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Presentation Goals

• To provide an overview of the 
most important developments in 
Sensor Network Technology

• To highlight some important 
storage and retrieval 
(database) challenges that 
arise in this context
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Talk Outline

1. Overview of Sensor Networks

2. Data Storage Models in Sensor Networks

3. The MicroHash Index Structure.

4. MicroHash Experimental Evaluation 

5. Conclusions and Future Work
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Wireless Sensor Networks (WSNs)
• A collection of resource constrained 

devices utilized for monitoring and 
understanding the physical world. 

•

http://images.google.com/imgres?imgurl=http://today.cs.berkeley.edu/800demo/dots.jpg&imgrefurl=http://today.cs.berkeley.edu/800demo/&h=1200&w=1600&sz=350&tbnid=64rl76k-rx8LRM:&tbnh=112&tbnw=150&hl=en&start=6&prev=/images%3Fq%3Dsensor%2Bnetwork%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DGGLJ,GGLJ:2006-10,GGLJ:en
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Sensor Networks Applications
• WSNs offer a Non-Intrusive and Non-

Disruptive technology that enables the 
human to study physical phenomena at  
extremely high resolutions.

• Applications have already emerged in: 
– Environmental and habitant monitoring
– Seismic and Structural monitoring
– Understanding Animal Migrations & Species 

interactions
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hazards
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Humidity etc).
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The Anatomy of a Sensor Device
• Processor, in various (sleep, idle, active) modes
• Power source AA or Coin batteries, Solar Panels
• SRAM used for the program code and for in-

memory buffering.
• LEDs used for debugging
• Radio, used for 
transmitting the acquired 
data to some storage site 
(SINK) (9.6Kbps-250Kbps)
• Sensors: Numeric readings in a limited range
(e.g. temperature -40F..+250F with one decimal 

point precision) at a high frequency (2-2000Hz)

Storage
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Sensor Devices & Capabilities
Sensing Capabilities
• Light
• Temperature
• Humidity 
• Pressure,  
• Tone Detection, 
• Wind Speed, 
• Soil Moisture,
• Location (GPS),
• etc… Smartdust

Intel i-mote

UC-Riverside
RISE

UC-Berkeley 
Telos

UC-Berkeley 
mica2dot

Crossbow
Mica Box 

UC-Berkeley 
Weather Board

TinyMote 584

Range 2Km

http://images.google.com/imgres?imgurl=http://today.cs.berkeley.edu/800demo/dots.jpg&imgrefurl=http://today.cs.berkeley.edu/800demo/&h=1200&w=1600&sz=350&tbnid=64rl76k-rx8LRM:&tbnh=112&tbnw=150&hl=en&start=6&prev=/images%3Fq%3Dsensor%2Bnetwork%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DGGLJ,GGLJ:2006-10,GGLJ:en
http://images.google.com/imgres?imgurl=http://ubimon.doc.ic.ac.uk/bsn/images/imote1.jpg&imgrefurl=http://ubimon.doc.ic.ac.uk/bsn/index.php%3Fm%3D206%26page%3D1&h=151&w=271&sz=8&tbnid=B9mYdcKaoxz9KM:&tbnh=60&tbnw=108&hl=en&start=2&prev=/images%3Fq%3Dintel%2Bimote%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DGGLJ,GGLJ:2006-10,GGLJ:en%26sa%3DN
http://images.google.com/imgres?imgurl=http://seattleweb.intel-research.net/projects/guide/projects/iglove/dot_mote.jpg&imgrefurl=http://seattleweb.intel-research.net/projects/guide/projects/iglove/RFIDglove.htm&h=254&w=270&sz=79&tbnid=AO_YPlzgVFjTaM:&tbnh=101&tbnw=108&hl=en&start=16&prev=/images%3Fq%3Dintel%2Bmote%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DGGLJ,GGLJ:2006-10,GGLJ:en


9

Characteristics 
1. Energy Consumption is the critical part.

Energy source: AA batteries, Solar Panels

2. Local Processing is cheaper than 
transmitting over the radio. 
1 Byte over the Radio consumes as much energy as 
~1200 CPU instructions.

3. Local Storage is cheaper than 
transmitting over the radio. 
Transmitting 512B over a single-hop 9.6Kbps (915MHz) 
radio requires 82,000µJ, while writing to local flash only 
760µJ.
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Talk Outline

1. Overview of Sensor Networks 

2. Data Storage Models in Sensor Networks

3. The MicroHash Index Structure.

4. MicroHash Experimental Evaluation 

5. Conclusions and Future Work
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The Centralized Storage Model
Sense and Send Paradigm
Sensors acquire environmental parameters and transmit 
these to the sink at pre-specified intervals

A Database that 
collects readings 

from many Sensors
Centralized:

• Storage, Indexing

• Query Processing

• Triggers, etc..
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The Centralized Storage Model
The Great Duck Island Study (Maine, USA)

• Large-Scale deployment by Intel Research, 
Berkeley in 2002-2003 (Maine USA).

• Focuses on monitoring microclimate in and 
around the nests of endangered species 
which are sensitive to disturbance.

• They deployed more than 166 motes 
installed in remote locations (such as 1000 
feets in the forest)
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The Centralized Storage Model
Real Time Monitoring

WebServer
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The Centralized Storage Model
The James Reserve Project, CA, USA 
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Centralized Storage & Query Processing

• All the pre-mentioned projects 
utilize the Centralized (Sense 
and Send) Model.

• Although Query Aggregation is 
pushed in the network (e.g. 
with TinyDB/TAG or Directed 
Diffusion), still each and every 
event is percolated to a 
centralized database.

• Transmitting over the radio is 
extremely expensive.

v1

v3

v2

v4

v5

5:

3:

2,3,4,5:

4,5:

TO

1,2,3,4,5

1,2,3,4,5

2,3 4,5

4      5

e.g. Sum, Max, Min, Count

Tree-Based 
Routing



Our Model: In-Situ Data Storage
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The Sink
Programming board

1. Sensors acquire readings from their surrounding environment.

2. The data remains In-situ (at the generating site) in a sliding 
window fashion.

3. When Users want to search/retrieve some information they 
perform optimized on-demand queries.

A network of 

Sensor Databases
• Distributed Storage

• Distributed Query Processing

Objective: To minimize the 
utilization of the radio
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Soil-Organism Monitoring
(Center for Conservation Biology, UCR)

– A set of sensors monitor the CO2 levels in the soil over 
a large window of time.

– Not a real-time application.
– Many values may not be very interesting.

In-Situ Data Storage: Motivation

D. Zeinalipour-Yazti, S. Neema, D. Gunopulos, V. Kalogeraki and W. Najjar, 
"Data Acquision in Sensor Networks with Large Memories", IEEE Intl. Workshop on
Networking Meets Databases ( ), Tokyo, Japan, 2005.NetDB ICDE'2005

http://infolab.usc.edu/netdb05/index.html
http://icde2005.is.tsukuba.ac.jp/
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Challenges of the In-Situ Model
• How to efficiently store information locally 

Solution: Our group built the RISE Sensor that 
features an external flash memory) 
[ IEEE/ACM IPSN’05, IEEE SECON’05, ACM 
Senmetrics’05]

• How to efficiently access a Giga-Scale 
storage medium of a Sensor Device? 
Solution: We build the MicroHash Index Structure
[IEEE NetDB (ICDE’05), USENIX FAST’05 ]

• How to find the most important events 
without pulling together all distributed 
relations?
Solution: We build the Threshold Join Algorithm

[IEEE DMSN’05 (VLDB’05) ]
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Talk Outline

1. Overview of Sensor Networks 

2. Data Storage Models in Sensor Networks

3. The MicroHash Index Structure

4. MicroHash Experimental Evaluation 

5. Conclusions and Future Work
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MicroHash
Objective
• Provide efficient access to any record stored 

on flash by timestamp or value
• Execute a wide spectrum of queries based on 

our index, similarly to generic DB indexes.

Requirements: 
• Minimize the size of SRAM-structures. (only 2-

64KB is available).
• Address the distinct characteristics of Flash 

Memory in order to minimize energy 
consumption and increase lifetime
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• The most prevalent storage medium used for Sensor 
Devices is Flash Memory (NAND Flash)

• The fastest growing memory market $8.7B (Micron.com)

Flash (NAND) Advantages

• Simple Cell Architecture (high 
capacity in a small surface)

• Economical Reproduction

• Shock Resistant

• Fast Random Access (50-80 µs)

• Power Efficiency Surface mount 
NAND flash

A) Flash Memory at a Glance

Removable Devices

http://images.google.com/imgres?imgurl=http://www.volaire.net/download/images/DNSD1024D.PNG&imgrefurl=http://www.volaire.net/product_info.php%3Fproducts_id%3D44&h=400&w=480&sz=38&tbnid=IluYbGwJcvIJ:&tbnh=105&tbnw=126&hl=en&start=6&prev=/images%3Fq%3Dsd%2Bflash%26svnum%3D10%26hl%3Den%26lr%3D%26safe%3Doff%26rls%3DGGLD,GGLD:2005-16,GGLD:en%26sa%3DN


A) Flash Memory at a Glance
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Page = 512B

Asymmetric Read/Write Energy Cost : Writing is 3 
orders of magnitudes more expensive than Reading

Measurements using RISE

1. Delete-Constraint: Deleting can only be performed at a 
block granularity (i.e. 8KB~64KB)

2. Write-Constraint: Writing data can only be performed at 
a page granularity (256B~512B), after the respective page 
(and its respective 8KB~64KB block!) has been deleted

3. Wear-Constraint: Each page can only be written a limited 
number of times (typically 10,000-100,000)
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Summary of Our Objectives

– Maximize Wear-Leveling: Spread page 
writes out uniformly across the storage media 
in order to avoid wearing out specific pages.

– Minimize Block-Erase Operations: by 
minimizing random access deletions.

– Minimize SRAM structures: because we 
have limited memory and require fast 
initialization. 
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MicroHash Overview
• 4 types of 

pages
– Root Page
– Directory Page
– Index Page
– Data Page

• 4 operation 
phases
a) Initialization 
b) Growing
c) Repartition
d) Deletion
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Operations in MicroHash: Insertion
• A) Growing Phase

– Collect data and fill up data buffer page Pwrite in 
SRAM. 

– Then force Pwrite out to flash media. 
– Create index records for each data record in Pwrite. 
– If SRAM is too small to hold the new generated index 

records, Index pages are forced out by LRU.

SRAM
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Operations in MicroHash: Deletion
• B) Deletion Phase

– Take the flash media as a circular array and keep a 
pointer at the next writing position (idx).

– If we want to write and the flash media is full, delete 
the next block pointed by the idx pointer
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Operations in MicroHash: Repartition
• MicroHash starts out with a Equi-width bucket table
• Equi-width bucket splitting deteriorates under biased data.
• We want to obtain finer intervals for 

the buckets utilized most.

Splitting policy:
– If bucket A links to more than τ index records, evict the least 

used bucket B and segment bucket A into A and A’
– No bucket reassignments of old records => Expensive
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Searching in MicroHash
• Searching by value

“Find the timestamp (s) on which the temperature was 
100F”
– Simple operation in MicroHash
– We simply find the right Directory Bucket, from there the 

respective index page and then data record (page-by-page)

• Searching by timestamp
“Find the temperature of some sensor at some time 
instance tj (or in the range [tj..tk])”

– Problem: Index pages are mixed together with data pages.
– How can we search by timestamp if pages are mixed?

1. Binary Search (O(log(n)) ~20 pages for 512MB flash media)
2. LBSearch (less than 10 pages)
3. ScaleSearch (better than LBSearch, ~4.5 pages)
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LBSearch and ScaleSearch
Solutions to the Search By Timestamp Problem:

A) LBSearch: We recursively create a lower bound on the position of 
tq until tq is located.  
Idea: Fetch page at tq (the lower bound), denoted as P. If P
contains tq terminate, else extract the last known timestamp in that 
page and recursively refine the lower bound until tq is located.

B) ScaleSearch:
Idea: Quite similar to LBSearch, however in the first step we position 
the read more intelligently (by exploiting data distribution)

tq=420
tq=490
tq=500

tq=300
tq=350Query

tq=500
in practice
4.75 page 

reads
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Two-Phase Page Reads
• Problem

– Index Pages written on flash might not be fully occupied
– When we access these pages we transfer a lot of empty bytes 

(padding) between the flash media and SRAM.

• Our Solution 1: Two-Phase Page Reads
– Reads the 8B header from flash in the first phase, and then 

reads the exact amount of bytes in the next phase.

Useful
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MicroHash vs ELF
• Solution 2: Avoid non-full index pages using ELF*. 

ELF:
– a linked list in which each page, other than the last 

page, is completely full. 
– keeps copying the last non-full page into a newer 

page, when new records are requested to be added.

*Dai et. al., Efficient Log Structured Flash File System, SenSys 2004
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Talk Outline

1. Overview of Sensor Networks 

2. Data Storage Models in Sensor Networks

3. The MicroHash Index Structure

4. MicroHash Experimental Evaluation

5. Conclusions and Future Work
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Experimental Evaluation
• Implemented MicroHash in nesC.
• We tested it using TinyOS along with a 

trace-driven experimental methodology.
• Datasets:

– Washington State Climate
• 268MB dataset contains readings  in 2000-2005.

– Great Duck Island 
• 97,000 readings between October and November 

2002.

• Evaluation Parameters: i) Space 
Overhead, ii) Energy Overhead, iii) Search 
Performance



1) Space Overhead of Index
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• Index page overhead  Φ = IndexPages/(DataPages+IndexPages)
• Two Index page layouts

– Offset, an index record has the following form {datapageid,offset}
– NoOffset, in which an index record has the form {datapageid}

• 128 MB flash media (256,000 pages)
– varying SRAM (buffer) size (2.5 - 5KB) 

[same applies to record size(10– 22 Bytes)]

Increasing the Buffer Decreases the Index Overhead



35

1) Space Overhead of Index

Black 
denotes the 
index pages

Increasing the Buffer Decreases the Index Overhead
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2) Search Performance
• 128 MB flash media (256,000 pages), varied SRAM (buffer) size
• 2 Index page layouts

– Anchor, every index page stores the last known data record 
timestamp

– No Anchor, the index page does not contain any timestamp 
information

+ Searching by Timestamp can be performed efficiently           + 
Increasing the Buffer (during indexing) Increases Search Performance
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2) Search Performance
• We compared MicroHash vs. ELF Index Page 

Chaining.
• Keeping full index pages increases search 

performance but decreases insertion performance.

Decreasing indexing 
performance using ELF 

(15% more writes)

Increasing search 
performance using ELF        

(10% less reads)
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Indexing on Great Duck Island Trace
• Used 3KB index buffer and a 4MB flash card to store all 

the 97,000 20-byte data readings.
– The index pages never require more that 30% additional space 
– Indexing the records has only a small increase in energy 

demand: the energy cost of storing the records on flash 
without an index is 3042mJ

– We are able to find any record by its timestamp with 4.75 page 
reads on average
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Talk Outline

1. Overview of Sensor Networks 

2. Data Storage Models in Sensor Networks

3. The MicroHash Index Structure

4. MicroHash Experimental Evaluation 

5. Conclusions and Future Work



Conclusions
• We Proposed the MicroHash index, which is an 

efficient external memory hash index that 
addresses the distinct characteristics of flash 
memory

• Our experimental evaluation shows that the 
structure we propose is both efficient and 
practical

• This is a new area with many new challenges 
and opportunities!

40 http://www2.cs.ucy.ac.cy/~dzeina/



Future Work
– Indexing multidimensional datasets

– Exploiting Temporal Locality along with 
Compression Algorithms to minimize 
even further the storage cost.

– Realize the In-Situ Data Storage and 
Retrieval system which binds together 
all the aforementioned ideas.
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