
t L

os
s

(P
er

ce
nt

ag
e

%
)

Time (days)

Packet Loss

CE-queue: ce01.kallisto.hellasgrid.grjobmanager-pbs-ops

Packet Loss

Fig. 3. Round-Trip-Time (left) and Packet Loss (right) for the
CE-queue ce01.kallisto.hellasgrid.gr jobmanager-pbs-ops. These attributes are two of the
72 attributes maintained for the 2,565 CE-queues in the Failbase Repository.

bdii101.grid.ucy.ac.cy. We then performed a projection in order to extract another

15 failure-related attributes. This yielded attributes such as the number of free

CPUs and the maximum number of running and waiting jobs for each respective

CE-queue.

(iii) Grid Statistics (GStat): We downloaded, again using curl, and parsed data

files from the monitoring website of Academia Sinica. From these files we generated

19 attributes for each given center and then replicated these attributes to all the

respective queues. The 19 attributes contain information such as the geographical

region of a Resource Center, the available storage space on the Storage Element

used by a particular CE, and results from various tests concerning BDII hosts.

(iv) Host sensor data (GridICE): We performed over 500,000 LDAP queries on every

EGEE Computing Element host that published GridICE [10] sensor data (i.e., on

≈184 computing element hosts). The interval between consecutive probes was 10

minutes. We were able to extract 18 attributes of interest that includes information

such as the total and available sizes of RAM, virtual memory and the filesystem.

(v) Network Tomography Data (SmokePing): We obtained a 313MB snapshot of the

gPing database from ICS-FORTH (Greece) for the studied period. The database

contains network monitoring data for all the EGEE sites. From this collection we

measured the average round-trip-time (RTT) and the packet loss rate relevant to

each South East Europe CE (see Figure 3) which therefore yielded 2 additional

attributes. In order to make the information consistent with the FailBase repository

schema, we replicated files from the CE-level to CE-queue-level using a one-to-one

mapping function.

5.3. Pruning the Meta-Information Retrieval Space

Although the Failbase repository is an invaluable tool for offline data exploration

and analysis it is quite expensive (with regards to network I/O, processing and stor-

age) to construct and maintain such a repository in an online manner. Additionally,

a huge meta-information repository could also impose a limitation on how often

May 31, 2008

12 Parallel Processing Letters

the ranking function can be executed, consequently limiting the failure detection

capability of our system. Therefore, we seek to prune the space of possible FSM

values and only focus on those values that will determine the final top-k result.

In this subsection we will sketch a greedy algorithm to prune the meta-

information space in an online manner without compromising the accuracy of the

FailRank framework. In particular, we devise an iterative algorithm which consists

of the following steps: We first sort the m attributes of A = {a1, a2, . . . , am} in

descending weight order (i.e., w1 ≥ w2 ≥ . . . ≥ wm). Next, we fetch the informa-

tion from the meta-information source with the highest weight (i.e., w1). Let this

column be the jth attribute of the FSM table (i.e., aj = (s1, s2, . . . , sn)), where

j ≤ m. For each value in the aj vector we construct an upper bound high(si)

(i ≤ n) by substituting the value of the missing m− j attributes by their maximum

possible value (i.e., high(si) = si + (m − j) ∗ α, where α is the maximum possible

value for each attribute). Obviously, the final score for each site si (i ≤ n) lies

somewhere in the range [si . . . high(si)]. The problem that we are now challenged

to solve is that of identifying the K sites with the highest overall value (i.e., even for

the attributes that have not been fetched yet). To achieve this without fetching all

respective attributes we process the [si . . . high(si)] ranges in descending high(si)

order discarding any range with an upper bound lower than the Kth highest-ranked

lower bound si. The latter one defines a threshold τ below which all tuples can

safely be eliminated. In particular, it can be proven that any pruned-away tuple sx

can not be in the final top-K result-set, thus sx can safely be excluded from further

consideration. The same procedure is iteratively repeated until K sites have been

identified.

6. Experimental Evaluation

In this section we describe our experimental methodology and the results of our

evaluation.

6.1. Methodology

We have implemented a trace-driven tool in GNU C++ and JAVA which processes

the Failbase repository and then simulates the execution of the FailRank framework.

In particular, we replay the trace in our simulator and at each timestamp we evaluate

a variety of evaluation metrics, as these are described next, in order to assess the

efficiency of our framework:

i. Prediction Accuracy: this metric quantifies how accurately FailRank can

identify the failing sites. In particular, we replay the trace in our simulator and

at each timestamp we identify the K sites that might fail to respond. We will

denote these (timestamp, siteID) tuples as the Identified Set (Iset). The Iset

is constructed by selecting the K highest-ranked answers from the execution of

the scoring function described in Section 4.3 with equal weights on FSM.

May 31, 2008

Metadata Ranking and Pruning for Failure Detection in Grids 13

Note the system can compute the Iset directly from the FSM matrix, before

the timestamp at which the actual error happens, thus such an approach pro-

vides an a priori failure detection mechanism. In order to assess this claim and

validate that the Iset corresponds to the actual sites that have failed to respond,

we need a set of (timestamp, siteID) tuples at which real site failures have hap-

pened. We shall denote such a set as the Real Set (Rset) and we construct it

by combining the 18 attributes provided by the SAM service (described in 5.2)

using the scoring function described in Section 4.3. These attributes provide an

accurate view of the failure state for each CE-queue a. That yields an average

score per site for every timestamp. For each timestamp, we then again choose

the K sites with the highest score. We define the penalty, for not finding the

correct sites at timestamp i, using a set-theoretic notation as follows:

Penaltyi = |Rset − Iset| (2)

where |Rset| = |Iset| = K and the penalty at each timestamp i is defined as the

cardinality of the set difference Rset−Iset. In our experimentation, we shall also

use the Aggregate Penalty (i.e., A =
∑timestamps

i=1
Penaltyi), which provides a

measure of overall efficiency for the Iset in all timestamps. Having identified the

correct Iset sites, our objective is to blacklist these sites and exclude them from

the job scheduling process, decreasing in that way the number of failures.

ii. Pruning Efficiency: this metric quantifies the efficiency of our pruning algo-

rithms which eliminates the values of the FSM table that can not contribute

to the final top-k result. Practically, that means that the FailRank system will

need to acquire less information in order to derive the K highest ranked answers

all this without compromising the top-k retrieval accuracy. In particular, we re-

play the trace in our simulator and identify at each timestamp i all the FSM

values that are below the threshold τ and that can be excluded. We will denote

the remaining (timestamp, value) tuples, those that will be downloaded from

the meta-information sources, as the Fetched Set (Fetchedset(i)). Note that the

FailRank system computes Fetchedset(i) incrementally as the data gradually

streams from the distributed meta-information sources. The upper bound on

the number of all possible values that are available to the FailRank system

on time instance i is denoted as the All Values Set (AVset(i)). AVset(i) has a

known cardinality of m × n, where m is the number of attributes available to

the system and n the number of CE-queues that the FailRank system monitors.

We investigate the achieved pruning of our system using two different criteri-

ons. The first criterion measures the amount of pruning (denoted as Pruningi)

that is achieved at each timestamp i of the trace. In particular, this metric is

aNote that the SAM attributes unveil a posteriori the failure state of each individual grid site,
thus these can not be taking into account for the derivation of the Iset.

May 31, 2008

14 Parallel Processing Letters

defined as the cardinality ratio of the Fetchedset(i) over the AVset(i), formally:

Pruningi =
|Fetchedset(i)|

|AVset(i)|
(3)

The second criterion measures the number of iterations our pruning algo-

rithm requires in order to derive the Fetchedset and consequently determine

the K highest-ranked answers. In particular, since the pruning algorithm is an

iterative algorithm in each iteration it fetches the next attribute of the FSM

table with the highest weight and we are interested in finding how many it-

erations it takes until our algorithm converges. For this reason we define the

Level-Wise Pruning metric (denoted as Lj) which defines the number of FSM

rows pruned-away in each algorithm iteration j. In particular, for each iteration

we calculate the average for all time instances using the following summation:

Lj = (
1

timestamps
)

timestamps
∑

i=1

Rows Pruned Awayi (4)

6.2. Evaluating the Prediction Accuracy

In this subsection we evaluate the efficiency of the FailRank framework in identifying

the sites that will fail. In particular, we obtain the Iset using two alternative strate-

gies: i) FailRank Selection, which utilizes the FSM matrix and selects the K = 20

sites (≈ 10% of all sites) that maximize the scoring function of Section 4.3 with

equal weights; and ii) Random Selection, which does not utilize the FSM matrix

and simply selects the K = 20 sites at random.

We then measure the respective penalty using our provided definition. Note

that for this experiment we utilize a subset of the Failbase repository (i.e., 197 OPS

queues monitored for 32 days) for which we had the largest number of available

attributes. We also apply a spline interpolation smoothing between consecutive

time points in our graph in order to facilitate presentation.

Figure 4 illustrates that FailRank selection always has an extremely low penalty

(i.e., on average 2.14±1.41 with A = 92, 596) while Random selection is always very

close to 20 (i.e., on average 18.19 ± 3.5 with A = 786, 148). We can conclude that

FailRank misses the correct sites in only 9% of the cases while Random misses the

correct results in 91% of the cases. Another observation is at time instances 6000,

16000 and 39000, both selection curves drop to zero. This is attributed to the fact

that our meta-information trace contained missing values at the given points (i.e.,

Iset = Rset = ∅). One final observation is that the Random selection curve is in

some cases above 20. This is attributed to the fact that the cardinality of the Rset

might be bigger than K, instead of equal to K, in certain cases. This is explained

as follows: to construct the Rset we identified the K highest ranked tuples for each

timestamp. In some cases the Kth tuple has an equal score to the Kth + 1 tuple

(or maybe even the Kth + 2 tuples, etc.). As a result, |Rset| might be bigger than

May 31, 2008

Metadata Ranking and Pruning for Failure Detection in Grids 15

 0

 5

 10

 15

 20

 25

 0 5000 10000 15000 20000 25000 30000 35000 40000

P
en

al
ty

 (

si
te

s
no

t i
de

nt
ifi

ed
)

Time (minutes)

Penalty for selecting the K=20 worst sites (Random vs. Failrank Selection)

Random Selection
Failrank Selection (naive scoring)

Fig. 4. FailRank selection vs.Random selection: FailRank identifies the site that have failed
as opposed to Random which always identifies very few of the K=20 sites.

 0

 1

 2

 3

 4

 5

 0 5000 10000 15000 20000 25000 30000 35000 40000

P
en

al
ty

 (

si
te

s
no

t i
de

nt
ifi

ed
)

Time (minutes)

Penalty for selecting the K=20 worst sites in Failrank (Naive Scoring vs. Expert Scoring)

Failrank (Naive Scoring)
Failrank (Expert Scoring)

Fig. 5. FailRank Scoring Function Evaluation: When the FailRank scoring function is tuned
by an expert (Expert scoring) it yields more accurate results than the alternative of setting the
scores uniformly (Naive Scoring).

|Iset| which consequently might yield a penalty larger than K (e.g., consider the

case where Rset ∩ Iset = ∅).

6.3. Scoring Function Evaluation

In the second experimental series we study whether we can further decrease the

penalty of the FailRank approach by tuning the scoring function. Since some of

the 75 attributes might be more important in defining the failure, we asked our

administrators to manually provide weights to the 75 attributes given in the trace.

Of course this assignment might not be optimal but it provides us with a lower bound

on the feasible improvement of the penalty metric. We will denote this edition of

the FailRank algorithm as the Expert Scoring approach while the former approach,

that assigned equal weights to all attributes, as the Naive Scoring approach.

May 31, 2008

16 Parallel Processing Letters

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5000 10000 15000 20000 25000 30000 35000 40000

P
ru

ni
ng

 E
ffi

ci
en

cy
 (

fe
tc

he
d/

al
l)

Time (minutes)

Pruning Efficiency (Naive Scoring vs. Expert Scoring)

Pruning with Expert Scoring
Pruning with Naive Scoring

Fig. 6. Pruning Efficiency: The ratio of attribute values not fetched in each time instance.

Figure 5 illustrates that by fine-tuning the weights using the expert scoring

method we can achieve a significant reduction in the penalty. In particular, the

penalty is now on average 1.48 ± 1.04 (with A = 64, 008) which presents a 31%

improvement from the naive scoring approach. The FailRank method with expert

scoring misses failures in only 7.4% of the cases which is clear improvement to the

Random method presented in the previous subsection.

6.4. Pruning Efficiency Evaluation

In the last experimental series we assess the two pruning evaluation metrics we

defined earlier.

Figure 6, presents the Pruningi evaluation metric for the 43,200 timestamps

by utilizing the Naive Scoring scheme and the Expert Scoring scheme. The figure

shows that by utilizing the naive scoring scheme we can still retrieve the K highest-

ranked answers by spending 11% less on retrieving data from the meta-information

sources. Notice that the FailRank system will conduct the meta-information gather-

ing very frequently, thus even a seemingly small increase in the pruning magnitude

has a significant benefit on the performance of the system. The result is even more

encouraging for the Expert Scoring approach in which we achieve a 34% pruning

magnitude. That means that the system will require to fetch only the 2/3 of the

available metadata in order to derive the correct answer.

Figure 7 (top-bottom), presents the level-wise pruning efficiency Lj , where j is

in the range 1-25. From the two figures we can draw the following conclusions: i)

The Expert Scoring approach convergences much faster than the Naive Scoring ap-

proach. In particular, the bottom figure shows the Expert scheme will complete in

21 iterations while naive scoring in 25 iterations. This observation can be explained

by the fact the Expert method assigns different weights to the m attributes, con-

sequently the pruning algorithm can eliminate much faster the tuples below the τ

threshold. Related to the above comment is also the observation that the Expert

May 31, 2008

Metadata Ranking and Pruning for Failure Detection in Grids 17

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25#F
S

M
 r

ow
s

pr
un

ed
-a

w
ay

 (
1

G
rid

si
te

 /
ro

w
)

Algorithm Iteration (1 attr. / iteration)

Level-Wise Pruning Efficiency (Naive Scoring)

Level-Wise Pruning with Naive Scoring

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25#F
S

M
 r

ow
s

pr
un

ed
-a

w
ay

 (
1

G
rid

si
te

 /
ro

w
)

Algorithm Iteration (1 attr. / iteration)

Level-Wise Pruning Efficiency (Expert Scoring)

Level-Wise Pruning with Expert Scoring

Fig. 7. Level-Wise Pruning Evaluation: The number of rows excluded in each iteration of
the pruning algorithm using Naive Scoring (top) and Expert Scoring (bottom).

Method maintains this relative advantage over the Naive method for all time in-

stances. For instance, when j=21 the expert method prunes away 61% of the rows

while the naive method only 17%. ii) A second observation is that in both scoring

schemes the first 10-12 iterations yield no pruning. Consequently, a real implemen-

tation can request the retrieval of these attributes in the first iteration.

7. FailRank Extensions

In this section we review some exploratory data analysis, learning and prediction

applications that can be built on top of the FailRank architecture.

(i) Finding State-related Sites: An interesting question is whether any pair of

sites features a similar site vector. This is an indication that two or more sites are in

a similar failure state, with regards to the attributes of FSM. In order to answer this

question we need a method that compares two vectors (~q, ~si), and finds if these are

similar. An efficient technique, widely used in the information retrieval domain, is

the cosine similarity [11]. The cosine similarity finds the cosine of the angle between

two vectors. If two vectors are identical then the cosine similarity is 1 (because the

May 31, 2008

18 Parallel Processing Letters

angle between them is 0). On the contrary if two vectors are different then the

similarity is closer to 0. The cosine similarity is calculated as following:

sim(q, si) =

∑

(~q ∗ ~si)
√

∑

(~q)2 ∗
√

∑

(~si)2
(5)

By executing the cosine similarity for the sites in Table 1, we find that the highest

similarity is sim(s2, s4) = 0.97 while the smallest is sim(s1, s5) = 0.57. This means

that s2 and s4 have a close relation across the different dimensions of the Failshot

Matrix while s1 and s5 have a very distant relation.

(ii) Timeseries Similarity Search: Identifying which attribute timeseries are

similar allows us to find the correlated attributes in FSM. For instance we can find

that the QUEUE timeseries is correlated to the CPU timeseries for some site. To

formalize our description, let P = (p1, p2,, pl) and Q = (q1, q2,, ql) denote two

1-dimensional timeseries of length l (each point denotes some item sij in FSM).

The most straightforward way to compute the similarity between P and Q is to

apply the Euclidean distance (L2) which is given by d = |P−Q| = 2

√

∑l

i=1
|pi − qi|2.

Since data points are only matched at identical time positions, the running time

of this approach is O(l). However this distance is not able to handle out-of-phase

matches. To understand this consider two identical timeseries P and Q, where Q is

shifted in time by some offset t (i.e., pi = qi+t, ∀i ≤ l). Using L2 would obviously

not yield any similarity between P and Q. The Dynamic Time Warping (DTW) [1],

Longest Common Sub-Sequence (LCSS) [3] and the Upper LCSS method [29] allow

local stretching by matching each point of P with other points of Q within some

window δ (i.e., pi is matched with qi±δ, ∀i ≤ l). This allows us to correlate noisy

failure timeseries with out-of-phase matches again in O(l) time.

(iii) Decision Tree Learning: Given a site vector si = {a1,...,am}, we want to

predict if si will fail (with some statistical confidence). To answer this question, we

train a Decision tree T [11] in an offline phase using a corpus of annotated failures.

We then extract the classification rules that are utilized by the FailRank system.

For instance if we learn that a site vector of the form {CPU≥0.70, DISK≥0.90,

QUEUE≥0.85, any, any} fails in 95% of the cases, then sites satisfying this rule are

excluded from the job scheduling process. An interesting problem is to provide a

decision tree which continues its learning behavior even after the initiation of the

system and which gracefully adapts to changes.

(iv) Prominent Future Challenges: In order to further improve the FailRank

architecture we are challenged with the task of further improving metadata informa-

tion gathering. In particular, we expect that the following two tasks will significantly

boost the accuracy and performance of our system:

• Failure Exchange Interfaces: The first challenge is to develop efficient in-

terfaces and protocols to exchange fault information between grid sites. The

development of such protocols are currently difficult as the lack of a central-

ized authentication and administration scheme makes it intrinsically difficult to

May 31, 2008

Metadata Ranking and Pruning for Failure Detection in Grids 19

access the remote sites and monitor failures. Furthermore, it is currently also

very hard to encapsulate failure feedback mechanisms in the application logic

of individual grid software as the grid is an amalgam of pre-existing software

libraries, services and components with no centralized control. What is required

is a generic component that can be statically or dynamically linked to the soft-

ware stack of grid software and which can enable the communication of relevant

data through a common interface.

• Failure Information Schema: The second challenge is to develop a global

schema that will define the nature of information to be exchanged. The lack of

common parameters that characterize failures makes it hard to obtain a global

understanding regarding failures. For instance, a given monitoring system might

count I/O reads and writes, defined as the distinct number of I/O operations

performed, while another grid monitoring system might count I/O bytes read

and write, defined as the accumulative number of bytes that were spent on

the given I/O operations. Additionally, it also remains to be shown that a fine

granularity is or is not appropriate for the prognosis of failures. Large content

distribution networks tend to collect low-level probes (e.g., ping and trace route

data) in order to enable a variety of network tomography operations. Although

such probes are essential in the establishment of these services, they incur an

enormous network traffic. In the context of Grids, it is still not shown that such

low-level information is efficient and that it can be obtained in a viable fashion.

8. Conclusions & Future Work

In this paper we introduce FailRank, a novel framework for integrating and ranking

information sources that characterize failures in a grid system. This perspective is

to our knowledge new and fits well the computation model of grid infrastructures.

Another advantage is that FailRank streamlines the very complex task of monitoring

large-scale distributed resources in an automated manner. In the future we plan to

provide more elaborate ranking algorithms and perform an in-depth assessment of

our prototype system under development.

References

[1] Berndt D. , Clifford J., “Using Dynamic Time Warping to Find Patterns in Time
Series”, In KDD 1994.

[2] Bruno N., Gravano L. and Marian A., “Evaluating Top-K Queries Over Web Accessible
Databases”, In ICDE 2002.

[3] Das G., Gunopulos D., Mannila H., “Finding Similar Time Series”, In PKDD, 1997.
[4] Chun G., Dail H., Casanova H., and Snavely A., “Benchmark probes for grid assess-

ment”, In IEEE IPDPS 2004.
[5] “CIC”, http://cic.gridops.org/
[6] Da Costa G., Orlando S., Dikaiakos M.D., “Nine months in the life of EGEE: a look

from the South”, In IEEE MASCOTS 2007.
[7] Dumitrescu C., Raicu I., Ripeanu M., Foster I., “DiPerF: An automated DIstributed

PERformance testing Framework”, In IEEE/ACM Grid 2004.

May 31, 2008

20 Parallel Processing Letters

[8] “EGEE”, http://www.eu-egee.org/.
[9] “Global Grid User Support (GGUS) ticketing”, https://gus.fzk.de/pages/home.php
[10] “GridICE”, http://grid.infn.it/gridice/
[11] Han J. Kamber M., “Data Mining: Concepts and Techniques”, 2E, Elsevier, 2006.
[12] Fagin R., Lotem A. and Naor M., “Optimal Aggregation Algorithms For Middleware”,

In PODS 2001.
[13] Foster I. and Kesselman C., “The Grid: Blueprint for a New Computing Infrastruc-

ture”, Elsevier, 2004.
[14] Foster I., Kesselman C., and Tuecke S., “The Anatomy of the Grid: Enabling Scalable

Virtual Organizations”, In Intl. J. Supercomputer Applications, 15(3):200–222, 2001.
[15] Foster I., “Globus Toolkit Version 4: Software for Service-Oriented Systems”, In

ICNP’05.
[16] Glite middleware http://glite.org/
[17] Grid Statistics (GStat) http://goc.grid.sinica.edu.tw/gstat/
[18] Junqueira, F. P., and Marzullo, K., “The virtue of dependent failures in multi-site

systems”, In HotDep 2005.
[19] Kiciman E. and Fox A., “Detecting Application-Level Failures in Component-based

Internet Services”, In IEEE Transactions on Neural Networks, 2004.
[20] Kiciman E. and Subramanian L., “Root Cause Localization in Large Scale Systems”,

In HotDep 2005.
[21] Krishnamurthy S., Sanders W.H., Cukier M.: “A Dynamic Replica Selection Algo-

rithm for Tolerating Timing Faults”, In DSN 2001.
[22] Locasto M.E., Sidiroglou S., and Keromytis A.D., “Application Communities: Using

Monoculture for Dependability”, In HotDep 2005.
[23] “OSG”, http://www.opensciencegrid.org.
[24] Raman R., Livny M., Solomon M.H., “Matchmaking: An extensible framework for

distributed resource management”, In Cluster Computing, Vol 2, pp 129-138, 1999.
[25] “TeraGrid”, http://www.teragrid.org/
[26] Tsouloupas G., Dikaiakos M.D., “GridBench: A Tool for the Interactive Performance

Exploration of Grid Infrastructures”, In Journal of Parallel and Distributed Comput-
ing, Vol 67, pp 1029-1045, 2007.

[27] Neokleous K., Dikaiakos M.D., Fragopoulou P., Markatos E.P., “Failure Management
in Grids: The Case of the EGEE Infrastructure”, In Parallel Processing Letters (in
press, Dec. 2007).

[28] Tsouloupas G. and Dikaiakos M.D., “Grid Resource Ranking using Low-level Perfor-
mance Measurements.”, In Euro-Par 2007.

[29] Vlachos M., Hadjieleftheriou M., Gunopulos D. , Keogh E., “Indexing multi-
dimensional time-series with support for multiple distance measures” In KDD 2003.

[30] “WISDOM”, http://wisdom.eu-egee.fr/
[31] “Service Availability Monitoring (SAM)”, http://goc.grid.

sinica.edu.tw/gocwiki/SAM
[32] Zeinalipour-Yazti D., Neocleous K., Georgiou C., Dikaiakos M.D,, “FailRank: To-

wards a Unified Grid Failure Monitoring and Ranking System”, In CoreGRID Work-
shop on Grid Programming Models and P2P Systems Architecture (Coregrid 2007
Workshop) Heraklion, Crete, Greece, June 12-13, 2007,

[33] Zeinalipour-Yazti D., Neocleous K., Georgiou C., Dikaiakos M.D., “Identifying Fail-
ures in Grids through Monitoring and Ranking”, In The 7th IEEE International Sym-
posium on Network Computing and Applications (IEEE NCA’08), 10 - 12 July 2008,

