
Triastore: A Web 3.0 Blockchain Datastore for
Massive IoT Workloads

Panagiotis Drakatos∗, Erodotos Demetriou∗, Stavroulla Koumou∗,
Andreas Konstantinidis‡∗ and Demetrios Zeinalipour-Yazti∗

∗ Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus
‡ Department of Computer Science & Engineering, Frederick University, 1036 Nicosia, Cyprus

{pdraka01, edemet01, skoumo01, akonstan, dzeina}@cs.ucy.ac.cy

Abstract—The Internet of Things (IoT) revolution has intro-
duced sensor-rich devices to an ever growing landscape of smart
environments. A key component in the IoT scenarios of the
future is the requirement to utilize a shared database that allows
all participants to operate collaboratively, transparently, im-
mutably, correctly and with performance guarantees. Blockchain
databases have been proposed by the community to alleviate these
challenges, however existing blockchain architectures suffer from
performance issues. In this short paper we propose Triastore,
a novel permissioned blockchain database system that carries
out machine learning on the edge, abstracts machine learning
models into primitive data blocks that are subsequently stored
and retrieved from the blockchain. Triastore comprises of two
internal routines, namely: (i) Proof of Federated Learning (PoFL),
which trains in a distributed manner a global model for the
ingested data; and (ii) Blockchain Consensus, which commits this
generated model data on permissioned blockchain database. We
present a detailed explanation of our data ingestion algorithm
with relevant examples and carry out an experimental evalua-
tion with image data from MNIST. The evaluation shows that
our proposed data ingestion framework retains high levels of
accuracy with low loss in data quality.

Index Terms—blockchain, machine-learning, federated-
learning, fabric, consensus, databases, privacy.

I. INTRODUCTION

Internet of Things (IoT) refers to a large number of physical
devices being connected to the Internet that are able to see,
hear, think, perform tasks as well as communicate with each
other using open protocols [1]–[4]. IoT devices are connected
to Cloud and Edge computing appliances through massively
parallel I/O channels (e.g., 5G, Wi-Fi 6) with millisecond
latency offering new opportunities in industrial optimization,
human health, and well-being as well as safety. In absolute
numbers, the IoT revolution is expected to bring the number
of such devices close to a staggering 40 billion in 2020, more
than double from 2019 [5]. This will procreate tremendous
opportunities for IoT applications between multiple parties,
such as collaborative multitasking techniques [6], machine
learning [7], cooperative benchmarking [8], and augmented
reality technology [9].

A key component in the IoT scenarios of the future is
the requirement to utilize a shared database that allows all
participants to operate collaboratively with more functionality.

Fig. 1. Triastore organizes massive IoT data on the edge over distributed
blockchains, which capture the machine learning models behind the data.
This offers immutability, transparency, correctness, performance and privacy
to future Web 3.0 applications.

The shared database can bridge the actual gap between the data
generated from the IoT applications [10] and the rate that these
are processed and analyzed in real-time. The objective is to
enable users execute updates and queries on the collaborative
database while preserving a consistent view among all users
maintaining the system consistency and transparency. More-
over, it is essentially common to be compromised by malicious
outsources. To mitigate the problem described, an innovative
design of a shared database with high performance is required
for all the participants, in order to collaborate among each
other with trust. Blockchain databases have been proposed by
the community to alleviate these challenges, however existing
blockchain architectures suffer from performance issues mea-
sured in terms of throughput and latency. In this situation, the
transactions are basically executed in a sequential manner and
this, in conjunction with confidentiality issues, does not leave
much space for scaling.

It is imperative to devise a database architecture that can

withstand billions of transactions per second, as opposed to

thousands transactions per second that is currently the case

for typical blockchains due to the expensive verification cost.

In order to motivate our description, we now explain two
visionary Web 3.0 scenarios in which the above type of
blockchain database can find utility in the future:

Telco Big Data: consider a smart city scenario in which
telecommunication companies (telcos) in a city [11], [12]
aim to share the network health data from cell towers (e.g.,

signal strength, call drops, bandwidth measurements) with
public authorities for monitoring and compliance (e.g., EMF-
compliance). Huawei alone reports 5TBs/day for 10M clients
(i.e., 2PB/year) for Shenzhen, China, for a respective telco
big data scenario, so we are in the realm of massive and big
data. From an architectural perspective the challenge is how
to transparently and immutably store the collected massive
velocity data at the edge of each telecommunication network
in order to facilitate efficient and scalable data sharing and
access. Storing big data in a centralized way is not a preferable
choice, because it doesn’t fulfill any of these requirements.

Edge Camera Network: consider again a smart city scenario
in which local authorities aim to collaboratively poll local
road traffic data in shared information spaces that can be
useful for public transit planning at scale. Currently, such
a task relies on either disconnected hardware infrastructure
or on privacy-invasive smartphone solutions that are outside
the administrative control of local authorities and public
jurisdictions. Contributing to improvement of road traffic is
critical as it is well known that congestion costs U.S. drivers
nearly $300 Billion in 2020, which is an average of $1400
per driver per year. In the envisioned scenario, aim to capture
road traffic on the edge, extract through deep learning accurate
city traffic models that can subsequently be shared among
local authorities. The problem again from an architectural
perspective is how to transparently and immutably store the
collected massive velocity data at the edge in order to facilitate
efficient and scalable data sharing and access.

In this short paper we propose Triastore (inspired from
Greek “Tria”, meaning “three”), being a storage layer for our
complete Triabase database architecture designed for the Web
3.0 era. Triabase is a permissioned blockchain database system
that carries out machine learning at the edge, abstracts machine
learning in primitive blocks that are subsequently stored and
retrieved from the blockchain. In Triabase, we have two types
of nodes those that store the entire shared database, and the
others that use the database for their own operations, such as
sending query and update requests to the blockchain shared
ledger. We expect the blockchain nodes to be synchronized
under the decentralized blockchain network. The clients that
use the blockchain only for database operations store only the
appropriate block header in contrast with the full nodes that
store the entire blockchain ledger.

For this purpose, the key challenge is to find a robust design
that is able to: i Execute machine learning algorithms at the

edge; ii Operate on a distributed environment; and iii Mitigate

issues related to data privacy protection. Our main goal is to
guarantee the following aspects:

• Immutability: We want to ensure that any update com-
mitted to the blockchain is immutable and will not be
tampered by any malicious node;

• Transparency: We oblige the shared database to strictly
update according to the committed transactions. All
database operations e.g., insertions, deletions, updates are
transparent to nodes because users are able at any time

to get all historical data of the transactions committed on
the blockchain;

• Correctness: Performing all the required operations with
minimal computational requirements and without the
excessive energy consumption, when a client receives a
query, results from a server node;

• Performance: Our system must support a wide range
of queries and indexes. As a result, we should allow
Triastore to achieve better performance to scale; and thus
improve the overall throughput of the network in order to
minimize any unnecessary overhead that causes latency;

• Privacy: Centralized artificial intelligence algorithms de-
mand from the clients to provide whole trained models,
which incurs high data leakage risks and this must be
taken into account by Triastore.

To enhance user security and privacy in Triabase, we pro-
pose federating learning [13] that has appeared as a new wise
choice for distributed machine learning. This technique differs
from the traditional artificial intelligence algorithms because
the federated learning models demand transmitting only the
appropriate parameters from the locally trained models and,
thus, transmit local models to the server while the full amount
of data is stored in the user endpoint for mitigating security
and privacy risks.

In order to test the validity of the system, we have im-
plemented an initial version of our architecture using the
hyperledger fabric technology, which enables us to measure
the latency as well as the throughput of different parts of
our implementation during the ingestion load and during the
searching query process. Our preliminary results are very
encouraging as they reveal that in our proposed architecture,
the tradeoff between the learning accuracy and the efficiency
of the trained models from the federated learning approach
achieve comparable results.

The main contributions of our paper are as follows:

• We introduce Triastore, a storage layer for a permissioned
blockchain database system that is enhanced with feder-
ating learning containing the running states and behavior
models of the blockchain nodes to ensure the security and
data privacy of users;

• We propose a new consensus empowering collaborative
mechanism namely Proof of Federated Learning (PoFL)
to share parameters over distributed multiple parties to
reduce the risk of data leakage and to protect federated
nodes from being tampered;

• We also implement our proposal with the integration
of the fabric open-source platform to provide a more
realistic blockchain assessment.

The rest of the paper is organized as follows. Background
and Related work is presented in Section II. In Section
III, the proposed system architecture and the communication
protocol of Triastore is presented. In Section IV, we present
an experimental evaluation study of the presented ideas over
Fabric that exposes the accuracy and performance of our
approach. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Blockchain and Artificial Intelligence for IoT environments

The main usage of the blockchain architecture is to keep
records on an immutable chain of blocks, so later on, nodes
agree on the shared state across a network of untrusted
participants. Thus, it forms the blockchain platform that can
be viewed as a distributed (transaction-log or) database sys-
tem. The blocks are agreed by the majority of validators
according to the consensus protocols that tolerate Byzantine
faults. The most well-known platforms include Capera [14],
Hyperledger [15], Monoxide [16]. This design does not require
a centralized server and operates in untrusted environments of
arbitrary nodes.

The authors of [14] introduce a system named Caper, a
permission blockchain architecture based on an acyclic graph
and on three consensus protocols to support internal and
all cross-application transactions. Moreover, [17] introduces a
novel framework, called vChain, which is able to improve the
storage and computing costs of the user and employs verifiable
queries to ensure the system integrity. The design of a privacy-
preserving contact tracing framework to ensure the integrity
of the tracing procedure has not been sufficiently studied and
remains a challenge. In paper [18], the authors propose P2B-
Trace, a privacy-preserving contact tracing initiative based
on blockchain and privacy-preserving principles are a future
direction of our proposed architecture.

Moreover, a considerable interest in the blockchain field is
the scalability and performance characteristics of blockchain
networks. Algorand [19] and RandHound [20] achieve high
scalability by randomly selecting a subset of validators to
participate in the consensus, while they maintain and guarantee
the same security level with other blockchain infrastructure.
Other works [21] use directed acyclic graphs instead of a
blockchain structure and they ensure that the average amount
of time for each transaction is reduced. Blockbench [22] was
the first to look for permissioned blockchain in the context of
benchmarking. They present an approach for comparing the
performance of different platforms including Ethereum Parity,
and Hyperledger Fabric by using a set of micro and macro
benchmarks. Furthermore, [15] introduces the architecture of
fabcoin which presents the performance of bitcoin in Fabric.

III. THE TRIASTORE ALGORITHM

A. Overview

In this section, we introduce the proposed Triastore al-
gorithm and discuss its two internal routines, namely: (i)
Proof of Federated Learning (PoFL) routine, which trains in
a distributed manner a global model for the ingested data;
and (ii) Blockchain Consensus routine, which commits this
generated model data on permissioned blockchain database.
The core functionality of our proposition is illustrated at a
high level in Algorithm 1. The first routine of Triastore is the
PoFL, which utilizes a convolution network loss function to
train the local models across multiple decentralized edge nodes
holding local data samples, without exchanging them. The

Algorithm 1 The Triastore Algorithm
Input: Data D on blockchain nodes N , Time Epoch t, Train. Weights Wt

Output: Blockchain TX identifier Bid

! Routine 1: Proof-of-Federated-Learning (PoFL)
1: M = mlinit(Wt) ! global model
2: for all ni ∈ N do ! Distributed Training
3: determine Mi = mltraining(M, di, ni)
4: determine mlmerging(M,Mi)
5: end for

! Routine 2: Blockchain Consensus
6: determine l = leader(N, t) ! Leader / Orderer Election
7: determine u = view number(N, t) ! Consensus Round
8: Trx ← init tx(t, u,Wt) ! initialize transaction
9: while (!Trx) do ! Fabric Consensus Phase

10: if Trx.PRE-PREPARE then ! Fabric stage PRE-PREPARE
11: calculate f = l.difficulty(Wt ,alpha) ! alpha = bcdepth(t-1)

12: construct Bid = l.build(Trx,Wt, u, f) ! Triastore Block
13: for all ni ∈ N do
14: l.send(PREPARE,t,l,f,Bid) ! lead by l
15: ni.receive(PREPARE,t,l,f,Bid) ! 2-step consensus initiated
16: end for
17: end if
18: if Trx.LEDGER-UPDATE then ! Fabric stage LEDGER-UPDATE
19: for all ni ∈ N do
20: l.send(COMMIT,t,l,f,Bid); ! lead by l
21: ni.receive(COMMIT,t,l,f,Bid); ! Commit block in Triastore
22: end for
23: end if
24: end while
25: return Bid

final goal is to compute an average model and to converge fast
with high learning accuracy. The second routine of Triastore
is the blockchain process that is triggered after a respective
leader election process takes place. The blockchain process is
responsible to collaboratively maintain the blockchain struc-
ture, endorse new transactions from blockchain nodes, and is
partially responsible for the 2-step consensus protocol.

B. Routine 1: Proof of Federated Learning (PoFL) Routine

The Bitcoin protocol uses a PoW (Proof-of-Work) con-
sensus mechanism to validate users’ transactions in the
blockchain. This is associated with an extremely high en-
ergy consumption bill, which is unnecessary in a private
(permissioned) blockchain where contributing nodes are of
higher trust. Yet, provisioning a consensus mechanism is still
necessary in order to provide an incentive to participating
nodes to contribute to the transaction verification process. To
this end, in this work we propose such a consensus mechanism
that relies on Federating Learning, as such, is coined Proof of

Federated Learning (PoFL).

In Algorithm 1, lines 1 to 5, we show the overall execution
of the PoFL proposition in this work. Initially, in line 1 a
global training model (M) is constructed using a function
mlinit taking as input some training weights Wt, where t
is the epoch. Subsequently, in lines 2-5 this global training
init model M is used by all |N | nodes in the network in
order to derive local refined models Mi, i ≤ |N |. The local
Mi models are eventually merged in the global M model in
order to finalize the model construction process. In the above

process, it is apparent that every block generation in epoch t
relies on the previous model generated in epoch t− 1.

C. Routine 2: Blockchain Consensus Routine

In Algorithm 1, lines 6 to 21, we show the overall execution
of the blockchain consensus routine. The process starts in lines
6-7 with a leader election routine followed by a view number
routine, both of which take as input the blockchain network
N and the epoch t. The former yields the leader l while
the later infers the fabric consensus round, which helps in
the convergence of the consensus process and guarantees the
liveness of the consensus protocol. Subsequently, in line 8
the transaction is boostrapped and passes through two stages:
the PRE-PREPARE stage (lines 10-17) and the LEDGER-
UPDATE stage (lines 18-23). The PRE-PREPARE stage starts
out by having the leader l computing the blockchain difficulty,
which is derived based on the length of the blockchain
(alpha = bcdepth(t-1)). Particularly, longer chains are expected
to be more difficult while shorter chains have a lower difficulty.
Based on the above a triastore data block is constructed
and broadcasted in the network for storage (i.e., lines 13-
16). The LEDGER-UPDATE stage basically wraps up the
communication by carrying out a final commit broadcast.

D. Triastore Example

The overall scheme for Triastore is shown in Figure 2.
The process starts with the local training of the model on
their user’s data. After that, the communication process takes
place where all users broadcast and upload the appropriately
trained models to the blockchain nodes and store them as
transactions to the distributed ledger. The blockchain node
that was the winner from the previous round (depends on
the blockchain difficulty) is responsible for initiating a 2-step
consensus protocol and construct the blocks with all the cached
transactions that are not validated yet.

In addition, the winner node is in charge of aggregating
the local model of clients and producing a shared model by
putting it as the first transaction in the block, so later on,
the federated learning nodes can access it in the next round
r + 1. Our PoFL consensus protocol contemplates that users
who participate in the blockchain process get rewarded with
training coins. The coins of each user are awarded according to
the performance in the training process. Particularly, federated
nodes converging faster and achieving more accuracy are
rewarded higher. The node that receives the most accuracy
coupled with the difficulty of the block recognized as the
winner of the given round r. Furthermore, in every training
round the coins will be adjusted to the users depending on
their work.

Nevertheless, to secure our protocol and ensure that every
user will obey the protocol, we introduce a new hierarchy
of nodes that we coin peacemaker entity. This entity is
responsible to observe the correctness of the protocol followed
by all the federating nodes. For example, users that refuse to
cooperate with the protocol will get no payment for their work.
Moreover, users that will try to get more rewards and try to

Fig. 2. Example Execution of a Transaction in Triastore

counterfeit the correctness of the whole process will not be
rewarded by the peacemaker entity. The peacemaker will then
claim the adjusted coins as their own reward for their effort
in the protocol correctness.

E. Discussion

In this section we carry out a more detailed discussion
around the proposed algorithm.

Consensus Protocol: The two steps of the consensus protocol,
summarized in Algorithm 1, include the execution of the
PBFT [23] [24] algorithm and the notation of the detector.
The orderer collects all the received transactions along with
some endorsement proposals, constructs a new block, and
initiates the 2-step phase by sending the proposal block to
all blockchain nodes for verification. In particular, the orderer
broadcasts a pre-specified message to all fabric nodes to
initiate the protocol. The message contains the proposed block
Bid, the current epoch t, the current leader l based on the view
number u (used for the PBFT [23] participation) and the block
difficulty f that relies on the height of the blockchain. Then all
fabric nodes n ∈ N echo the same message until the majority
of them receive at least a quorum of 3f + 1 valid messages.
Each blockchain node checks the validity of all transactions
that exist in a block, by analyzing the endorsement policy from
the assigned peers. The detector is responsible for supervising
that all the appropriate nodes comply with the endorsement
policy and only the applicable peers join the process. The
latter ensures that the client is not compromised and does not
incorporate invalid results that may cause erroneous behavior
to the Triastore blockchain.

Ledger Update After the fulfilment of the consensus proto-
col, the invoking process is called in which: (i) each client
updates its copy of the ledger; and (ii) each client is notified
about the ledger updates. In the proposed Triastore algorithm,

the learning process is executed locally, i.e., trains machine
learning models locally. Furthermore at the edge division, all
local models are aggregated iteratively (in multiple rounds)
to construct the final models, which are then stored in the
blockchain (during the invoking process). We assume that
all edge server nodes have enough computing and caching
resources for completing complex calculations and maintain-
ing the blockchain, in order to store the federated learning
parameters collected from the users.

IV. EXPERIMENTAL METHODOLOGY AND EVALUATION

This section presents an experimental evaluation of our
proposed Triastore data ingestion algorithm. We start out with
the experimental methodology and setup, followed by two
experiments. In the first experiment, the performance of fed-
erated accuracy is compared against two baseline approaches:
one for CPU bound and the other with the GPU bound, with
respect to various metrics on a set of real-world datasets. The
second experiment examines the loss function of the data that
is compacted on the blockchain network due to the Triastore
ingestion algorithm. For brevity in this short paper, we omit
results relevant to the Consensus routine of the Triastore
algorithm.

Implementation and Dataset: We have implemented Trias-
tore by modifying the Tensorflow federated Framework [25]
and measure it through the single-machine simulation runtime
provided by TFF. The performance of the federated learning
process is tested on a real-world dataset MNIST [26]. This
dataset contains training examples for about 60,000 different
scenarios and the testing metrics contain about 10,000 exam-
ples.

Computing Server: Our evaluation is carried out on the
DMSL VCenter IaaS datacenter, a private cloud. Our com-
puting server is an Ubuntu 16.04 server image, featuring 8GB
of RAM with 2 virtual CPUs (@ 2.40GHz). The image utilize
fast local 10K RPM RAID-5 LSILogic SCSI disks, formatted
with VMFS 5.54 (1MB block size).

A. Experiment 1: PoFL approach

We compare the proposed approach with respect to the state
of the art federated learning algorithm FedAvg [27].

Experimental Setup: We use the CNN convolution layer and
two dense layers. The first two convolutional layers have 32
and 64 filters respectively and they are responsible for setting
the communication channels dynamically based on the width
and the height of the image. The pool size is set dynamically
(2,2) and the kern size is 5. Moreover, convolution layers
followed by a dropout [28] with a probability of 0.7. The
second convolutional layer has also a flatten operation. The
last two dense layers are fully connected layers with 512 units
activated by ReLu and a softmax output layer.

Algorithmic settings: In all experiments the algorithmic pa-
rameters were configured as follows: local mini-batch B = 20,
the trained local epochs E = 10, the total number of clients
K = 500 and the fraction of clients that performs computation

0 10 20 30 40

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

T
es

t
ac

cu
ra

cy

CPU Accuracy

epochs = 4

epochs = 8

epochs = 32

0 10 20 30 40

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

T
es

t
ac

cu
ra

cy

GPU Accuracy

epochs = 4

epochs = 8

epochs = 32

Fig. 3. Performance Evaluation: Triastore evaluation in terms of accuracy for
both CPU and GPU on the federated learning data in the MNIST dataset

0 10 20 30 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

T
es

t
L

o
ss

F
u

n
ct

io
n

CPU learning loss

epochs=4
epochs=8

epochs=32

0 10 20 30 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

T
es

t
L

o
ss

F
u

n
ct

io
n

GPU learning loss

epochs=4
epochs=8
epochs=32

Fig. 4. Performance Evaluation: Triastore evaluation in terms of learning loss
for both CPU and GPU on the federated learning data in MNIST dataset

at each round C = 0.05. The local training process for each
client proceeds with the SGD optimizer with a learning rate
η = 0.001 and no weight decay.

Figures 3 and 4 illustrate the performance of the proposed
approach in terms of learning accuracy and learning loss,
respectively, for various epochs over two different metrics. The
results show that the proposed federated learning approach
achieves high accuracy (95%) and low learning loss (10%)
with a small set of iterations for both CPU and GPU metrics.
Moreover, the federated learning is performed faster when the
GPU version is used and increases while the number of epochs
increase. In particular, in the first 10 rounds, the training of the
model converges faster and the accuracy of the model increases
with the increase of the epoch. After 35 rounds, the accuracy
is slightly reduced (by 2-4%) or remains the same, especially
for the models trained with larger epoch values. This is due
to the overfitting of the CNN model.

Figure 4 shows that the learning loss is generally high at the
beginning and it highly depends on the epoch value. At the
beginning in round 5, the learning loss around 0.5, which is
relatively high when the epoch value is low. In contrast, when
the epoch value is high then the learning loss is reduced, which
shows that the model converges. Moreover, the results show
that when the epoch value is 32, the learning loss is reduced
to almost zero, after round 10. There are also cases where the
learning loss is high and this is because of overfitting and then
is reduced again to a close to zero value after some iterations,
e.g., in round 38.

V. CONCLUSION AND FUTURE WORK

In this short paper we propose Triastore, a novel permis-
sioned blockchain database system that carries out machine
learning on the edge, abstracts machine learning models into
primitive data blocks that are subsequently stored and retrieved
from the blockchain. Triastore comprises of two internal rou-
tines, namely: (i) Proof of Federated Learning (PoFL), which
trains in a distributed manner a global model for the ingested
data; and (ii) Blockchain Consensus, which commits this
generated model data on permissioned blockchain database.

We present a detailed explanation of our data ingestion
algorithm with relevant examples and carry out an experimen-
tal evaluation with image data from MNIST. The evaluation
shows that our proposed data ingestion framework retains
high levels of accuracy with low loss in data quality. We
conducted experiments on a real world dataset where we
observe the improved accuracy that our federated learning
approach achieves.

In future, we aim to expand the triastore architecture with
complete querying layers so that we can carry out experiments
with more datasets at scale. We also aim to investigate the
effectiveness of Triastore on an edge deep learning datacenter,
equipped with powerful GPU cards. We finally also aim
to investigate techniques and algorithms to achieve stronger
privacy guarantees.

REFERENCES

[1] L. Yao, Q. Z. Sheng, and S. Dustdar, “Web-based management of the
internet of things,” in IEEE Internet Computing, vol. 19, iss. 4, pp. 60–
67, 2015.

[2] A. A. Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Comm. Surv. Tutor., vol. 17, no. 4,
pp. 2347–2376, 2015.

[3] S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,”
Information Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015.

[4] L. Atzori, A. Iera, and G. Morabito., “The internet of things: A survey,”
Comput. Netw., vol. 54, iss. 15, pp. 2787–2805, 2010.

[5] Juniper Research, “IoT connected devices to almost triple to
over 38 billion units by 2020,” 2019. [Online]. Available:
https://tinyurl.com/juniperresearchIoT

[6] Wenliang Du and M. J. Atallah, “Privacy-preserving cooperative sci-
entific computations,” in Proceedings. 14th IEEE Computer Security
Foundations Workshop, 2001, pp. 273–282.

[7] D. Billsus and M. J. Pazzani, “Learning Collaborative Information
Filters,” in Proceedings of the Fifteenth International Conference on
Machine Learning, ser. ICML ’98. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., Jul. 1998, pp. 46–54.

[8] M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara, “Private
collaborative forecasting and benchmarking,” in Proceedings of the 2004
ACM workshop on Privacy in the electronic society, ser. WPES ’04.
New York, NY, USA: Association for Computing Machinery, Oct. 2004,
pp. 103–114.

[9] J. Li, C. Wang, X. Kang, and Q. Zhao, “Camera localization for
augmented reality and indoor positioning: a vision-based 3D feature
database approach,” International Journal of Digital Earth, vol. 13,
no. 6, pp. 727–741, Jun. 2020, publisher: Taylor & Francis.

[10] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A Vision of IoT:
Applications, Challenges, and Opportunities With China Perspective,”
IEEE Internet of Things Journal, vol. 1, no. 4, pp. 349–359, Aug. 2014,
conference Name: IEEE Internet of Things Journal.

[11] C. Costa and D. Zeinalipour-Yazti, “Telco big data research and open
problems,” in Proceedings of the 35th IEEE International Conference
on Data Engineering, ser. ICDE‘19. 8-12 April 2019, Macau SAR,
China: IEEE Computer Society, 2019, conference, pp. 2056–2059.

[12] C. Costa, G. Chatzimilioudis, D. Zeinalipour-Yazti, and M. F. Mokbel,
“Efficient Exploration of Telco Big Data with Compression and Decay-
ing,” in 2017 IEEE 33rd International Conference on Data Engineering
(ICDE), Apr. 2017, pp. 1332–1343, 2375-026X.

[13] L. Corinzia and J. M. Buhmann, “Variational Federated Multi-Task
Learning,” arXiv:1906.06268 [cs, stat], Jun. 2019, arXiv: 1906.06268.

[14] M. J. Amiri, D. Agrawal, and A. E. Abbadi, “CAPER: a cross-
application permissioned blockchain,” Proceedings of the VLDB Endow-
ment, vol. 12, no. 11, pp. 1385–1398, Jul. 2019.

[15] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukoli, S. W. Cocco, and J. Yellick,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the Thirteenth EuroSys Conference,
ser. EuroSys ’18. New York, NY, USA: Association for Computing
Machinery, Apr. 2018, pp. 1–15.

[16] J. Wang and H. Wang, “Monoxide: Scale out Blockchains with Asyn-
chronous Consensus Zones,” 2019, pp. 95–112.

[17] C. Xu, C. Zhang, and J. Xu, “vChain: Enabling Verifiable Boolean
Range Queries over Blockchain Databases,” in Proceedings of the 2019
International Conference on Management of Data, ser. SIGMOD ’19.
New York, NY, USA: Association for Computing Machinery, Jun. 2019,
pp. 141–158.

[18] Z. Peng, C. Xu, H. Wang, J. Huang, J. Xu, and X. Chu, “P2B-
Trace: Privacy-preserving blockchain-based contact tracing to combat
pandemics,” in Proceedings of the 2021 ACM SIGMOD International
Conference on Management of Data, Xi’an, Shaanxi, China, Jun. 2021.

[19] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine Agreements for Cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles, ser. SOSP ’17.
New York, NY, USA: Association for Computing Machinery, Oct. 2017,
pp. 51–68.

[20] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.
Fischer, and B. Ford, “Scalable Bias-Resistant Distributed Randomness,”
in 2017 IEEE Symposium on Security and Privacy (SP), May 2017, pp.
444–460, iSSN: 2375-1207.

[21] C. Li, P. Li, D. Zhou, W. Xu, F. Long, and A. Yao, “Scaling Nakamoto
Consensus to Thousands of Transactions per Second,” arXiv:1805.03870
[cs], Aug. 2018, arXiv: 1805.03870.

[22] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan,
“Blockbench: A Framework for Analyzing Private Blockchains,” in
Proceedings of the 2017 ACM International Conference on Management
of Data, ser. SIGMOD ’17. New York, NY, USA: Association for
Computing Machinery, May 2017, pp. 1085–1100.

[23] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
Proceedings of the third symposium on Operating systems design and
implementation, ser. OSDI ’99. USA: USENIX Association, Feb. 1999,
pp. 173–186.

[24] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals
Problem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, Jul. 1982.

[25] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A System for Large-Scale
Machine Learning,” 2016, pp. 265–283.

[26] G. Cohen, S. Afshar, J. Tapson, and A. v. Schaik, “EMNIST: Extending
MNIST to handwritten letters,” in 2017 International Joint Conference
on Neural Networks (IJCNN), May 2017, pp. 2921–2926, iSSN: 2161-
4407.

[27] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y.
Arcas, “Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in Artificial Intelligence and Statistics. PMLR,
Apr. 2017, pp. 1273–1282, iSSN: 2640-3498.

[28] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization
of Neural Networks using DropConnect,” in International Conference
on Machine Learning. PMLR, May 2013, pp. 1058–1066, iSSN: 1938-
7228.

