
Identifying Failures in Grids through Monitoring and Ranki ng

Demetrios Zeinalipour-Yazti, Kyriacos Neocleous‡, Chryssis Georgiou‡, Marios D. Dikaiakos‡

Pure and Applied Sciences, Open University of Cyprus, P.O. Box 24801, 1304 Nicosia, Cyprus
‡ Dept. of Computer Science, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus

zeinalipour@ouc.ac.cy,{kyriacos,chryssis,mdd}@cs.ucy.ac.cy

Abstract

In this paper we presentFailRank, a novel frame-
work for integrating and ranking information sources
that characterize failures in a grid system. After the fail-
ing sites have been ranked, these can be eliminated from
the job scheduling resource pool yielding in that way a
more predictable, dependable and adaptive infrastruc-
ture. We also present the tools we developed towards
evaluating the FailRank framework. In particular, we
present theFailBase Repositorywhich is a 38GB corpus
of state information that characterizes the EGEE Grid
for one month in 2007. Such a corpus paves the way
for the community to systematically uncover new, pre-
viously unknown patterns and rules between the multi-
tudes of parameters that can contribute to failures in a
Grid environment. Additionally, we present an experi-
mental evaluation study of the FailRank system over 30
days which shows that our framework identifies failures
in 93% of the cases. We believe that our work consti-
tutes another important step towards realizing adaptive
Grid computing systems.

1 Introduction

Grids have emerged as wide-scale, distributed in-
frastructures that comprise heterogeneous computing
and storage resources, operating over open standards
and distributed administration control [13, 15]. Grids
are quickly gaining popularity, especially in the scien-
tific sector, where projects likeEGEE (Enabling Grids
for E-sciencE)[8], TeraGrid [25] and Open Science
Grid [23] , provide the infrastructure that accommodates
large experiments with thousands of scientists, tens of
thousands of computers, trillions of commands per sec-
ond and petabytes of storage [8, 25, 23]. At the time

of writing, EGEE assembles over 250 sites around the
world with more than 30,000 CPUs and 18PB of stor-
age, running over 25,000 concurrent jobs and supporting
over 100 Virtual Organizations.

While the aforementioned discussion shows that Grid
Computing will play a vital role in many different sci-
entific domains, realizing its full potential will require
to make these infrastructuresdependable. As a mea-
sure of dependability of grids we use the ratio of suc-
cessfully fulfilled job requests over the total number
of jobs submitted to the resource brokers of a grid in-
frastructure. The FlexX and Autodock data challenges
of the WISDOM [30] project, conducted in August
2005, have shown that only 32% and 57% of the jobs
completed successfully (with an ”OK” status). Ad-
ditionally, our group conducted a nine-month charac-
terization of the South-Eastern-Europe resource broker
(rb101.grid.ucy.ac.cy) in [6] and showed that
only 48% of the submitted jobs completed success-
fully. Consequently, the dependability of large-scale
grids needs to be improved substantially.

Detecting and managing failures is an important
step toward the goal of a dependable grid. Currently,
this is an extremely complex task that relies on over-
provisioning of resources, ad-hoc monitoring and user
intervention. Adapting ideas from other contexts such
as cluster computing [21], Internet services [19, 20] and
software systems [22] seems also difficult due to the in-
trinsic characteristics of grid environments. Firstly, a
grid system is not administered centrally; thus it is hard
to access the remote sites in order to monitor failures.
Moreover we cannot easily encapsulate failure feedback
mechanisms in the application logic of each individual
grid software, as the grid is an amalgam of pre-existing
software libraries, services and components with no cen-
tralized control. Secondly, these systems are extremely
large; thus, it is difficult to acquire and analyze fail-

ure feedback at a fine granularity. Lastly, identifying
the overall state of the system and excluding the sites
with the highest potential for causing failures from the
job scheduling process, can be much more efficient than
identifying many individual failures. Of course the latter
information will be essential to identify the root cause of
a failure [20], but this operation can be performed in a
offline phase, and thus it is complementary to our frame-
work.

In the FailRank architecture, feedback sources (i.e.,
websites, representative low-level measurements, data
from the Information Index, etc.) are continuously co-
alesced into a representative array of numeric vectors,
the FailShot Matrix (FSM). FSM is then continuously
ranked in order to identify theK sites with the highest
potential to feature some failure. This allows the system
to automatically exclude the respective sites from the job
scheduling process.

The advantages of our approach are summarized as
follows: (i) FailRank is a simple yet powerful frame-
work to integrate and quantify the multi-dimensional pa-
rameters that affect failures in a grid system; (ii) our sys-
tem is tunable, allowing system administrators to drive
the ranking process through user-defined ranking func-
tions; (iii) we eliminate the need for human interven-
tion, thus our approach gives space for automated ex-
ploitation of the extracted failure semantics; (iv) we ex-
pect that the FailRank logic will be implemented as a
filter outside the Grid job scheduler (i.e., Resource Bro-
ker or Workload Management System), thus imposing
minimum changes to the Grid infrastructure.

2 Monitoring Failures in Grids

In this subsection we overview typical failure feed-
back sources provided in a grid environment. These
sources contain information that is utilized by our sys-
tem in order to deduct, in an a priori manner, the failing
sites. Our discussion is in the context of the EGEE in-
frastructure, but similar tools and sources exist in other
grids [25, 23].
Meta-information sources: Several methods for de-
tecting failures have been deployed so far. Examples
include (for a detailed description see [27]): (i)Infor-
mation Index Queries:these are performed on the Infor-
mation Service and enable the extraction of fine-grained
information regarding the complete status of a grid site;
(ii) Service Availability Monitoring (SAM)[31]: a re-
porting web site that is maintained for publishing peri-
odic test-job results for all sites of the infrastructure; (iii)
Grid statistics:provided by services such asGStat[17];

(iv) Network Tomography Data:these can be obtained
by activelypinging and traceroutingother hosts in or-
der to obtain delay, loss and topological structure in-
formation. Network tomography enables the extraction
of network-related failures; (v)Global Grid User Sup-
port (GGUS)ticketing system [9]: system administra-
tors use this system to report component failures as well
as needed updates for sites. Such tickets are typically
opened due to errors appearing in the SAM reports;
(vi) Core Infrastructure Center (CIC)broadcasts [5]:
allow site managers to report site downtime events to
all affected parties through a web-based interface; and
(vii) Machine log-files: administrators can use these files
to extract error information that is automatically main-
tained by each grid node.
Active benchmarking: Deploying a number of lower
level probes to the remote sites is another direction
towards the extraction of meaningful failure seman-
tics. In particular, one can utilize tools such as Grid-
Bench [26, 28], the Grid Assessment Probes [4] and
DiPerF [7], in order to determine in real time the value
of certain low level and application-level failure seman-
tics that can not be furnished by the meta-information
sources. For example, the GridBench tool developed by
our group provides a corpus of over 20 benchmarks that
can be used to evaluate and rank the performance of Grid
sites and individual Grid nodes.
Both the Meta-Information Sources and the Active
Benchmarking approaches have a major drawback:their
operation relies heavily on human intervention. As Grid
infrastructures become larger, human intervention be-
comes less feasible and efficient. As we would like Grid
Dependability to be scalable, our proposed architecture
does not rely on human intervention but instead provides
the means for acquiring and analyzing the data from the
above resources in anautomatedmanner.

3 The FailRank System

In this section we describe the underlying structure
that supports the FailRank system. We start out with an
architecture overview and then proceed with basic defi-
nitions in order to formalize our description. We follow
with the description of the failure ranking mechanism
deployed in FailRank.

3.1 Architecture Overview

The FailRank architecture (see Figure 1), consists of
four major components: (i) aFailShot Matrix (FSM),
which is a compact representation of the parameters that

contribute to failures, as these are furnished by the feed-
back sources; (ii) a temporal sequence of FSMs defines
anFSM timeserieswhich is stored on local disk; (iii) a
Top-K Ranking Modulewhich continuously ranks the
FSM matrix and identifies theK sites with the high-
est potential to run into a failure using a user defined
scoring function; and (iv) a set of data exploration tools
which allow the extraction of failure trends, similarities,
enable learning and prediction. FailRank is tunable be-
cause it allows system administrators and domain ex-
perts to drive the ranking process through the provision-
ing of custom scoring functions.

FailRank ArchitectureGrid Sites Feedback
Sources

FSM

Top-K
Ranking
Module

FSM Timeseries (Storage)

Data
Exploration

Tools

R
e
s
u
l
t
s

Figure 1. The FailRank System Architecture: Feed-
back sources are continuously coalesced into a repre-
sentative array of numeric vectors, theFailShot Matrix
(FSM). FSM is then continuously ranked in order to
identify theK sites with the highest potential to fail.

3.2 Definitions and System Model

Definition (FailShot Matrix (FSM)): Let S denote a set
of n grid sites(i.e. S = {s1, s2, ..., sn}). Also assume
that each element inS is characterized by a set ofm at-
tributes (i.e.A = {a1, a2, ..., am}). These attributes are
obtained by the feedback sources described in Section 2.
The rows in Table 1 represent the sites while the columns
represent the respective attributes. Thejth attribute of
theith site is denoted assij . Thej-th attribute specifies
a rating (or score) which characterizes some grid site
si (i ≤ n) at a given time moment. These ratings are
extracted by custom-implemented parsers, which map
the respective information to real numerical values in the
range [0..1] (1 denotes a higher possibility towards fail-
ure). Them × n table of scores defines theFailShot
Matrix (FSM), while aSite Vectoris any of then rows
of FSM.

A graphical illustration for some synthetic example is
given in Table 1. The figure shows five sites{s1, ..., s5}
where each site is characterized by five attributes: CPU
(% of CPU units utilized), DISK (% of storage occu-
pied), QUEUE (% of job queue occupied), NET (%
of dropped network packets) and FAIL (% of jobs that
don’t complete with an ”OK” status).

Definition (FSM Timeseries): A temporal sequence of
l FailShot Matrices.

Keeping a history of the failure state for various prior
time instances is important as it enables the automatic
post-analysis of the dimensions that contributed to a
given failure, enables the prediction of failures and oth-
ers (Section 6 provides an overview). It is important
to notice that the FSM timeseries can be stored incre-
mentally in order to reduce the amount of storage re-
quired to keep the matrix on disk. Nevertheless, even
the most naive storage plan of storing each FSM in its
entirety, is still much more storage efficient than keep-
ing the raw html/text sources provided by the feedback
sources. In constructing FailBase, described in Sec-
tion 4, we found that the FSM representation saves us
approximately 350GB of storage per month.

3.3 The Ranking Module

Although the snapshot of site vectors in FSM greatly
simplifies the representation of information coming
from different sources, observing individually hundreds
of parameters in real time in order to identify the sites
that are running into trouble is still a difficult task. For
example a typical LDAP query to the Grid Information
Service returns around 200 attributes. Monitoring these
parameters in separation is a cumbersome process that is
very expensive in terms of human resources, can rarely
lead to any sort of a priori decision-making and is ex-
tremely prone to mistakes and human omissions. In-
stead, automatically deducting the sites with the highest
potential to suffer from failures is much more practical
and useful. Since this information will be manipulated
in high frequencies, we focus on computing theK sites
with the highest potential to suffer from failures rather
than finding all of them (K is a user-defined parameter).
Therefore we don’t have to manipulate the whole uni-
verse of answers but only theK most important answers,
quickly and efficiently. The answer will allow the Re-
source Broker to automatically and dynamically divert
job submissions away from sites running into problems
as well as notify administrators in advance (compared to
SAM & tickets) to take preventive measures for the sites
more prone to failures.

Scoring Function: In order to rank sites we utilize some
aggregate scoring function which is provided by the user
(or system administrator). For ease of exposition we use,
similarly to [2], the function:

Score(si) =

m
∑

j=1

wj ∗ sij (1)

Site CPU DISK QUEUE NET FAIL

s1=USC-LCG2 0.63 0.61 0.01 0.28 0.35
s2=TAU-LCG2 0.66 0.91 0.92 0.56 0.58
s3=ELTE 0.48 0.01 0.16 0.56 0.54
s4=UCL-CCC 0.99 0.90 0.75 0.74 0.67
s5=KIMON 0.44 0.07 0.70 0.19 0.67

Table 1. The FailShot Matrix (FSM)coalesces the
failure information, available in a variety of formats and
sources, into a representative array of numeric vectors.

wheresij denotes the score for thejth attribute of the
ith site andwj (wj > 0) a weight factor which cal-
ibrates the significance of each attribute according to
the user preferences. For example if the CPU load is
more significant than the DISK load, then the former
parameter is given a higher weight . Should we need to
capture more complex interactions between different di-
mensions of FSM we could construct, with the help of
a domain expert, a custom scoring function or we could
train such a function automatically using historic infor-
mation (Section 5.3 conducts an evaluation of this pa-
rameter). It is expected that the scoring function will be
much more complex in a real setting (e.g. a linear com-
bination of averages overn′ correlated attributes, where
n′ << n).
Example: In order to stimulate our description,
consider the example of Table 1. In order to
infer the overall rank for two site vectors, such
as s2 = {0.66, 0.91, 0.92, 0.56, 0.58} and s4 =
{0.99, 0.90, 0.75, 0.74, 0.67}, we apply the scoring
function withwj = 1 (i.e. all dimensions are of equal
importance), and find thats2 = 3.63 ands4 = 4.05.

In order to minimize the computation of the scor-
ing function, which potentially has to join hundreds of
columns in each run, we will utilize theThreshold Al-
gorithm (TA)[12]. TA is one of the most widely rec-
ognized algorithms for finding theK highest rank an-
swers in database and middleware scenarios. Suppose
that we are interested in finding theK = 1 objects with
the highest score.TA starts out by performing a parallel
access to then lists of the Sorted-FSM in which each
attribute is sorted in descending order. While an object
si is seen,TA performs a random access to the other
lists to find the exact score forsi using the given scor-
ing function. In our working example the exact score
would be computed for the two objects in the first row
(i.e. s4 = 4.05 ands2 = 3.63) since sorted access is
executed on a row-at-a-time basis. It then computes a
thresholdvalue τ as the sum of all scores in the first
row (i.e. τ = .99 + .91 + .92 + .74 + .67 = 4.23).

Sinceτ is larger than both scores ofs4 ands2, theTAal-
gorithm performs another iteration in which the thresh-
old τ is refined as the sum of scores across the second
row (i.e. τ = 3.54). It also computes the exact score
for s5 = 2.07 (the only unresolved object in the sec-
ond row). Now the algorithm finds at leastK=1 objects
above the threshold (i.e.s4≥τ ands2≥τ) and therefore
terminates. It is easy to prove that no other object can
have a score aboves4 thus the score function calcula-
tion can be omitted for these objects.

4 The EGEE FailBase Repository

In the previous section we outlined the main compo-
nents of the FailRank architecture. In this section we
present the tools we developed in order to evaluate the
proposed architecture. In particular, we present theFail-
Base Repositorywhich is a 38GB corpus of state infor-
mation that we constructed and which characterizes the
EGEE Grid for one month in 2007. Such a corpus paves
the way for the community to systematically uncover
new, previously unknown patterns and rules between the
multitudes of parameters that can contribute to failures
in a grid environment.

4.1 Overview

FailBase currently contains 32 days of monitoring
data obtained from tests executed on the EGEE Grid
Infrastructure between 16/3/2007 and 17/4/2007. The
trace was collected at the High Performance Computing
systems Lab (HPCL) at the University of Cyprus. We
utilized a dual Xeon 2.4GHz CPU machine with 1GB
of RAM connected to the European Academic Network
(GEANT) at 155Mbps.

The trace maintains information for 2,565 Comput-
ing Element (CE) queues. It is important to note that
resource brokers perform thematchmakingbetween the
requests and the available and appropriate queues at the
CE-queue granularity rather than on individual nodes.
Thus, we focus on characterizing failures at the same
granularity as well. Each CE-queue is stored in an
individual folder that currently contains 72 attributes
(i.e., files) and each file characterizes the CE-queue it is
stored in. For example,ce101.grid.ucy.ac.cy
jobmanager-lcgpbs-atlas is the directory that
contains measurements specific to the ATLAS experi-
ment job queue that is maintained on the Computing El-
ementce101.grid.ucy.ac.cy.

Each of the files in the CE-queue folders can be
thought of as a timeseries (i.e., a sequence of [times-

tamp,value] pairs) for the given attribute using a time
step of approximately 1 to 10 minutes (varies accord-
ing to the type of source). We currently share the Fail-
base repository with the researchers of our group using
the UNIX filesystem interface which maintains open-
ness and portability. In the future we have plans to store
the information in a relational database on the EGEE
grid in order to allow researchers from other institutes
to access and manipulate the stored information using
the expressive power of the Structured Query Language
(SQL).

4.2 Meta-information Sources

We shall next describe the adopted methodology for
acquiring the 72 failure-related attributes from the re-
spective meta-information sources:

(i) Service Availability Monitoring (SAM): We obtained
approximately 260MB of data in raw html form (one
html file for each CE) using the UNIX system utility
curl. We then processed these pages using a set of perl
scripts and generated 18 attributes. These attributes con-
tain information such as the version number of the mid-
dleware running on the CE, results of various replica
manager tests and results from test job submissions.

(ii) Information Index Queries (BDII): We used the
ldapsearchsystem utility tool to perform approximately
2 million LDAP queries on the Information Index hosted
on bdii101.grid.ucy.ac.cy. We then performed a pro-
jection in order to extract another 15 failure-related at-
tributes. This yielded attributes such as the number of
free CPUs and the maximum number of running and
waiting jobs for each respective CE-queue.

(iii) Grid Statistics (GStat): We downloaded, again us-
ing curl, and parsed data files from the monitoring web-
site of Academia Sinica. From these files we generated
19 attributes for each given center and then replicated
these attributes to all the respective queues. The 19 at-
tributes contain information such as the geographical re-
gion of a Resource Center, the available storage space on
the Storage Element used by a particular CE, and results
from various tests concerning BDII hosts.

(iv) Host sensor data (GridICE): We performed over
500,000 LDAP queries on every EGEE Computing Ele-
ment host that published GridICE [10] sensor data (i.e.,
on ≈184 computing element hosts). The interval be-
tween consecutive probes was 10 minutes. We were able
to extract 18 attributes of interest that includes informa-
tion such as the total and available sizes of RAM, virtual
memory and filesystem-specific information.

(v) Network Tomography Data (SmokePing): We ob-
tained a 313MB snapshot of thegPing database from
ICS-FORTH (Greece) for the studied period. The
database contains network monitoring data for all the
EGEE sites. From this collection we measured the av-
erage round-trip-time (RTT) and the packet loss rate
relevant to each South East Europe CE which there-
fore yielded 2 additional attributes. In order to make
the information consistent with the FailBase repository
schema, we replicated files from the CE-level to CE-
queue-level using a one-to-one mapping function.

5 Experimental Evaluation

In this section we describe an experimental study of
the FailRank framework as well as our methodology.

5.1 Methodology

We have implemented a trace-driven tool in GNU
C++ which processes the Failbase repository and then
simulates the execution of the FailRank framework. In
particular, we replay the trace in our simulator and at
each timestamp we identify theK sites that might fail
to respond. We will denote these(timestamp, siteID)
tuples as theIdentified Set (Iset). TheIset is constructed
by selecting theK highest-ranked answers from the ex-
ecution of the scoring function described in Section 3.3
with equal weights on the FSM table.

Note the resource broker can compute theIset di-
rectly from the FSM matrix, before the timestamp at
which the actual error happens, thus such an approach
provides an a priori failure detection mechanism. In or-
der to assess this claim and validate that theIset cor-
responds to the actual sites that have failed to respond,
we need a set of(timestamp, siteID) tuples at which
real site failures happened. We shall denote such a set as
theReal Set (Rset) and we construct it by combining the
18 attributes provided by the SAM service (described in
4.2) using the scoring function described in Section 3.3.
That yields an average score per site for every times-
tamp. For each timestamp, we then again choose the
K sites which have the highest score. We define the
penalty, for not finding the correct sites at timestampi,
using a set-theoretic notation as follows:

Penaltyi = |Rset − Iset| (2)

where |Rset| = |Iset| = K and the penalty at
each timestampi is defined as the cardinality of the
set differenceRset − Iset. In our experimentation,
we shall also use theAggregate Penalty(i.e., A =

∑timestamps

i=1
Penaltyi), which provides a measure of

overall efficiency for theIset in all timestamps.

Having identified the correctIset sites, our objective
is to blacklist these sites and exclude them from the job
scheduling process, decreasing in that way the number
of failures.

5.2 Evaluating FailRank

In this subsection we evaluate the efficiency of the
FailRank framework in identifying the sites that will fail.
In particular, we obtain theIset using two alternative
strategies: i)FailRank Selection, which utilizes the FSM
matrix and selects theK = 20 sites (≈ 10% of all sites)
that maximize the scoring function of Section 3.3 with
equal weights; and ii)Random Selection, which does not
utilize the FSM matrix and simply selects theK = 20
sites at random.

We then measure the respective penalty using our
provided definition. Note that for this experiment we
utilize a subset of the Failbase repository (i.e., 197 OPS
queues monitored for 32 days) for which we had the
largest number of available attributes. We also apply
a spline interpolation smoothing between consecutive
time points in our graph in order to facilitate presenta-
tion.

Figure 2 illustrates that FailRank selection always has
an extremely low penalty (i.e. on average2.14 ± 1.41
with A = 92, 596) while Random selection is always
very close to 20 (i.e. on average18.19 ± 3.5 with
A = 786, 148). We can conclude that FailRank misses
the correct sites in only 9% of the cases while Random
misses the correct results in 91% of the cases. Another
observation is at time instances 6000, 16000 and 39000,
both selection curves drop to zero. This is attributed to
the fact that our meta-information trace contained miss-
ing values at the given points (i.e.,Iset = Rset = ∅).
One final observation is that the Random selection curve
is in some cases above 20. This is attributed to the fact
that the cardinality of theRset might be bigger thanK,
instead of equal toK, in certain cases. This is explained
as follows: to construct theRset we identified theK
highest ranked tuples for each timestamp. In some cases
the Kth tuple has an equal score to theKth + 1 tuple
(or maybe even theKth + 2 tuples, etc.). As a result,
|Rset| might be bigger than|Iset| which consequently
might yield a penalty larger thanK (e.g. consider the
case whereRset ∩ Iset = ∅).

5.3 Scoring Function Evaluation

In the second experimental series we study whether
we can further decrease the penalty of the Failrank ap-
proach by tuning the scoring function. Since some of
the 75 attributes might be more important in defining
the failure, we asked our administrators to manually pro-
vide weights to the 75 attributes given in the trace. Of
course this assignment might not be optimal but it pro-
vides us with an understanding of how much the penalty
can be improved. We will denote this edition of the Fail-
Rank algorihm as theExpert Scoringapproach while the
former approach, that assigned equal weights to all at-
tributes, as theNaive Scoringapproach.

Figure 3 illustrates that by fine-tuning the weights us-
ing the expert scoring method we can achieve a signif-
icant reduction in the penalty. In particular, the penalty
is now on average1.48±1.04 (with A = 64, 008) which
presents a 31% improvement from the naive scoring ap-
proach. The Failrank method with expert scoring misses
failures in only 7.4% of the cases which is clear im-
provement to the Random method presented in the pre-
vious subsection. Finally note that the current penalty is
not a lower bound on the penalty achieved by the opti-
mal assignment of weights but identifying such a bound
efficiently and in real-time will be a subject of future
work.

6 FailRank Extensions

In this section we review some exploratory data anal-
ysis, learning and prediction applications that can be
built on top of the FailRank architecture.
(i) Finding State-related Sites:An interesting question
is whether any pair of sites features a similarsite vector.
This is an indication that two or more sites are in a sim-
ilar failure state, with regards to the attributes of FSM.
In order to answer this question we need a method that
compares two vectors (~q, ~si), and finds if these are sim-
ilar. An efficient technique, widely used in the informa-
tion retrieval domain, is thecosine similarity[11]. The
cosine similarity finds the cosine of the angle between
two vectors. If two vectors are identical then the cosine
similarity is 1 (because the angle between them is 0). On
the contrary if two vectors are different then the similar-
ity is closer to 0. The cosine similarity is calculated as
following:

sim(q, si) =

∑

(~q ∗ ~si)
√

∑

(~q)2 ∗
√

∑

(~si)2
(3)

 0

 5

 10

 15

 20

 25

 0 5000 10000 15000 20000 25000 30000 35000 40000

P
en

al
ty

 (

si
te

s
no

t i
de

nt
ifi

ed
)

Time (minutes)

Penalty for selecting the K=20 worst sites (Random vs. Failrank Selection)

Random Selection
Failrank Selection (naive scoring)

Figure 2. FailRank selection vs. Random selection:FailRank identifies the site that have failed as
opposed to Random which always identifies very few of the K=20 sites.

 0

 1

 2

 3

 4

 5

 0 5000 10000 15000 20000 25000 30000 35000 40000

P
en

al
ty

 (

si
te

s
no

t i
de

nt
ifi

ed
)

Time (minutes)

Penalty for selecting the K=20 worst sites in Failrank (Naive Scoring vs. Expert Scoring)

Failrank (Naive Scoring)
Failrank (Expert Scoring)

Figure 3. Failrank Scoring Function Evaluation: When the Failrank scoring function is tuned by
an expert (Expert scoring) it yields more accurate results t han the alternative of setting the
scores uniformly (Naive Scoring).

By executing the cosine similarity for the sites in Ta-
ble 1, we find that the highest similarity issim(s2, s4) =
0.97 while the smallest issim(s1, s5) = 0.57. This
means thats2 ands4 have a close relation across the dif-
ferent dimensions of the Failshot Matrix whiles1 ands5

have a very distant relation.

(ii) Timeseries Similarity Search: Identifying which
attribute timeseries are similar allows us to find the cor-
related attributes in FSM. For instance we can find that
the QUEUE timeseries is correlated to the CPU time-
series for some site. To formalize our description, let
P = (p1, p2,, pl) andQ = (q1, q2,, ql) denote two
1-dimensional timeseries of lengthl (each point denotes
some itemsij in FSM).

The most straightforward way to compute the sim-
ilarity betweenP and Q is to apply theEuclidean
distance (L2) which is given byd = |P − Q| =

2

√

∑l

i=1
|pi − qi|2. Since data points are only matched

at identical time positions, the running time of this ap-
proach isO(l). However this distance is not able to han-
dle out-of-phase matches. To understand this consider
two identical timeseriesP and Q, whereQ is shifted
in time by some offsett (i.e. pi = qi+t, ∀i ≤ l). Us-
ingL2 would obviously not yield any similarity between
P and Q. The Dynamic Time Warping (DTW) [1],
Longest Common Sub-Sequence (LCSS) [3] and the
Upper LCSS method [29] allow local stretching by
matching each point ofP with other points ofQ within
some windowδ (i.e. pi is matched withqi±δ, ∀i ≤ l).
This allows us to correlate noisy failure timeseries with
out-of-phase matches again in an effective manner (i.e.,
in O(l) time).

(iii) Decision Tree Learning: Given a site vectorsi

= {a1,...,am}, we want to predict ifsi will fail (with

some statistical confidence). To answer this question,
we train a Decision treeT [11] in an offline phase us-
ing a corpus of annotated failures. We then extract
the classification rules that are utilized by the FailRank
system. For instance if we learn that a site vector of
the form{CPU≥0.70, DISK≥0.90, QUEUE≥0.85, any,
any} fails in 95% of the cases, then sites satisfying this
rule are excluded from the job scheduling process. An
interesting problem is to provide a decision tree which
continues its learning behavior even after the initiation
of the system and which gracefully adapts to changes.

7 Conclusions & Future Work

In this paper we introduce FailRank, a novel frame-
work for integrating and ranking information sources
that characterize failures in a grid system. This perspec-
tive is to our knowledge new and fits well the computa-
tion model of grid infrastructures. Another advantage is
that FailRank streamlines the very complex task of mon-
itoring large-scale distributed resources in an automated
manner. In the future we plan to provide more elaborate
ranking algorithms and perform an in-depth assessment
of our prototype system under development.

Acknowledgements: This work was supported in part
by the European Union under projects CoreGRID (#
IST-2002-004265) and EGEE (#IST-2003-508833).

References

[1] Berndt D. , Clifford J., “Using Dynamic Time Warping
to Find Patterns in Time Series”, InKDD 1994.

[2] Bruno N., Gravano L. and Marian A., “Evaluating Top-
K Queries Over Web Accessible Databases”, In ICDE
2002.

[3] Das G., Gunopulos D., Mannila H., “Finding Similar
Time Series”, InPKDD, 1997.

[4] Chun G., Dail H., Casanova H., and Snavely A.,
“Benchmark probes for grid assessment”, In IEEE
IPDPS 2004.

[5] “CIC”, http://cic.gridops.org/

[6] Da Costa G., Orlando S., Dikaiakos M.D., “Nine
months in the life of EGEE: a look from the South”,
In IEEE MASCOTS2007.

[7] Dumitrescu C., Raicu I., Ripeanu M., Foster I.,
“DiPerF: An automated DIstributed PERformance test-
ing Framework”, InIEEE/ACM Grid 2004.

[8] “EGEE”, http://www.eu-egee.org/.

[9] “Global Grid User Support (GGUS) ticketing”,
https://gus.fzk.de/pages/home.php

[10] “GridICE”, http://grid.infn.it/gridice/

[11] Han J. Kamber M., “Data Mining: Concepts and Tech-
niques”, 2nd edition, Elsevier, 2006.

[12] Fagin R., Lotem A. and Naor M., “Optimal Aggregation
Algorithms For Middleware”, InPODS2001.

[13] Foster I. and Kesselman C., “The Grid: Blueprint for a
New Computing Infrastructure”, Elsevier, 2004.

[14] Foster I., Kesselman C., and Tuecke S., “The Anatomy
of the Grid: Enabling Scalable Virtual Organizations”,
In Intl. J. Supercomputer Applications, 15(3):200–222,
2001.

[15] Foster I., “Globus Toolkit Version 4: Software for
Service-Oriented Systems”, In IFIP ICNP 2005.

[16] Glite middleware http://glite.org/

[17] GStat: http://goc.grid.sinica.edu.tw/gstat/

[18] Junqueira, F. P., and Marzullo, K., “The virtue of depen-
dent failures in multi-site systems”, InHotDep2005.

[19] Kiciman E. and Fox A., “Detecting Application-Level
Failures in Component-based Internet Services”, In
IEEE Transactions on Neural Networks, 2004.

[20] Kiciman E. and Subramanian L., “Root Cause Local-
ization in Large Scale Systems”, InHotDep2005.

[21] Krishnamurthy S., Sanders W.H., Cukier M.: “A Dy-
namic Replica Selection Algorithm for Tolerating Tim-
ing Faults”, InDSN2001.

[22] Locasto M.E., Sidiroglou S., and Keromytis A.D., “Ap-
plication Communities: Using Monoculture for De-
pendability”, InHotDep2005.

[23] “OSG”, http://www.opensciencegrid.org.

[24] Raman R., Livny M., Solomon M.H., “Matchmaking:
An extensible framework for distributed resource man-
agement”, InCluster Computing, Vol 2, 1999.

[25] “TeraGrid”, http://www.teragrid.org/

[26] Tsouloupas G., Dikaiakos M.D., “GridBench: A Tool
for the Interactive Performance Exploration of Grid In-
frastructures”, InJournal of Parallel and Distributed
Computing, Vol 67, pp 1029-1045, 2007.

[27] Neokleous K., Dikaiakos M.D., Fragopoulou P.,
Markatos E.P., “Failure Management in Grids: The
Case of the EGEE Infrastructure”, InParallel Process-
ing Letters(in press, Dec. 2007).

[28] Tsouloupas G. and Dikaiakos M.D., “Grid Resource
Ranking using Low-level Performance Measurements.”,
In Euro-Par2007.

[29] Vlachos M., Hadjieleftheriou M., Gunopulos D. ,
Keogh E., “Indexing multi-dimensional time-series
with support for multiple distance measures” InKDD
2003.

[30] “WISDOM”, http://wisdom.eu-egee.fr/

[31] “Service Availability Monitoring (SAM)”,
http://goc.grid. sinica.edu.tw/gocwiki/SAM

