
MicroHash: An efficient Index
Structure for Wireless Sensor Devices

Demetris Zeinalipour
[dzeina@cs.ucy.ac.cy]

Department of Computer Science
University of Cyprus

http://www2.cs.ucy.ac.cy/~dzeina/

EPL671 - Computer Science: Research and Technology Course,
Dept. of Computer Science, University of Cyprus,

Friday, 31st March 2006, Nicosia, Cyprus

2

Presentation Goals

• To provide an overview of the
most important developments in
Sensor Network Technology

• To highlight some important
storage and retrieval
(database) challenges that
arise in this context

Acknowledgements
• This is a joint work with my collaborators

at the University of California – Riverside.

• Our results were presented in the
following paper:
"MicroHash: An Efficient Index Structure for
Flash-Based Sensor Devices",
D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos and W. Najjar,
The 4th USENIX Conference on File and Storage Technologies
(FAST’05), San Fransisco, USA, December, 2005.

3

4

Talk Outline

1. Overview of Sensor Networks

2. Data Storage Models in Sensor Networks

3. The MicroHash Index Structure.

4. MicroHash Experimental Evaluation

5. Conclusions and Future Work

5

Wireless Sensor Networks (WSNs)
• A collection of resource constrained

devices utilized for monitoring and
understanding the physical world.

•

http://images.google.com/imgres?imgurl=http://today.cs.berkeley.edu/800demo/dots.jpg&imgrefurl=http://today.cs.berkeley.edu/800demo/&h=1200&w=1600&sz=350&tbnid=64rl76k-rx8LRM:&tbnh=112&tbnw=150&hl=en&start=6&prev=/images%3Fq%3Dsensor%2Bnetwork%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DGGLJ,GGLJ:2006-10,GGLJ:en

6

Sensor Networks Applications
• WSNs offer a Non-Intrusive and Non-

Disruptive technology that enables the
human to study physical phenomena at
extremely high resolutions.

• Applications have already emerged in:
– Environmental and habitant monitoring
– Seismic and Structural monitoring
– Understanding Animal Migrations & Species

interactions

xbow.com
(Automation,

Tracking)

Monitoring
hazards

Great Duck Island –
Maine (Temperature,

Humidity etc).

Golden Gate – SF,
Vibration and Displacement

of the bridge Structure
Zebranet (Kenya)

GPS trajectory

http://images.google.com/imgres?imgurl=http://www.virtualtravelguides.co.uk/images/golden-gate-bridge.jpg&imgrefurl=http://www.virtualtravel.freeuk.com/california-travel-guide.htm&h=864&w=1152&sz=149&tbnid=aTTSUgauvHUJ:&tbnh=112&tbnw=150&hl=en&start=2&prev=/images%3Fq%3Dsan%2Bfrancisco%2Bbridge%26svnum%3D10%26hl%3Den%26lr%3D%26safe%3Doff
http://www.xbow.com/wireless_home.aspx

7

The Anatomy of a Sensor Device
• Processor, in various (sleep, idle, active) modes
• Power source AA or Coin batteries, Solar Panels
• SRAM used for the program code and for in-

memory buffering.
• LEDs used for debugging
• Radio, used for
transmitting the acquired
data to some storage site
(SINK) (9.6Kbps-250Kbps)
• Sensors: Numeric readings in a limited range
(e.g. temperature -40F..+250F with one decimal

point precision) at a high frequency (2-2000Hz)

Storage

8

Sensor Devices & Capabilities
Sensing Capabilities
• Light
• Temperature
• Humidity
• Pressure,
• Tone Detection,
• Wind Speed,
• Soil Moisture,
• Location (GPS),
• etc… Smartdust

Intel i-mote

UC-Riverside
RISE

UC-Berkeley
Telos

UC-Berkeley
mica2dot

Crossbow
Mica Box

UC-Berkeley
Weather Board

TinyMote 584

Range 2Km

http://images.google.com/imgres?imgurl=http://today.cs.berkeley.edu/800demo/dots.jpg&imgrefurl=http://today.cs.berkeley.edu/800demo/&h=1200&w=1600&sz=350&tbnid=64rl76k-rx8LRM:&tbnh=112&tbnw=150&hl=en&start=6&prev=/images%3Fq%3Dsensor%2Bnetwork%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DGGLJ,GGLJ:2006-10,GGLJ:en
http://images.google.com/imgres?imgurl=http://ubimon.doc.ic.ac.uk/bsn/images/imote1.jpg&imgrefurl=http://ubimon.doc.ic.ac.uk/bsn/index.php%3Fm%3D206%26page%3D1&h=151&w=271&sz=8&tbnid=B9mYdcKaoxz9KM:&tbnh=60&tbnw=108&hl=en&start=2&prev=/images%3Fq%3Dintel%2Bimote%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DGGLJ,GGLJ:2006-10,GGLJ:en%26sa%3DN
http://images.google.com/imgres?imgurl=http://seattleweb.intel-research.net/projects/guide/projects/iglove/dot_mote.jpg&imgrefurl=http://seattleweb.intel-research.net/projects/guide/projects/iglove/RFIDglove.htm&h=254&w=270&sz=79&tbnid=AO_YPlzgVFjTaM:&tbnh=101&tbnw=108&hl=en&start=16&prev=/images%3Fq%3Dintel%2Bmote%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DGGLJ,GGLJ:2006-10,GGLJ:en

9

Characteristics
1. Energy Consumption is the critical part.

Energy source: AA batteries, Solar Panels

2. Local Processing is cheaper than
transmitting over the radio.
1 Byte over the Radio consumes as much energy as
~1200 CPU instructions.

3. Local Storage is cheaper than
transmitting over the radio.
Transmitting 512B over a single-hop 9.6Kbps (915MHz)
radio requires 82,000µJ, while writing to local flash only
760µJ.

10

Talk Outline

1. Overview of Sensor Networks

2. Data Storage Models in Sensor Networks

3. The MicroHash Index Structure.

4. MicroHash Experimental Evaluation

5. Conclusions and Future Work

11

The Centralized Storage Model
Sense and Send Paradigm
Sensors acquire environmental parameters and transmit
these to the sink at pre-specified intervals

A Database that
collects readings

from many Sensors
Centralized:

• Storage, Indexing

• Query Processing

• Triggers, etc..

12

The Centralized Storage Model
The Great Duck Island Study (Maine, USA)

• Large-Scale deployment by Intel Research,
Berkeley in 2002-2003 (Maine USA).

• Focuses on monitoring microclimate in and
around the nests of endangered species
which are sensitive to disturbance.

• They deployed more than 166 motes
installed in remote locations (such as 1000
feets in the forest)

13

The Centralized Storage Model
Real Time Monitoring

WebServer

14

The Centralized Storage Model
The James Reserve Project, CA, USA

15

Centralized Storage & Query Processing

• All the pre-mentioned projects
utilize the Centralized (Sense
and Send) Model.

• Although Query Aggregation is
pushed in the network (e.g.
with TinyDB/TAG or Directed
Diffusion), still each and every
event is percolated to a
centralized database.

• Transmitting over the radio is
extremely expensive.

v1

v3

v2

v4

v5

5:

3:

2,3,4,5:

4,5:

TO

1,2,3,4,5

1,2,3,4,5

2,3 4,5

4 5

e.g. Sum, Max, Min, Count

Tree-Based
Routing

Our Model: In-Situ Data Storage

16

The Sink
Programming board

1. Sensors acquire readings from their surrounding environment.

2. The data remains In-situ (at the generating site) in a sliding
window fashion.

3. When Users want to search/retrieve some information they
perform optimized on-demand queries.

A network of

Sensor Databases
• Distributed Storage

• Distributed Query Processing

Objective: To minimize the
utilization of the radio

17

Soil-Organism Monitoring
(Center for Conservation Biology, UCR)

– A set of sensors monitor the CO2 levels in the soil over
a large window of time.

– Not a real-time application.
– Many values may not be very interesting.

In-Situ Data Storage: Motivation

D. Zeinalipour-Yazti, S. Neema, D. Gunopulos, V. Kalogeraki and W. Najjar,
"Data Acquision in Sensor Networks with Large Memories", IEEE Intl. Workshop on
Networking Meets Databases (), Tokyo, Japan, 2005.NetDB ICDE'2005

http://infolab.usc.edu/netdb05/index.html
http://icde2005.is.tsukuba.ac.jp/

18

Challenges of the In-Situ Model
• How to efficiently store information locally

Solution: Our group built the RISE Sensor that
features an external flash memory)
[IEEE/ACM IPSN’05, IEEE SECON’05, ACM
Senmetrics’05]

• How to efficiently access a Giga-Scale
storage medium of a Sensor Device?
Solution: We build the MicroHash Index Structure
[IEEE NetDB (ICDE’05), USENIX FAST’05]

• How to find the most important events
without pulling together all distributed
relations?
Solution: We build the Threshold Join Algorithm

[IEEE DMSN’05 (VLDB’05)]

19

Talk Outline

1. Overview of Sensor Networks

2. Data Storage Models in Sensor Networks

3. The MicroHash Index Structure

4. MicroHash Experimental Evaluation

5. Conclusions and Future Work

20

MicroHash
Objective
• Provide efficient access to any record stored

on flash by timestamp or value
• Execute a wide spectrum of queries based on

our index, similarly to generic DB indexes.

Requirements:
• Minimize the size of SRAM-structures. (only 2-

64KB is available).
• Address the distinct characteristics of Flash

Memory in order to minimize energy
consumption and increase lifetime

21

• The most prevalent storage medium used for Sensor
Devices is Flash Memory (NAND Flash)

• The fastest growing memory market $8.7B (Micron.com)

Flash (NAND) Advantages

• Simple Cell Architecture (high
capacity in a small surface)

• Economical Reproduction

• Shock Resistant

• Fast Random Access (50-80 µs)

• Power Efficiency Surface mount
NAND flash

A) Flash Memory at a Glance

Removable Devices

http://images.google.com/imgres?imgurl=http://www.volaire.net/download/images/DNSD1024D.PNG&imgrefurl=http://www.volaire.net/product_info.php%3Fproducts_id%3D44&h=400&w=480&sz=38&tbnid=IluYbGwJcvIJ:&tbnh=105&tbnw=126&hl=en&start=6&prev=/images%3Fq%3Dsd%2Bflash%26svnum%3D10%26hl%3Den%26lr%3D%26safe%3Doff%26rls%3DGGLD,GGLD:2005-16,GGLD:en%26sa%3DN

A) Flash Memory at a Glance

22

Page = 512B

Asymmetric Read/Write Energy Cost : Writing is 3
orders of magnitudes more expensive than Reading

Measurements using RISE

1. Delete-Constraint: Deleting can only be performed at a
block granularity (i.e. 8KB~64KB)

2. Write-Constraint: Writing data can only be performed at
a page granularity (256B~512B), after the respective page
(and its respective 8KB~64KB block!) has been deleted

3. Wear-Constraint: Each page can only be written a limited
number of times (typically 10,000-100,000)

23

Summary of Our Objectives

– Maximize Wear-Leveling: Spread page
writes out uniformly across the storage media
in order to avoid wearing out specific pages.

– Minimize Block-Erase Operations: by
minimizing random access deletions.

– Minimize SRAM structures: because we
have limited memory and require fast
initialization.

24

MicroHash Overview
• 4 types of

pages
– Root Page
– Directory Page
– Index Page
– Data Page

• 4 operation
phases
a) Initialization
b) Growing
c) Repartition
d) Deletion

25

Operations in MicroHash: Insertion
• A) Growing Phase

– Collect data and fill up data buffer page Pwrite in
SRAM.

– Then force Pwrite out to flash media.
– Create index records for each data record in Pwrite.
– If SRAM is too small to hold the new generated index

records, Index pages are forced out by LRU.

SRAM

26

Operations in MicroHash: Deletion
• B) Deletion Phase

– Take the flash media as a circular array and keep a
pointer at the next writing position (idx).

– If we want to write and the flash media is full, delete
the next block pointed by the idx pointer

27

Operations in MicroHash: Repartition
• MicroHash starts out with a Equi-width bucket table
• Equi-width bucket splitting deteriorates under biased data.
• We want to obtain finer intervals for

the buckets utilized most.

Splitting policy:
– If bucket A links to more than τ index records, evict the least

used bucket B and segment bucket A into A and A’
– No bucket reassignments of old records => Expensive

28

Searching in MicroHash
• Searching by value

“Find the timestamp (s) on which the temperature was
100F”
– Simple operation in MicroHash
– We simply find the right Directory Bucket, from there the

respective index page and then data record (page-by-page)

• Searching by timestamp
“Find the temperature of some sensor at some time
instance tj (or in the range [tj..tk])”

– Problem: Index pages are mixed together with data pages.
– How can we search by timestamp if pages are mixed?

1. Binary Search (O(log(n)) ~20 pages for 512MB flash media)
2. LBSearch (less than 10 pages)
3. ScaleSearch (better than LBSearch, ~4.5 pages)

29

LBSearch and ScaleSearch
Solutions to the Search By Timestamp Problem:

A) LBSearch: We recursively create a lower bound on the position of
tq until tq is located.
Idea: Fetch page at tq (the lower bound), denoted as P. If P
contains tq terminate, else extract the last known timestamp in that
page and recursively refine the lower bound until tq is located.

B) ScaleSearch:
Idea: Quite similar to LBSearch, however in the first step we position
the read more intelligently (by exploiting data distribution)

tq=420
tq=490
tq=500

tq=300
tq=350Query

tq=500
in practice
4.75 page

reads

30

Two-Phase Page Reads
• Problem

– Index Pages written on flash might not be fully occupied
– When we access these pages we transfer a lot of empty bytes

(padding) between the flash media and SRAM.

• Our Solution 1: Two-Phase Page Reads
– Reads the 8B header from flash in the first phase, and then

reads the exact amount of bytes in the next phase.

Useful

31

MicroHash vs ELF
• Solution 2: Avoid non-full index pages using ELF*.

ELF:
– a linked list in which each page, other than the last

page, is completely full.
– keeps copying the last non-full page into a newer

page, when new records are requested to be added.

*Dai et. al., Efficient Log Structured Flash File System, SenSys 2004

32

Talk Outline

1. Overview of Sensor Networks

2. Data Storage Models in Sensor Networks

3. The MicroHash Index Structure

4. MicroHash Experimental Evaluation

5. Conclusions and Future Work

33

Experimental Evaluation
• Implemented MicroHash in nesC.
• We tested it using TinyOS along with a

trace-driven experimental methodology.
• Datasets:

– Washington State Climate
• 268MB dataset contains readings in 2000-2005.

– Great Duck Island
• 97,000 readings between October and November

2002.

• Evaluation Parameters: i) Space
Overhead, ii) Energy Overhead, iii) Search
Performance

1) Space Overhead of Index

34

• Index page overhead Φ = IndexPages/(DataPages+IndexPages)
• Two Index page layouts

– Offset, an index record has the following form {datapageid,offset}
– NoOffset, in which an index record has the form {datapageid}

• 128 MB flash media (256,000 pages)
– varying SRAM (buffer) size (2.5 - 5KB)

[same applies to record size(10– 22 Bytes)]

Increasing the Buffer Decreases the Index Overhead

35

1) Space Overhead of Index

Black
denotes the
index pages

Increasing the Buffer Decreases the Index Overhead

36

2) Search Performance
• 128 MB flash media (256,000 pages), varied SRAM (buffer) size
• 2 Index page layouts

– Anchor, every index page stores the last known data record
timestamp

– No Anchor, the index page does not contain any timestamp
information

+ Searching by Timestamp can be performed efficiently +
Increasing the Buffer (during indexing) Increases Search Performance

37

2) Search Performance
• We compared MicroHash vs. ELF Index Page

Chaining.
• Keeping full index pages increases search

performance but decreases insertion performance.

Decreasing indexing
performance using ELF

(15% more writes)

Increasing search
performance using ELF

(10% less reads)

38

Indexing on Great Duck Island Trace
• Used 3KB index buffer and a 4MB flash card to store all

the 97,000 20-byte data readings.
– The index pages never require more that 30% additional space
– Indexing the records has only a small increase in energy

demand: the energy cost of storing the records on flash
without an index is 3042mJ

– We are able to find any record by its timestamp with 4.75 page
reads on average

39

Talk Outline

1. Overview of Sensor Networks

2. Data Storage Models in Sensor Networks

3. The MicroHash Index Structure

4. MicroHash Experimental Evaluation

5. Conclusions and Future Work

Conclusions
• We Proposed the MicroHash index, which is an

efficient external memory hash index that
addresses the distinct characteristics of flash
memory

• Our experimental evaluation shows that the
structure we propose is both efficient and
practical

• This is a new area with many new challenges
and opportunities!

40 http://www2.cs.ucy.ac.cy/~dzeina/

Future Work
– Indexing multidimensional datasets

– Exploiting Temporal Locality along with
Compression Algorithms to minimize
even further the storage cost.

– Realize the In-Situ Data Storage and
Retrieval system which binds together
all the aforementioned ideas.

41

MicroHash: An efficient Index
Structure for Wireless Sensor Devices

Demetris Zeinalipour

Thank you!

http://www2.cs.ucy.ac.cy/~dzeina/

	MicroHash: An efficient Index Structure for Wireless Sensor Devices
	Presentation Goals
	Talk Outline
	Wireless Sensor Networks (WSNs)
	Sensor Networks Applications
	The Anatomy of a Sensor Device
	Sensor Devices & Capabilities
	Characteristics
	Talk Outline
	The Centralized Storage Model
	The Centralized Storage Model
	The Centralized Storage Model
	The Centralized Storage Model
	Centralized Storage & Query Processing
	Our Model: In-Situ Data Storage
	Challenges of the In-Situ Model
	Talk Outline
	MicroHash
	A) Flash Memory at a Glance
	A) Flash Memory at a Glance
	Summary of Our Objectives
	MicroHash Overview
	Operations in MicroHash: Insertion
	Operations in MicroHash: Deletion
	Operations in MicroHash: Repartition
	Searching in MicroHash
	LBSearch and ScaleSearch
	Two-Phase Page Reads
	MicroHash vs ELF
	Talk Outline
	Experimental Evaluation
	1) Space Overhead of Index
	1) Space Overhead of Index
	2) Search Performance
	2) Search Performance
	Indexing on Great Duck Island Trace
	Talk Outline
	Conclusions
	Future Work
	MicroHash: An efficient Index Structure for Wireless Sensor Devices

