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Abstract. We initiate a study on the effect of the network topology
on the performance of Peer-to-Peer (P2P) information retrieval systems.
The emerging P2P model has become a very powerful and attractive
paradigm for developing Internet-scale systems for sharing resources,
including files, or documents. We show that the performance of Infor-
mation Retrieval algorithms can be significantly improved through the
use of fully distributed topologically aware overlay network construc-
tion techniques. Our empirical results, using the Peerware middleware
infrastructure, show that the approach we propose is both efficient and
practical.

1 Introduction

In the last few years, the new emerging Peer-to-Peer (P2P) model has become a
very powerful and attractive paradigm for developing Internet-scale file systems
[18, 12, 20, 21, 23] and sharing resources (i.e., CPU cycles, memory, storage space,
network bandwidth) [22] over large scale geographical areas. This is achieved by
constructing an overlay network of many nodes (peers) built on top of hetero-
geneous operating systems and networks. Overlays are flexible and deployable
approaches that allow users to perform distributed operations such as informa-
tion retrieval [9, 30] without modifying the underlying physical network.

The first wave of P2P systems implement unstructured P2P overlays [12] in
which no global structure or knowledge is maintained. To search for data or
resources, messages are sent over multiple hops from one peer to another with
each peer responding to queries for information it has stored locally. Structured
P2P overlays [20, 21, 23] implement a distributed hash table data structure in
which every data item can be located within a small number of hops, at the
expense of keeping some state information locally at the nodes. Recently more
efficient query routing techniques based on routing indices [8], heuristics [28] and
caching [30] were proposed.

However, an important problem that these systems have not fully considered
is how the heterogeneity of the underlying infrastructure affects the performance
of the information retrieval algorithms/systems. The P2P infrastructure can en-
compass resources with different processing and communication capabilities, lo-
cated across different geographical areas. As a result, retrieving information over
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Fig. 1. Typical end-to-end delays from Riverside to sites around the world. It is im-
portant to minimize the network delays (or distances) in Internet-Scale P2P systems.

Internet-scale environments is subject to greater variations due to unpredictable
communication latencies, excessive resource consumption and changing resource
availability.

Figure 1 shows typical end-to-end delays from Riverside to different sites
around the world. We can see that hosts at different locations have different
latencies which usually dependent on a number of factors such as geographic
distances, network traffic, load at respective sites and others. By exploiting net-
work proximity, the overlay application can alleviate the overheads that are
usually imposed by the operation of the Peer-to-Peer network. It is worth men-
tioning that exploiting the physical network structure can be useful in a number
of other P2P applications such as content distribution networks, spam detection
networks and others.

P2P systems are very effective mechanisms to share and store documents,
because their decentralized nature allows easy additions, updates, large storage,
and offers fault-tolerant properties through the use of replication and caching.
However, a system for storing large amounts of data should also provide efficient
search mechanisms, and the decentralized nature of the unstructured P2P net-
works hinders the use or the maintenance of the indexing structures traditionally
used in Information Retrieval. So the effective use of P2P systems for document
storage depends on new efficient and distributed solutions to the problem of
finding the documents one is looking for.

In the paper we focus on keyword search, that is, we aim to find the docu-
ments that contain a given set of query terms. There is a lot of recent work on
improving keyword search in unstructured P2P networks (section 2 provides an
overview). A common theme in this work is the use of the number of messages
as a metric of the performance of the technique. While this is justified when the



algorithm is network-agnostic and does not use the characteristics of the network
to improve the search, we believe that taking advantage of this knowledge can
significantly improve the performance of Information Retrieval and allow us to
design techniques that make the problem practical in Internet-scale systems.

Our Contribution: In this paper we initiate a study on the design of fully
distributed P2P information retrieval techniques that are topologically aware
and can take advantage of the network characteristics to optimize the efficiency of
the search. We consider and evaluate the impact of the use of topologically aware
overlay network constructions on the accuracy and the performance of currently
proposed fully distributed P2P information retrieval techniques. Although the
necessity of topologically-aware overlays has been widely addressed in the context
of structured overlays [4, 19, 27, 31], it hasn’t received the same attention in the
context of unstructured overlay networks. More specifically:
(i) We discuss and evaluate the performance of information retrieval algorithms
over topologically-aware Internet-scale overlays. We consider both agnostic tech-
niques that do not maintain any knowledge of the data distribution in the net-
work (BFS and RBFS), as well as techniques that collect past statistics (>RES,
ISM). We describe the Random and BinSL overlay construction techniques and
describe the advantages and disadvantages of the BinSL technique for the P2P
Information Retrieval problem.
(ii) We study the impact of the overlay construction techniques on the infor-
mation retrieval algorithms using our Peerware infrastructure. Our objective is
to improve the latency, while maintaining the accuracy of the results. We note
here that our results show that the use of topologically-aware overlays mini-
mizes network delays while maintaining high recall rates and a low number of
messages.

The remainder of the paper is organized as follows: In section 2 we outline
search techniques that have been proposed for efficient information retrieval in
unstructured P2P networks. In section 3 we describe the Random and BinSL
overlay construction techniques and describe their advantages and disadvan-
tages. Section 4 describes our experimental methodology and our middleware
infrastructure. In section 5 we present our experimental evaluation and section 6
concludes the paper.

2 Search Techniques for Unstructured P2P Networks

In this section we provide a brief overview of techniques and algorithms that
can be used to perform content-based searches in P2P system. The techniques
do not use any global knowledge, thus they are completely decentralized and
scale well with the size of the network. We consider a network of n nodes
(peers). We assume that Du is the set of documents that are stored in peer
u. We assume that each document d is characterized by a sequence of key-
words, and let s(d) be the (unordered) set of keywords in d. Given a query
q, itself a set of keywords, the result of the query should be the answer set



{(d, u)|u is a peer and q ⊂ s(d) and d ∈ Du}, that is, the documents in the net-
work that include the keywords in q.

Agnostic techniques: Breadth First Search (BFS) and Random BFS
(RBFS): BFS is a technique widely used in P2P file sharing applications, such
as Gnutella [12]. BFS sacrifices performance and network utilization for the sake
of simplicity. It works as follows : A node v generates a Query message q when
it wants to search for contents located on other peers. v propagates q to all its
neighbor peers. When a peer u receives a Query request, it first propagates q
further by again along its neighbors (except the sender), and then searches its
local repository for relevant matches. If some node w has a match, w generates a
QueryHit message to transmit the result. QueryHit messages are sent along the
same path that carried the incoming Query messages. The disadvantage of BFS
is that a query is consuming excessive network and processing resources because
a query is propagated along all links. In order to avoid flooding the network with
queries, as the network might be arbitrary large, each query is associated with
a time-to-live (TTL) field which determines the maximum number of hops that
a given query should be forwarded.

In [15] we propose and evaluate the Random Breadth-First-Search (BFS)
technique. RBFS improves over the naive BFS approach by allowing each node
to forward the search request to only a fraction of its peers. This fraction can
be selected at random and is a parameter to the mechanism (in our experiments
we used a fraction of 0.5, so that a peer propagates the request to half its peers,
selected at random). This technique uses fewer messages than BFS, however it
may miss large segments of the network since it is random and may not choose
a particular link that could propagate the query to such segments.

The Most Results in the Past Heuristic (>RES): In [28], Yang et al.,
present a technique where each node forwards a query to some of its peers based
on some aggregated statistics. The authors compare a number of query routing
heuristics and mention that the Most Results in Past (>RES) heuristic has the
best satisfaction performance. A query is defined to be satisfied if Z, for some
constant Z, or more results are returned. In >RES a peer u forwards a search
message to the k peers which returned the most results for the last 10 queries.

The technique is similar to the Intelligent Search Mechanism we describe
below, but uses simpler information about the peers, and is optimized to find Z
documents efficiently (for a fixed Z) rather than finding as many documents as
possible. The nature of >RES allows it to explore the larger network segments
(which usually also contain the most results) and the most stable neighbors (the
peers that have routed back many queryhits), but it doesn’t manage to explore
the nodes which contain content related to the query. We therefore characterize
>RES a quantitative rather than qualitative approach.

The Intelligent Search Mechanism (ISM): In [15] we propose the Intelligent
Search Mechanism (ISM) which is a fast and efficient mechanism for information
retrieval in unstructured P2P networks.



Keys to improving the speed and efficiency of the information retrieval mech-
anism is to minimize the communication costs, that is, the number of messages
sent between the peers, and to minimize the number of peers that are queried for
each search request. To achieve this, a peer estimates for each query, which of its
peers are more likely to reply to this query, and propagates the query message
to those peers only.

The Intelligent Search mechanism consists of two components that run locally
in each peer:

The Profile Mechanism is used to maintain the T most recent queries and the
corresponding queryhits along with the number of results. Once the repository
is full, the node uses the Least Recently Used (LRU) replacement policy to keep
the most recent queries.

The RelevanceRank (RR) function is used by a node Pl to perform an online
ranking of its neighbors in order to determine to which ones to forward a query q.
To compute the ranking of each peer Pi, Pl compares q to all queries in the profil-
ing structure, for which there is a queryhit, and calculates RRPl

(Pi, q) as follows:
RR(peeri, q) =

∑

qj = ”Queries answered by peeri”
sim(qj , q)

α ∗ results(qj)

The deployed distance metric Qsim is the cosine similarity[1] and S(Pi, qj) is
the number of results returned by Pi for a query in the profiling structure qj .
RR allows us to rank higher the peers that returned more results. α allows us
to add more weight to the most similar queries. For example, when α is large
then the query with the largest similarity Qsim(qj , q) dominates the formula. If
we set α = 1 all queries are equally counted, while setting α = 0 allows us to
count only the number of results returned by each peer (essentially, the >RES
heuristic). In the experiments we forward the query to the half best neighbors,
plus to a random neighbor to brake out of potential cycles. More details about
the RR function can be found in [30].

ISM works well in environments which exhibit strong degrees of query local-
ity and where peers hold some specialized knowledge. Our study on the Gnutella
network shows that it exhibits a strong degree of query locality [29].

Other Distributed Techniques and Algorithms: In the previous subsec-
tions we described techniques that do not index the shared content. We now
describe other proposed techniques which deploy indexing, intelligent data and
key placement as well as advanced techniques from the Information Retrieval
field in order to improve keyword search performance. It is important to mention
that many of the described techniques comes with certain overheads, therefore
their applicability might be limited in very large environments.

There is a lot of work on centralized systems, however, these are not directly
relevant to our problem as these systems assume some centralized component
that assists in the indexing procedure. In [8], Crespo et al., present a hybrid
technique where each peer builds indices using aggregate information on the
contents of the documents of its peers. In the PlanetP [9] system, participating
nodes build a global inverted index which is partially constructed by each node.



The framework is based on bloom filters, which capture the index of some node,
and which are randomly gossiped across the community. In a different approach,
the pSearch [24] system explores semantic spaces by using advanced techniques
from the Information Retrieval field. It uses the Vector Space Model (VSM)
and Latent Semantic Indexing (LSI) to generate a semantic space which is then
distributed on top of a CAN [20] structured P2P overlay.

In the RandomWalker model, which is presented in [17], each node forwards a
query message by selecting a random neighbor and the query message is called a
walker. This model however doesn’t use any explicit technique to guide the query
to the most relevant content. In APS [25] each node deploys a local index, which
captures the relative probability of each neighbor to be chosen as the next hop
for some future request. The main difference with Random Walkers is that in
APS a node utilizes feedback from previous searches to probabilistically guide
future walkers.

Distributed file indexing systems such as CAN[20] and Chord[23] allow peers
to perform efficient searches using object identifiers rather than keywords. These
systems, usually referred as Structured Overlays or Distributed Hash Tables
(DHT), use a specific structure with some hashing scheme that allows peers to
perform object lookup operations getting in return the address of the node stor-
ing the object. A disadvantage of DHTs is that they consider only the problem
of searching for keys, and thus cannot perform content-based retrieval. Recent
work in [11] shows that content-based query resolution is feasible in DHT sys-
tems if these are using Rendezvous Points (RP). More specifically the framework
proposes the registration of the content (i.e. attribute-value pairs that describe
the content) at RPs. Queries might then be routed, using Chord, to a prede-
fined set of RPs which consequently resolve the query. Finally Freenet [7], is
another distributed information storage and retrieval system that uses instead
an intelligent Depth-First-Search (DFS) mechanism to locate the object keys in
the system. The advantage of DFS search is that a small set of peers can be
queried quickly and efficiently; however by its nature it can take a long time if
we want to find all the results to a query.

So far we have seen different information retrieval techniques and algorithms
for Peer-to-Peer environments. In the next section we will discuss how the con-
struction of the overlay network affects the performance of the discussed algo-
rithms and why it is important to optimize such a parameter.

3 Overlay Topologies for Efficient Network Utilization

In this section we discuss two distributed overlay construction techniques that
can be deployed in the context of unstructured overlay networks. Let G = (V,E)
be an overlay topology, with a vertex set V = {1, 2, ..., n} and an edge set E,
which represents the overlay connections between the vertices in V . Assume that
a user, is connected to some vertex v and that it uses one of the search techniques
outlined in the previous section in order to search for content in G. Then his
query is expected to form a spanning tree T which spans over the subgraph G′



Fig. 2. Visualization of a Connected (Random) and Disconnected (SS) graph of 1000
peers (degree=6) using the Fruchterman-Reignold visualization model in Pajek [2].
Random and BinSL topologies have the advantage that they remain connected while
SS topologies get disconnected because each node greedily selects other close-by nodes.

(G′ ⊂ G). The main goal of an overlay construction technique is to minimize the
Aggregate Delay (∆T ) which is the sum of the delays w associated with each
edge in the tree T , more formally defined as following: ∆T =

∑

∀ε∈T

w(ε)

It is important to notice that the delay cost associated with each edge might
be different for each direction between two nodes vi and vj (i.e. delay(vi → vj)
�= delay(vj → vi)). This happens because packets on the Internet may follow dif-
ferent itineraries or because the upstream and downstream bandwidth of a node
might greatly vary (e.g. Cable/ADSL Modem Users). Another interesting point
is that the construction of an optimal overlay is known to be NP-complete [10]
therefore the following popular algorithms are based on heuristics.

Random Topology: In this algorithm, each vertex vi selects its d neighbors
by randomly choosing d other vertices. This is the algorithm deployed in most
current P2P networks such as [12] and its main advantages are that it is simple,
does not require any knowledge on the distances, and leads to connected topolo-
gies if the degree d > log2n [3].

BinSL Topology: In [19], Ratnasamy et al. propose the Short-Long (SL) over-
lay construction technique. SL alleviates the network unawareness of the Random
Topology in the following way: Each vertex vi, selects its d neighbors by pick-
ing the d/2 nodes in the system that have the shortest latency to itself (these
connections are called short links) and then selects another d/2 vertices at ran-
dom (these connections are called long links). Therefore SL requires the nxn
IP-latency matrix in order to find the latencies between the various node pairs.
The intuition behind this algorithm is that the d/2 connections to ”close-by”
nodes will result in well-connected clusters of nearby nodes, while the random
links serve to keep the different clusters interconnected and the overall graph
connected. It is important to mention that by only selecting the shortest latency



nodes will in most cases result in disconnected graph topologies. This can be
observed in the visualization of figure 2 where we visualize a random and a short
(SS) topology of 1000 peers.

Although the SL construction technique works well in practice, it is limited
by the fact that some node in the system needs to know the ”physical” distances
between all node pairs (i.e. an nxn IP-latency adjacency matrix). In practice such
centralized architectures don’t scale well, are expensive and are vulnerable to de-
nial of service attacks. In order to overcome the global knowledge requirement
of the SL algorithm, Ratnasamy et al. propose the BinSL topology construction
technique [19], which is a distributed adaptation of the SL algorithm. Since the
adjacency-matrix of IP latencies is not available in a distributed setting, BinSL
deploys the notion of distributed binning in order to approximate these latencies.
More specifically each node calculates the round-trip-time (RTT) from itself and
k well-known landmarks {l1l2..lk} on the Internet. The numeric ordering of the
latencies represents the ”bin” the node belongs to. Latencies are then further
classified into level ranges. For instance if the latencies are divided into 3 levels
then; level 0 accounts for latencies in the range [0,100), level 1 for the range
[100,200) and level 2 for all other latencies. The level vector is then augmented
to the landmark ordering of a node yielding a string of the type ”l2l3l1 : 012”. It
is expected that nodes belonging to the same bin will be topologically close to
each other although false positives are possible, that is, some nodes do belong to
the same ”bin” although they are not topologically close to each other. We will
investigate the accuracy of the binning scheme in the experimental section.

Other Topologically-Aware Construction techniques: Recently an ap-
proach to create resilient unstructured overlays with small diameters was pro-
posed in [26]. In the proposed algorithm a node selects from a set of k nodes,
r nodes at random (r⊂k) and then finds from the rest f=k-r nodes the ones
that have the largest degree. This algorithm results in networks with power-law
distributions of node degrees differentiating from Random and BinSL in which
we have a uniform distribution.

Topologically-aware overlays have also been addressed in the context of Struc-
tured P2P overlays in [4, 19, 27, 31]. These systems however rely on some hashing
scheme which allows nodes to quickly send messages to some destination node.
Although structured overlays are of particular importance in applications such
as decentralized web caches [14], they are not appropriate for content-based re-
trieval systems [9, 30] and large-scale systems with transient user populations [5].

Application-layer multicast systems such as Narada [6] initially construct a
richer connected graph (mesh) and then use some optimization algorithm to
generate a mesh that has certain performance properties. As part of the mesh
quality improvement algorithm, Narada nodes randomly probe each other and
calculate the perceived gain in utility. BinSL is simpler and cheaper in terms
of messages. It is furthermore designated for larger groups of members, which
might leave and join in an ad-hoc manner.



4 Experimental Evaluation Methodology

Our experimental evaluation focuses on three parameters: (i) the aggregate
tree delay (∆T ) which is a metric of network efficiency for a given query that
spans in the sub-graph G’, (ii) the recall rate, that is, the fraction of docu-
ments each of the search mechanisms retrieves, and (iii) the overhead of the
techniques, that is, the number of messages that are consumed in order to find
the results. As the baseline of comparison we used the results retrieved by query-
ing the collection in a centralized setting (i.e. as a corpus of documents) which
therefore returns all relevant documents. We chose to implement the algorithms
that require only local knowledge (i.e. BFS, RBFS, >RES and ISM) over Ran-
dom and BinSL topologies of the same size and degree.

The TREC Dataset: We use two series of experiments which are based on
the TREC-LATimes dataset which is a document collection that consists of
randomly selected articles that appeared on the LA Times newswire from 1989
to 1990. The size of this dataset is 470MB and it contains approximately 132,000
articles. These articles were horizontally partitioned into 1000 xml documents
each of which was subsequently indexed using the Lucene [16] IR API. These
indexes, which are disk-based, allow the efficient querying of text-based sources
using many IR features. We then generate Random and BinSL topologies of 1000
peers in which each peer shares one or more of the 1000 documents (see figure 3a).
We use this scheme in order to provide some degree of article replication. We
don’t use the ”qrels” relevance judgments, since the compared algorithms don’t
attempt to address the issue of precise document retrieval. We will refer to these
peers as the TREC-LATimes Peerware.

For the evaluation of the TREC-LATimes corpus we will use, as indicated
by NIST, the TREC topics 300-450. One problem with the provided 150 queries
is that the query term frequency is very low and most terms are presented
only once. This is not a realistic assumption since studies on real P2P networks
(e.g. [29]) indicate that there is a high locality of query terms. Therefore we used
the 150 queries to derive the TREC50x2 dataset, which consists of a set a =”50
randomly sampled queries out of the initial 150 topics”. We then generated a
list b of another 50 queries which are randomly sampled out of a. TREC50x2
is then the queries in a and b randomly shuffled and the distribution of query
terms can be viewed in figure 3b.

Simulating Network Distances: Evaluating distances in network topologies
requires a dataset in which the IP latencies are not synthetic. We didn’t chose
to use a real dataset of ≈300,000 IPs found in the Gnutella network [29], as
obtaining the distances among the different hosts was practically not feasible.
We therefore chose to base our experiments on the measurements of the Active
Measurement Project (AMP) [13], at the National Laboratory for Applied Net-
work (NLAR). AMP deploys a number of monitors distributed along 130 sites to
actively monitor the Internet topology. AMP monitors ping and traceroute each
other at regular intervals and report the results back to the project servers. Most
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Fig. 3. a) Data Replication scheme for the TREC-LATimes dataset, b) Query
Term Frequency distributions for the TREC50x2 queryset.

of the current 130 monitors currently reside in the U.S with a few exceptions of
some other International sites.

In our experiments we use an AMP 1.8 GB snapshot of traces obtained on
the 30th of January 2003. The set includes data from 117 monitors out of which
we extracted the 89 monitors which could be reversed DNS (i.e. given their IP
we obtained a DNS name). We then construct the nxn IP-latency matrix (for
all n=89 physical nodes), that contains the latency among all monitors. Since
all 89 hosts are located at different domains, we chose to incorporate some de-
gree of host replication per domain. Our study in [29] shows that hosts in a real
overlay network, such as Gnutella, exhibit this characteristic. More specifically
we randomly replicate each host [1..k] times. In our experiments we set k = 24
which generated distances for all 1000 nodes in the TREC-LATimes Peerware.

Peerware Simulation Infrastructure: In order to benchmark the efficiency
of the information retrieval algorithms, we have implemented Peerware1, a dis-
tributed middleware infrastructure which allows us to benchmark different query
routing algorithms over large-scale P2P systems. We use Peerware to build a de-
centralized newspaper network which is organized as a network of 1000 nodes.
Our experiments are performed on a network of 75 workstations (each hosting
a number of nodes), each of which has an AMD Athlon 800MHz-1.4GHz pro-
cessor with memories varying from 256MB-1GB RAM running Mandrake Linux
8.0 (kernel 2.4.3-20) all interconnected with a 10/100 LAN. Peerware is written
entirely in Java and comes along with an extensive set of UNIX shell scripts that
allow the easy deployment and administration of the system.

Peerware consists of three components: (i) graphGen which pre-compiles net-
work topologies and configuration files for the various nodes participating in a
given experiment, (ii) dataPeer which is a P2P client that is able to answer to
boolean queries from its local xml repository using the Lucene IR Engine [16],
and (iii) searchPeer which is a P2P client that performs queries and harvests

1 Details about the Peerware infrastructure can be found in [30].
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answers back from a Peerware network. Launching a Peerware of 1000 nodes
can be done in approximately 10-20 seconds while querying the same network
can be performed in around 250ms-1500ms.

The Discarded Message Problem: We define the DMP problem in the
following way: Node Pk receives some query q with TTL1 at time t1. Pk first
checks if it has forwarded the same query (identified by GUID) in the past. If
yes, it will immediately discard the message in order to avoid forwarding the
message several times. If not, it will decrease TTL1=TTL1-1 and forward q to
some of Pk’s peers. Now what happens if node Pk receives the same query q
with some TTL2, where TTL2 > TTL1 at some time t2, where t2 > t1? Most
of the commercial P2P clients will discard q. The result is that a query reaches
fewer nodes than expected. We fix the problem by allowing the TTL2 message to
proceed. Of course there is some redundancy which will add up in the ”number
of messages” graph (approximately 30% in the experiments).

5 Experiments

In this section we describe a series of experiments that attempt to investigate
the effect of the Random and BinSL overlay topology structure on the recall
rate and the messaging of the various information retrieval search techniques
that were described in section 2. We are particularly interested in investigate if
the BinSL topology can indeed minimize the aggregate network delay without
sacrificing the recall rate.

Efficiency of Landmarks in BinSL: The first experiment, we attempt to find
the right number of landmarks, as this plays an important role on how small the
∆T becomes in a fixed size network. By using more landmarks, the number of
false positives also decreases as we have fewer collisions in the landmark ordering
codes of hosts that are not topologically close to each other. In figure 4a, we cal-
culate the sum of the delays w associated with all edges in the respective graphs
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G (1000 peers each with an average degree of 6). This sum is more formally
defined as ∆G =

∑

∀ε∈G

w(ε) and we use this metric, instead of the Aggregate

Delay ∆T , as it is independent of the deployed search technique. In BinSL, we
first randomly sample out of the original network the set of landmarks.2 The
figure indicates that by using no landmarks, the BinSL topology is essentially
a Random topology. This happens because a node selects all its connections
at random which makes ∆G of the Random and BinSL topologies identical. By
adding a few landmarks (i.e. 1-10), ∆G decreases substantially, after which point
∆G decreases at a lower rate. Therefore by selecting an arbitrary large number
of landmarks may not be very efficient as each landmark probing comes with an
additional network cost and because ∆G may not significantly drop.

Although figure 4a shows that by using 20 landmarks might be satisfactory
for a network of 1000 nodes, in practice the network size might not be known a
priori. In figure 4b, we plot the ∆G parameter for networks of different sizes. The
figure indicates that the Random Topology does not scale very well with respect
to the ∆G parameter. By using BinSL and 20 landmarks on the other hand, the
∆G parameter decreases by 46% from what the Random topology uses, while
using 40 landmarks drops ∆G by 54%. We can see that although we doubled the
number of landmarks the ∆G parameter improved by only 8%. The picture also
shows that the lower bound provided by SL is on average 66% less than what
the random topology requires, but SL is not feasible in practice as it requires
global knowledge. For the rest of the paper we set the number of landmarks to 20.

Minimizing Network Delays: In our second experiment, we investigate if we
can minimize the Aggregate Delay ∆T of a query that spans in the subgraph G’,
while retaining high recall rates and low messaging. In the BFS case, we con-
figure each query messages with a TTL parameter of five since this technique
is consuming extraordinary amounts of messages. With this setting, query mes-

2 In a real setting, peers would have a predefined list of well chosen landmarks (i.e.
globally spread HTTP or DNS servers).



 40

 60

 80

 100

 120

 0  1  2  3  4  5  6  7  8  9  10

P
er

ce
nt

ag
e 

of
 C

en
tr

al
iz

ed
 R

ec
al

l (
%

)

Number of queries (x10)

RANDOM Topology  - Recall Rate with TTL=6 and TREC50x2

Centralized Search
BFS Search, TTL=5

RBFS Search
>RES Search

ISM Search

 40

 60

 80

 100

 120

 0  1  2  3  4  5  6  7  8  9  10

P
er

ce
nt

ag
e 

of
 C

en
tr

al
iz

ed
 R

ec
al

l (
%

)

Number of queries (x10)

BINSL Topology  - Recall Rate with TTL=6 and TREC50x2

Centralized Search
BFS Search, TTL=5

RBFS Search
>RES Search

ISM Search

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  1  2  3  4  5  6  7  8  9  10

N
um

be
r 

of
 m

es
sa

ge
s 

us
ed

Number of queries (x10)

RANDOM Topology  - Messages with TTL=6 and TREC50x2

BFS Search, TTL=5
RBFS Search
>RES Search

ISM Search

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  1  2  3  4  5  6  7  8  9  10

N
um

be
r 

of
 m

es
sa

ge
s 

us
ed

Number of queries (x10)

BINSL Topology  - Messages with TTL=6 and TREC50x2

BFS Search, TTL=5
RBFS Search
>RES Search

ISM Search

Fig. 6. a) Recall Rate (top) and b) Messages (bottom) for the evaluation of the
TREC50x2 queryset using Random (left) and BinSL (right) topologies.

sages are able to reach 859 out of the 1000 nodes.3 Therefore it was expected
that BFS’s recall rate would be less than the recall rate obtained by evaluating
the whole dataset in a centralized setting. The rest techniques (i.e. RBFS, ISM
and >RES), use a TTL of 6 as they offer reduced messaging, which allows us
to explore the network graph deeper while maintaining low messaging. Finally,
the average time to perform a query for the BFS case is in the order of 1.5
seconds but results start streaming back to the query node within the first few
milliseconds. In figure 5, we plot the Aggregate Delay ∆T for the Random (left)
and BinSL (right) topology. The two figures indicate that by using BinSL any
of the presented search techniques reduces the∆T parameter by a factor of three.

Maintaining High Recall Rates and Low Messaging: So far we have seen
that by using a BinSL topology we are able to reduce the ∆T parameter. How-
ever this single parameter is not enough in the context of information retrieval
applications, as these applications are required to return the most relevant doc-
uments. Furthermore, if some search technique always explored the shortest la-
tency neighbors then the ∆T parameter would be minimal but the query would
with very high probability get locked in some region and would not explore the

3 With a TTL of 6 and 7, we would be able to reach 998 and 1000 nodes at a cost of
8, 500 messages/query and 10, 500 messages/query respectively.



larger part of the network graph. This would consequently reduce the recall rate
which is not desirable.

In figure 6a, we plot the recall rate of the different search algorithms using the
Random (left) and BinSL (right) topologies presented in the previous subsection.
The figures indicate that by deploying a BinSL topology the recall rate does not
significantly degrade. We note that the recall rate degrades because in the BinSL
topology more query paths are short-circuited (i.e. it explores slightly smaller
subgraphs of the overlay G). However this results in significant savings in the
Aggregate Delay ∆T parameter (see figure 5). In figure 6b, we plot the number
of messages required by each search technique. We can see that BFS requires
almost 2.5 times more messages than the other techniques. The ISM search
technique on the other hand, learns from its profiling structure and guides the
queries to the network segments that contain the most relevant documents. On
the other hand both RBFS’s and >RES’s recall fluctuate, which indicates that
>RES may behave as bad as RBFS if the queries don’t follow some repetitive
pattern.

6 Conclusions & Future Work

We considered and evaluated the impact of the use of topologically aware over-
lay network constructions on the accuracy and the performance of currently
proposed fully distributed P2P information retrieval techniques.

Our empirical results show that the use of the topologically-aware BinSL
overlay network construction technique significantly improves the latency times
for all the information retrieval techniques we considered. These included both
agnostic techniques (BFS, RBFS), and techniques that used past statistics (ISM,
>RES), and we compared the performance of the BinSL overlay network with
a random graph of the same average degree. In all cases, the accuracy remained
approximately the same.

Our results clearly show the advantage of our approach. In our future work
we plan to design new techniques that tightly integrate the construction of the
overlay network with the actual information retrieval mechanism.
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