
MicroHash: An efficient Index Structure
for Flash-Based Sensor Devices

Demetrios Zeinalipour-Yazti
dzeina@cs.ucy.ac.cy
Dept. of Computer Science, Univ. of Cyprus

Song Lin
Vana Kalogeraki
Dimitrios Gunopulos
Walid A. Najjar

{slin,vana,dg,najjar}@cs.ucr.edu
Computer Science and Engineering Dept.
University of California, Riverside

The Ubiquitous Silicon Era
• Applications:

– Environmental and habitat monitoring
– Seismic and Structural monitoring, ….

• Effect:
– Sense the environment at very high resolutions.

Environmental Monitoring

• Is this just the beginning?

Structural Monitoring

Wildlife Tracking:
GPS Collars

http://images.google.com/imgres?imgurl=http://www.virtualtravelguides.co.uk/images/golden-gate-bridge.jpg&imgrefurl=http://www.virtualtravel.freeuk.com/california-travel-guide.htm&h=864&w=1152&sz=149&tbnid=aTTSUgauvHUJ:&tbnh=112&tbnw=150&hl=en&start=2&prev=/images%3Fq%3Dsan%2Bfrancisco%2Bbridge%26svnum%3D10%26hl%3Den%26lr%3D%26safe%3Doff

Sensor Network Applications
• Soil-Organism Monitoring

(Center for Conservation Biology, UCR)
– A set of sensors monitors the CO2 levels over a

large window of time
– Not a real-time application
– Many values may not be very interesting

The RISE Platform

• Motivated by the Center of
Conservation Biology, UCR,
requirements

• System-on-a-chip (Chipcom
CC1010):
• 24MHz Processor
• 8KB RAM
• 32KB Flash
• 76.8Kbits/sec RF

• SD-Card Interface
• Temperature and CO2

sensors

Computing in a Sensor Network
• Frameworks such as TinyDB, TAG, and Cougar:

- Provide a declarative SQL-like approach for accessing data.
- Are suitable for continuous queries.
- Push aggregation in the network but keep much of the

processing at the sink.

• New Challenges:
– Efficient Query Processing Algorithms that exploit the

Hierarchical Structure of Sensor Networks
- Many applications do not require the query to be evaluated

continuously (e.g. Average temperature in the last 6 months?).
- Local Storage in the future might increase e.g. RISE features an

external SDMedia card (up to 4GB!)

Computing in a Sensor Network

An interesting query: “Which 5 time instances
had the highest average in the last 15 hours?”

• We need to join the logs
from all sensors to answer

• But we can we do better
than transmitting and
joining everything
(using distributed Top-K
algorithms)

• Local storage, and local
processing is less
expensive than shipping
data over the network

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

128 256 512 1024 2048

Da t a (KBy t e)

SD-Card (RISE)
EEPROM (M ICA)
Wireless FSK

Storage for Sensor Nodes
• Small sensor nodes (with system on a chip

architectures) have limited local memory
• But recent designs provide external flash memory

modules
• We need to design efficient flash memory index

structures to support efficient searches or more
sophisticated queries:
– “Find the reading of sensor Si at time instance tj”
– “When was the reading of sensor Si equal to T?”
– “Which are the k time instances that the readings of the

sensor Si were the highest?”
• The design must take the medium characteristics

into account

NAND Flash Memory
• The most prevalent storage media:

– Non-volatile storage memory
– Fast read access and power

efficiency
– Simple cell architecture, allows

for economical production
– Commercial off the shelf

availability in compact packaging

NAND Flash Memory Constraints
• Delete-Constraint: Deleting can only be performed

at a block granu-larity (i.e. 8KB~64KB)
• Write-Constraint: Writing data can only be

performed at a page granularity (256B~512B), after the
respective page (and its respective 8KB~64KB block)
has been deleted

• Wear-Constraint: Each page can only be written a
limited number of times (typically 100,000)

Indexing Techniques for Flash Memory
• Design an efficient index structure on sensor data in

flash memories to support
– Value-Based Range or Equality Queries
– Time-Based Range or Equality Queries

that provides
– Wear-Leveling: Spread page writes out uniformly

across the storage media in order to avoid wearing
out specific pages.

– Block-Erase: Minimize the number of random access
deletions.

– Fast-Initialization: Minimize the size of in memory
(SRAM) structures.

MicroHash
• 4 types of pages

– Root Page
– Directory Page
– Index Page
– Data Page

• 4 operation
phases
– Initialization
– Growing
– Repartition
– Deletion

• 2-level memory
hierarchy
– On-chip RAM
– Off-chip Flash

Media
– (also on-chip

Flash)

Page Types in MicroHash
• Root Page

– contains information related to the state of the flash media, e.g. it
contains the position of the last write (idx), the current write cycle
(cycle) and meta information about the various indexes stored on
the flash media

• Directory Page (the hash table)
– contains a number of directory records (buckets) each of which

contains the address of the last known index page mapped to
this bucket.

• Index Page
– contains a fixed number of index records and the 8 byte

timestamp of the last known data record. The latter field, denoted
as anchor is exploited by timestamp searches.

• Data Page
– contains a fixed number of data records

Operations in MicroHash
• Growing

– Collect data and fill up data buffer page Pwrite in
SRAM.

– Force Pwrite out to flash media.
– Create index records for each data record in Pwrite.
– Force out index pages by LRU if the SRAM is too

small to hold the new generated index records.

Operations in MicroHash: Deletion
• Deletion

– Take the flash media as a circular buffer and keep a
pointer as the next writing position.

– If we want to write and the flash media is full, delete
the next block pointed by the pointer

Operations in MicroHash: Repartition
• Equi-width bucket splitting deteriorates under biased

data distribution
• Splitting policy:

If bucket A links to more than τ% of total index
records, evict the least used bucket B and
segment bucket A into A and A’

• No bucket reassignments of old records, which avoids
large volume index page access

Searching in MicroHash
• Searching by value

1. locate the appropriate directory bucket, from which the system
can extract the address of the last index page

2. read the respective index pages on a page-by-page basis
3. read the data records referred by the index pages on a page-by-

page basis

• Searching by timestamp
– The generated data pages are written out sequentially into flash

media.
– Index pages are mixed together with data pages.
1. Binary search (O(log(n)) ~20 for 1GB flash media)
2. LBSearch (less than 10)
3. ScaleSearch (better than LBSearch)

LBSearch and ScaleSearch
• LBSearch

Let Idxstart the last written page in flash media, ts the earliest timestamp, and
R the maximum timestamp range in a data page

Idxlb(tq, ts) = Idxstart + ceil[(tq - ts) / R]
• ScaleSearch

Let Idxstart the last written page in flash media, ts and te the earliest and
oldest time stamp, and n the total number of index and data pages

Scalelb(tq, ts) = Idxstart + ceil[n • (tq - ts) / (te – ts)]

MicroHash vs ELF
• MicroHash

– pages are chained using a back-pointer, once written out, the
page will exist in the chain forever.

• ELF (Efficient Log Structured Flash File System, Dai et. al.,
SenSys 2004)
– a linked list in which each node, other than the last node, is

completely full.
– keeps copying the last non-full page into a newer page, when

new records are requested to be added.

Limitations of the ELF solution
• Example

– There are k records in the last page of ELF chain
at the beginning.

– The buffer manager requests to write out 3 full
pages consecutively.

– ELF will use twice the required space to
accommodate all records.

Two-Phase Page Reads
• Page-by-Page Reads

– When pages are not fully occupied, such as index pages, then a
lot of empty bytes (padding) is transferred from the flash media
to memory.

• Two-Phase Page Reads
– Reads a fixed header from flash in the first phase, and then

reads the exact amount of bytes in the next phase.

Experimental Evaluation
• Implemented with a tiny LRU Buffer Manager
• Run our code in TOSSIM, the simulation environment of

TinyOS
• Datasets:

– Washington State Climate
• A real dataset of atmospheric data collected by the Department of

Atmospheric Sciences at the University of Washington.
268MB dataset contains readings for 2 months in ‘05 (barometric
pressure, wind speed, relative humidity, and others)

– Great Duck Island (GDI 2002):
• A real dataset from the habitat monitoring project on the Great

Duck Island in Maine.
We use readings included the following readings: light, temperature,
thermopile, humidity and voltage.
Our dataset includes approximately 97,000 readings that were
recorded between October and November 2002.

Distribution of Data

Overhead of Index Pages
• Index page overhead Φ = IndexPages/(DataPages+IndexPages)
• Two Index page layouts

– Offset, an index record has the following form {pageid,offset}
– NoOffset, in which an index record has the form {pageid}

• 128 MB flash media (256,000 pages)
– varying SRAM (buffer) size (2.5 - 5KB)
– Varying data record size (10 – 22 Bytes)

Overhead of Index Pages

Searching by TimeStamp
• 128 MB flash media (256,000 pages), varied SRAM (buffer) size
• 2 Index page layouts

– Anchor, every index page stores the last known data record
timestamp

– No Anchor, the index page does not contain any timestamp
information

Searching by Value (MicroHash vs ELF)
• 128MB flash media(256,000 pages), fixed 3KB SRAM
• Compare with hash indexing + ELF1

1. Dai H., Neufeld M., Han R., “ELF: an efficient log-structured flash file system for micro sensor nodes”, In
SENSYS, Baltimore, pp. 176-187, 2004.

Indexing on Great Duck Island Trace
• Used 3KB index buffer and a 4MB flash card to store all

the 97,000 20-byte data readings.
– The index pages never require more that 30% additional space
– Indexing the records has only a small increase in energy

demand: the energy cost of storing the records on flash without
an index is 3042mJ

– We are able to find any record by its timestamp with 4.75 page
reads on average

Conclusions
• Gave an extensive study of NAND flash memory when

this is used as a storage media of a sensor device
• Proposed the MicroHash index:

– an efficient external memory hash index for equality
and range queries that addresses the characteristics
of flash memory

• Our experimental evaluation with real traces shows that
the structure we propose is both efficient and practical

• Future work:
– Deploy the prototype
– Buffer optimizations
– Indexing multidimensional datasets

	MicroHash: An efficient Index Structure for Flash-Based Sensor Devices
	The Ubiquitous Silicon Era
	Computing in a Sensor Network
	
	Storage for Sensor Nodes
	NAND Flash Memory
	NAND Flash Memory Constraints
	Indexing Techniques for Flash Memory
	MicroHash
	Page Types in MicroHash
	Operations in MicroHash
	Operations in MicroHash: Deletion
	Operations in MicroHash: Repartition
	Searching in MicroHash
	LBSearch and ScaleSearch
	MicroHash vs ELF
	Limitations of the ELF solution
	Two-Phase Page Reads
	Experimental Evaluation
	Distribution of Data
	Overhead of Index Pages
	Overhead of Index Pages
	Searching by TimeStamp
	Searching by Value (MicroHash vs ELF)
	Indexing on Great Duck Island Trace
	Conclusions

