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Abstract—The COVID-19 pandemic poses new challenges in
providing safe pedestrian navigation information that helps to
reduce the risk of severe illness due to the highly contagious
nature of the virus. In this paper, we present an innovative
system, dubbed HealthDist, which utilizes the context (e.g.,
weather conditions), location (e.g., crowded areas) and user’s
preferences to support safe mobility. It consists of four mod-
ules that allow efficient contact tracing, social distancing, and
isolation. HealthDist’s modular design reduces the time and
resources needed to provide accurate localization for measuring
density in common spaces and measuring potential infection
exposure, and recommend outdoor and indoor paths satisfying
the user’s preferences. HealthDist’s initial deployment within a
university campus demonstrated its capability to provide real
time navigation information that reduces the COVID-19 exposure
risk while at the same time satisfying the constraints defined by
the user.

Index Terms—indoor, outdoor, navigation, path recommenda-
tion, graph processing, disability, congestion forecasting

I. INTRODUCTION

On December 31, 2019 a severe pneumonia of relatively
unknown cause was reported from Wuhan, China to the World
Health Organization (WHO) [1]. COVID-19 is an airborne
disease, which is highly contagious with the larger percentage
of infected people not exhibiting symptoms. This lead the
governments around the world to focus on reducing the spread
by using Contact Tracing (CT) and advocating isolation. A
number of different CT techniques have been proposed that
can automate the contact tracing process and address the
challenges of slow tracing procedure requiring a massive
human effort. Particularly, the information collected from CT
applications is used to compute the risk of the COVID-19
exposure for the contacts based on the context, duration and
proximity [2]. Unfortunately, CT systems are not producing
the expected results because of low participation rates and a
lack of user trust due to privacy concerns [3], [4].

Besides contact tracing, face covering and social distancing
can significantly reduce the spread of the COVID-19 disease.
Specifically, the wide availability of smartphones, wearable
and IoT devices allowed novel social distancing applications

Fig. 1. (left) HealthDist Smart Client application for several University of
Pittsburgh campus buildings; (center) user interface for entering information
for Sennott Square room 5505; (right) calculated risk of exposure using the
parameters provided in the screen.

to warn people to observe social distancing by measuring the
distance through inexpensive sensors [5], [6]. Furthermore,
new machine learning techniques have been developed to
predict the infection risk score and analyze the information
for contact tracing [7], [8]. While CT systems share similarity
to our own HealthDist system with regard to contact tracing,
they do not emphasize proactive measures such as contact
avoidance which are emphasized in HealthDist.

In this paper, we present our innovative system, dubbed
HealthDist, designed as part of the CovidReduce project
(CovidReduce.org) to implement a holistic approach of proac-
tive (contact avoidance) and retroactive (contact tracing)
functionalities without violating privacy. Beyond COVID-19,
HealthDist can be used in combating any crowd diseases,
such as influenza, which are most commonly spread from an
infected person to others through the air by coughs, sneezes,
and close personal contact, such as touching or shaking hands.



It utilizes the context (e.g., weather conditions), location (e.g.,
crowded areas) and user’s preferences to recommend safe
pedestrian paths that go through less congested hallways and
corridors, hence decreasing the exposure to the virus causing
COVID-19 and reducing the risk of severe illness.

Furthermore, HealthDist is designed to serve as a highly
accurate proximity detector to provide users with information
about the distance of nearby individuals, as well as a radar
detector to provide information about potential encounters
with moving, even out of view, individuals in their vicinity
(path/trajectory prediction), and operate as an infection expo-
sure meter, counting possible infection Quanta (i.e., infection
dose). As a proximity detector and radar detector the system
is able to measure density in a common space area and
coordinate access to the common space area based on safety
parameters. In all cases, the information to individuals/users is
provided in the form of push notifications and public displays.

HealthDist consists of three components, namely HealthDist
Back-end, HealthDist Smart Clients, and HealthDist BLE
Infrastructure that are implemented by four modules that
perform contact avoidance and contact tracing. Its modular
design reduces the time and resources needed to provide
accurate localization and recommend outdoor and indoor paths
satisfying the user’s preferences or situation (e.g., got vacci-
nated or not).

HealthDist’s initial deployment within a university campus
demonstrated its capability to provide real time navigation
assistance with reduced risk of the COVID-19 exposure while
at the same time satisfying the constraints defined by the user
in terms of accessibility requirements, congestion tolerance,
arrival time, and outdoor exposure.

The contributions of this work are summarized as follows:
• We identify the requirements and services of an effective

solution in the fight against COVID-19 pandemic that
supports both contact avoidance and contact tracing.

• We propose a novel architecture along with the under-
lying infrastructure that supports safe mobility based on
the context, location and user’s preferences that reduces
personal infection risk from airborne viruses.

• We present a prototype HealthDist system and describe
two aspects of its experimental evaluation, namely local-
ization accuracy and avoiding congested spaces, when it
was deployed in the University of Pittsburgh campus.

• We show the effectiveness of HealthDist path recom-
mendation to reduce the risk of COVID-19 exposure
by satisfying the user’s predefined maximum congestion
tolerance and outdoor exposure limit, and identify that
the WkNN algorithm offers the best accuracy in a setting
with simple, unoptimized BLE deployment.

Section II describes the requirements that a context, loca-
tion and preference-aware service should provide to reduce
the spread of a pandemic like COVID-19. Section III gives
an overview of our novel architecture along with the basic
infrastructure and smart clients. Our prototype is described in
Section IV and the experimental evaluation in Section V. Our
concluding remarks are in Section VI.
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Fig. 2. The HealthDist app has encrypted information to benefit the user
that is not transmitted to the university including user contract information,
campus route planning, and health IRUs contact tracing history (4 weeks).

II. HEALTHDIST SERVICES AND REQUIREMENTS

The HealthDist system consists of three distinct compo-
nents: (i) HealthDist Back-end; (ii) HealthDist Smart Clients;
and (iii) HealthDist BLE Infrastructure. The HealthDist Back-
end is composed of trusted servers that facilitate the stateless
interactions among the smartphones for contact tracing and
the stateless computations for contact avoidance.

The HealthDist Smart Clients shown in Figure 1 is the col-
lection of the individual smartphones running the HealthDist
system and the HealthDist tag clients supporting their partici-
patory service executed on the trusted server. The HealthDist
tag clients are necessary for people who want to participate
but cannot run the HealthDist system on their phones.

The HealthDist BLE infrastructure consists of a network of
BLE devices (BLE beacons) and other stationary Bluetooth
enabled devices (e.g., printers, monitors, desktop servers). A
component of the infrastructure layer is the HealthDist Logger,
which is used to collect fingerprints from the BLE supported
buildings that are needed by the BLE & Building Management
Server to produce radio maps for localization and navigation.

HealthDist preserves individuals’ privacy by recording, stor-
ing, and carrying all the necessary computations using the
encrypted data on their smartphones. The central server is
assumed to be trusted and honest, that is, the server will func-
tion as expected and will not disclose any information such as
IDs reported when an individual is exposed. The decentralized
HealthDist design allows individuals to participate in the
collective stateless services without revealing their real identity
and being tracked by the system. Specifically, the HealthDist
system generates unique IDs that are updated in a pre-specified
random time interval (e.g., 15 minutes) that allows individuals
to be anonymous at all times, even while moving through
different spaces. Additionally, all the communication and data
manipulation use state-of-the-art obfuscation and encryption
(e.g., AES-256) to ensure secure data protection and provide
strong privacy guarantees in the system illustrated in Figure 2.



A. Online/Proactive services
In order to support visitors and persons who do not have

HealthDist installed or an available smartphone, and who wish
to participate in HealthDist, they can use the trusted server,
which acts as a virtual smartphone. The trusted server includes
these individuals in the HealthDist computation rounds tem-
porarily (as long as the individual wishes) and preserves their
privacy as for all other HealthDist system users. However, the
trusted server is required to be able to directly communicate
with these users via email or SMS on their regular phones.

1) Localization Service: Indoor localization of high accu-
racy is achieved by combining fingerprinting, and Bluetooth
Low Energy (BLE) beacon signals.

The fingerprinting is an important part of the localization
procedure and requires: (i) BLE placement in the buildings;
and (ii) Continuous recording of the BLE beacon devices
identification and RSSI (Received Signal Strength Indicator).
The BLE placement requires an accurate BLE management
subsystem that manages the location, the time of the place-
ment, and the approximated battery level of the BLE devices.
When the BLE devices are broadcasting data packets at regular
intervals of time, the MAC address and the RSSI can be
recorded as a tuple (e.g., <64:e2:50:b4:b3:0f, -78>) and the
smartphones can receive the packets in close proximity. All
iPhones newer than the iPhone 4 (∼98% market share) and
all Android phones with Android 4.3 (∼97.6% market share)
and up support BLE localization service. For both types of
smartphones, the service requires to access the BLE list and
extracts this information to get the predicted location based on
the prerecorded radio map. The BLE Management module is
responsible for storing the data from the fingerprinting logging
procedure in a remote NoSQL database (e.g., MongoDB) and
a distributed filesystem (e.g., GlusterFS).

2) Proximity Service: The proximity service is designed in
a participatory fashion where all the users are anonymously
reporting periodically their location calculated by the indoor
localization service on their smartphones. As mentioned above,
this is achieved by generating unique, anonymized, and en-
crypted IDs randomly and periodically by each smartphone to
support privacy-preserving trajectory and encounter prediction
at a trusted server. The trusted server collects and carries out
the proximity stateless detection. That is, the trusted server
never stores any localization information which is discarded
once each user is notified about the nearest neighbors, high-
lighting the risk of contact in 3-level distances (safe/green,
warning/yellow, dangerous/red) defined by the COVID-19
safety rules [9].

3) Density Service: Reporting density to an individual
device or to a bulletin board works in similar fashion as in
Proximity Detection with the addition of providing the id
or the bounding box of the shared space area. In the same
participatory fashion, the system can identify the congested
common spaces based on the provided guidelines for social
distancing from the CDC [9]. To avoid exposing sensitive room
information the floor plans of a building highlight only the
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Fig. 3. Infection Risk Routing Scheduling allows the smartphone user to
identify the risk for indoor segments.

common congested areas as shown in Figure 3. The building
information is stored using the GeoJSON format that allows us
to easily extract the details about the building’s floors. In the
case of shared space areas (e.g., classrooms and conference
rooms) with entrance and exit doors, pairs of safety sensors
beam switches configured to detect direction of movement are
used to count individuals entering and leaving the common
area, providing additional anonymized density information.

4) Reservation Service: This is responsible for requesting
access to shared spaces and reserving a time slot. A user
submits a request to the secure server by providing the id
or the bounding box of the shared space area. A request is
granted if density requirements are met.

5) Contact Avoidance Service: In this participatory service,
individuals may choose to upload their positions and destina-
tions and request path recommendation that avoids congested
areas, hence reducing the risk of COVID-19 exposure. In find-
ing an indoor path to recommend, the trusted server utilizes the
Density Service as well as a congestion forecasting module.
We use machine learning, in particular the long short-term
memory (LSTM) models [10], to build a congestion model
for each indoor segment (i.e., corridor or hallway) based on
historical data and event calendars. Again, individuals interact
with the trusted server anonymously, encrypting their sensitive
data using the AES keys generated by the smartphones during
the initial communication with the central server.

6) Viral Risk Assessment Service: It uses collected data of
time, spaces, and activities during the day to calculate the
potential viral load (PVL), which is the integral of distance
to others, volume of the locations, duration of the encounters,
activities (i.e., breathing rate), and state of Personal Protective
Equipment (PPE) in predicted viral exposure of all others
that were infected. All calculations are based only for the
airborne transmission of the virus and on estimation of a
relative metric, called quanta, which can be translated to the
probability estimates of viral infection. Viral risk assessment
calculations take place on users’ smartphones and calculated
quanta are maintained encrypted on the smartphones as the
other health application’s data. All the used data calculating
quanta are purged daily. Details about these parameters can
be found in the web-based Quanta calculator available at
CovidReduce.org.
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Fig. 4. The HealthDist system builds on top of three conceptual layers from
CAPRIO: i) Application Layer; ii) Processing Layer; and iii) Data Layer

B. Offline/Retroactive Service

Contact Tracing Service: The contact tracing service has
two detection modes: (i) direct detection; and (ii) indirect
detection. In the direct detection, a smartphone is recording the
encrypted unique IDs of the users that were in at least 6 feet
proximity, per CDC guidelines [9], along with a timestamp. In
the indirect mode, the smartphones are recording the trajecto-
ries of the users daily and can support similar functionality as
in the direct mode. An encrypted list of IDs and the trajectories
are stored on the user’s smartphone and the data are never
uploaded or exported to third-party agencies. Therefore, the
user’s privacy is preserved. The data can be decayed eventually
after the 2-3 weeks considering the recommended quarantine
duration. If an individual is found to be a positive COVID-
19 case, this individual is expected to notify the HealthDist
trusted server/agent by uploading the set of their encrypted ID
and trajectories. The trusted server will disseminate the list
of IDs and trajectories to the HealthDist users in both push
(broadcasting) and pull (on-demand daily) modes.

The encrypted IDs of the infected individual are used
for direct contact tracing by comparing them with the IDs
of people who were recorded within the proximity of a
user’s smartphone. The encrypted trajectories of the infected
individual are used for indirect contact tracing by matching
them with those recorded on a user’s smartphone (utilizing
the ideas from the SmartTrace framework [11]). Trajectory
matching recognizes cases of individuals who were in the same
shared space in a building during a time interval without direct
contact. In both direct and indirect contact tracing cases, non-
infected individuals do not disclose their own trajectories by
carrying out the detection on their own devices. In all cases
the identities of infected and non-infected individuals are never
disclosed. People without smartphones as well as visitors can
use BLE tags, but their trajectories need to be stored at the
secure server accessible only by trusted personnel.

III. HEALTHDIST BACK-END ARCHITECTURE

HealthDist builds upon our CAPRIO architecture (Figure
4) and consists of three conceptual layers, the Data Layer,
Processing Layer, and Application Layer.

Fig. 5. The Building Management (BM) allows the easy and simple
management of buildings

The Data Layer is responsible for managing input data from
various data sources such as local or distributed files, data
streams, or other external APIs. The Data Layer ensures that
any incoming data is formatted properly for the Processing
Layer before sending the data to be processed.

The Processing Layer is responsible for the core func-
tionalities and services of the HealthDist system such as
processing data for path recommendations or performing local-
ization to provide congestion data. This layer is comprised of
four modules that support contact tracing, social distancing,
and isolation: (i) the Building Management; (ii) the BLE
Management; (iii) Localization/Radio map generation; and
(iv) the Navigation Assistant component. The localization
module interacts with the Building Management to retrieve the
geometry and the indoor path of a building and with the BLE
Management to retrieve the BLE fingerprints and generate
a radio map. The Navigation Assistant module utilizes the
radio map and the algorithms provided by our LocationAc-
curacy library in combination with the recommended path
by our CAPRIO service to provide safe indoor and outdoor
navigation. HealthDist preserves privacy by using unique,
anonymized, and encrypted IDs (based on the Apple/Android
SDK) as shown in Figure 2 and discussed in Section II.

The Application Layer acts as the user interface for
HealthDist and allows for easy development with an open
API. This layer utilizes a Leaflet JS map to abstract the
complexities of the system from the user. The Application
Layer contains two additional components which are integral
to the Processing Layer and indoor-path recommendations.
The components Building Management and BLE Management
allow the insertion, update, and displaying of BLE devices.
The BLE system places BLE devices into a specific building,
floor, and corridor that are provided and managed by the Build-
ing Management module. These BLE devices are then used as
part of a fingerprint in the indoor localization component of the
Processing layer which provides input data to the congestion
forecasting unit.

A. Building Management

The Building Management (BM) is a vital part of the
HealthDist system and is responsible for storing the geometry



of each floor of all buildings in a way that can provide the
information efficiently to build more accurate models [12].
The COVID-19 indoor exposure is related with the indoor
congestion and directionality [13]. The BM is designed and
implemented over a NoSQL architecture in order to support all
the indoor elements (e.g., corridors, rooms, shelves) that affect
the propagation of the COVID-19 virus in indoor places.

Figure 5 shows the intuitive user interface of the BM.
BM allows the user to depict buildings and their respective
corridors, entrances and exits as geometry layers on a map.
These geometry layers can then be stored, edited and deleted
as required. The purpose of this system is to avoid any discrep-
ancies that exist in building outlines in map tiles and provide
a higher level of accuracy during outdoor and indoor path
recommendation. The buildings and their respective features
such as corridors, exits, etc. are created as GeoJSON objects
using Leaflet JS. The GeoJSON format not only supports all
the geographic type (e.g., Point, Multipoint, Line, Polyline,
MultiPolyline, Polygon and MultiPolygon) in the most effi-
cient way, but is also a user-friendly and lightweight format
based on JSON. Leaflet JS is an ideal Javascript library for
handling interactive maps of the system due to its simplicity,
usability and extensibility through plugins.

The objects created at the user interface are stored in
MongoDB documents using the Play framework and Scala
programming language. MongoDB can work with semi-
structured data, which is greatly beneficial when working with
GeoJSON data. It also makes it easier to update data as it
grants access to individual fields. This feature grants more
flexibility when manipulating pre-existing documents and was
helpful when documents grew in complexity with the addition
of coordinates. An additional benefit to using MongoDB is
GeoJSON specific indexing such as 2dsphere, which is very
useful for localization. Play framework provides great NoSQL
support such as the Mongo module which is essential for the
system. Furthermore, it grants the use of both Scala and Java
programming. Scala, on the other hand, provides the combined
experience of object-oriented and functional programming, as
well as high scalability. It also allows the execution of Java
code.

B. BLE Management

The Bluetooth Low Energy (BLE) Management (BLEM) is
responsible for storing information about the location, iden-
tification and hardware characteristics of each BLE in all of
the buildings for maintenance, management, and localization
purposes.

Figure 6 shows the intuitive user interface of the BLEM.
BLEM handles the creation (placement), editing and retrieval
of the virtual forms of the BLE beacon devices. Once placed
in designated positions, the data collected from these de-
vices helps in user indoor localization in the Corridor(s) of
Building(s). The BLE model shares two attributes with the
building and corridor models from the BMS (i.e., building
code and floor attributes). These attributes help in assigning
the placement of BLE devices to a particular floor of a specific

Fig. 6. The BLE Management (BLEM) supports efficient management of the
BLE devices using an intuitive map-based interface

Fig. 7. (left) The BLE logger application, (right) Location Visualization
application for the localization

building. The BLE model has 16 other attributes (e.g., BLE
ID, Model, Firm Version, Nickname, Pin Number, Interval, Tx
Power, Major, Minor, RSSI 1am, RSSI 0am, URL, Latitude,
Longitude, Height and Activated). The BLE ID is a unique
identifier and can be used for retrieving a particular BLE.

C. Localization & Radio Map generation Module

Localization & Radio Map generation Module interacts with
the BLEM to quickly retrieve BLE measurements collected by
the BLE logger shown in Figure 7 (left) through BLE finger-
printing. The BLE fingerprints are used to generate radio maps
that are stored in MongoDB and can be quickly retrieved using
the spatial indexes. The BLE measurements are important for
the generation of the radio map of a specific building and
floor described in the Section III-B. The functionalities of this
module are expressed as a localization library that can be used
by any application for localization.

In order to streamline the process of creating a visual
representation, analysis of radio maps, and the localization



Fig. 8. (top) The HealthDist data exploration user interface was developed on
top of our CAPRIO system, which enables the direct comparison between our
CAPRIO recommended path (blue line), the path from traditional navigation
systems, like Google Maps (green line) and the HealthDist-CAPRIO v2.0 path
(red line), which takes into consideration the accessibility and the congestion.
(Left) The HealthDist-CAPRIO V2.0 provides the comparison between the
three path in terms of distance, outdoor exposure and congestion in bar plot
form along with the respective path on the map.

applications, we developed a Swift library that could be
simply imported into any iOS application shown in Figure 7
(right) and a Java library based on the Anyplace’s [14] open-
source code to be used by any Android application. This
library includes many structures that are helpful when dealing
with BLE radio maps, latitude and longitude coordinates, and
the algorithms themselves. Our localization library, named
LocationAccuracy, supports the use of these structures and
algorithms that would normally have to be included in the
code of the application. The library acts as the backbone
of predicting positions based on given BLE fingerprints to
support the navigation of a recommended path.

The LocationAccuracy allows the utilization of relatable ra-
dio maps for localization, keeps track of geometric coordinates
and uses different metric distances based on the application
requirements. Additionally, LocationAccuracy supports four
localization algorithms developed by Anyplace and described
in Section V that will produce predictions when passed the re-
quired inputs. The initial version of LocationAccuracy library
can be updated and recompiled into importable archive files.

D. Navigation Assistant

The Navigation Assistant module provides efficient routing
using the recommended path from the CAPRIO system and it
is constantly updating the location using the LocationAccuracy
library by requesting real-time information to support safe
navigation. Particularly, it interacts with all the modules to
retrieve additional information about routing scheduling and
avoid high infection risk areas.

IV. PROTOTYPE

As mentioned earlier, HealthDist builds upon our CAPRIO
architecture and the current HealthDist prototype is an exten-
sion of the CAPRIO prototype that integrates the four modules
of the Processing Layer described above. The prototype is
deployed, i.e., supports partial navigation involving nine build-
ings of the University of Pittsburgh main campus.

The prototype of CAPRIO incorporates an interactive map
and integrates several graph techniques in the back-end, which
was developed using Play Framework 2.71 and MongoDB. The
CAPRIO v2.0 web interface is implemented in HTML5/CSS3
along with extensive usage of Leaflet2 and Cytoscape.js3.

An illustrative path exploration interface is shown in Fig-
ure 8. We have implemented a query sidebar that allows the
user to execute a variety of template queries. The query sidebar
has three main tabs: (i) the options tab that enables the user to
choose the source, the destination and the accessibility of the
recommended path along with its outdoor exposure/distance
and the congestion preference, shown in Figure 8 (sidebar); (ii)
the graph tab that animates the path using a graph visualization
to provide visually the algorithms and techniques behind
the paths; and (iii) the settings tab that activates/deactivates
elements on the main user interface.

V. EXPERIMENTS

This section presents an experimental evaluation of our
localization and route recommendation methods. We start out
with the experimental methodology and setup, followed by
two experiments. This section also provides details regarding
the algorithms, metrics, and datasets used for evaluating the
performance of the proposed approach.

1) Testbed: Our evaluation is carried out on a dedicated
Windows 10 server. The server is featuring 12GB of RAM
with 4 Cores (@ 2.90GHz), a 500 GB SSD and a 750 GB
HDD.

Algorithms: We are comparing 4 localization algorithms. In
our experimental evaluation we are using k = 4:

(i) UkNN (Unweighted k-Nearest Neighbors) considers
only the k points with the shortest signal distance and the
average of the coordinates of k points can be used as the
estimate of the user’s location.

(ii) WkNN Weighted k-Nearest Neighbors is very similar
to the unweighted version of k-Nearest neighbors. The user’s
location is computed based on the weighted average rather
than the average.

(iii) PMMSE (Probabilistic Minimum Mean Square Error)
uses probabilistic models to provide a natural way of handling
uncertainty and errors in signal power measurements and
determines the user’s location similarly with Probabilistic
Maximum A Posteriori (MAP) Algorithm.

(iv) WPMME (Weighted Probabilistic Minimum Mean
Square Error) expands upon PMMSE with the difference that
the normalized probability affects the estimation of the user’s
location.

We are also comparing two path recommendation algo-
rithms that are used in our HealthDist system:

(i) Dijkstra, which is a modified and optimized version
of Dijkstra using a priority queue and early termination with
additional constraints;

1Play Framework: https://www.playframework.com/
2Leaflet: https://leafletjs.com/
3Cytoscape.js: http://js.cytoscape.org/



Fig. 9. Dataset for the buildings in University of Pittsburgh campus and its
average congestion for one day.

(ii) CBFS (Closest Building First Search), which is an
algorithm where the closest building is always selected first.

Datasets: We are using a realistic dataset of the University
of Pittsburgh campus, coined PITT. It consists of 9 buildings
with each building having 2 to 6 doors (3 on average) and up
to 582 corridor cells (126 on average). The average door-to-
door corridor length is 69 meters.

We used camera analysis [15] on a 2-hour session and
extrapolated the congestion data using the University of Pitts-
burgh Fall 2019 schedule. Then, we generate congestion data
based on the schedule and a walking speed of 1.4 m/s [16],
[17] for a period of 6 months. Figure 9 shows the map of
the Pitt campus and the average generated congestion density
(number of people over corridor capacity) of all buildings on
July 19, 2019.

Metrics: We evaluate the performance of Dijkstra and CBFS
using the metrics: (i) Average error in meters (m), (ii) Max-
imum congestion, which is the maximum density observed
across all indoor paths in an area of 3 square meters; (iii) Av-
erage congestion, which is the average density observed across
all indoor paths; and (iv) Response time, which measures the
execution time using the average of 100 consecutive runs in
milliseconds.

2) Experimental Results: Due to space limitations, we
report the results of only two experiments, the first experiment
we carried out to select the localization algorithm to be used
in HealthDist and the second experiment to assert the effec-
tiveness of the current path finding algorithm that considers
congestion.

Comparison of Localization algorithms: Figure 10 (top)
shows that WkNN and UkNN have similar performance with
under six meters error and WkNN slightly better. WkNN
outperforms both PMMSE and WPMMSE that report seven
meters error. Based on these results, we have adopted WkNN
and we are currently trying to optimize it. Figure 10 (bot-
tom) shows the error for every single point in the collected
dataset verifying our initial hypothesis that in some isolated
predictions there is a recording error.

Path Effectiveness: In the absence of any user’s preference,
such as outdoor exposure time limit and congestion tolerance
(NO LIMITS), Dijkstra incurs zero maximum and average con-
gestion for PITT dataset with the path being totally outdoors
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Fig. 10. Examining the accuracy of the localization algorithms for one
building in University of Pittsburgh campus with 13 BLE devices placed 20
feet apart.
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Fig. 11. Examining the maximum congestion (top), and the average conges-
tion (bottom) in percentage for finding the longest path in the PITT dataset
without any preferences defined (left), with outdoor exposure time limit of 300
seconds (center), with outdoor exposure time limit of 300 seconds and 15%
congestion tolerance limit (right).

(shown in Figure 11 top and bottom left). In contrast, CBFS
spends more than 42% maximum and 6% average congestion.
This happens because its strategy is to visit the closest building
first irrespective of the presence or absence of constraints,
therefore increasing the maximum and average congestion.

With an outdoor exposure time limit of 300 seconds (O
LIMIT) as shown in Figure 11 top and bottom center, Dijkstra
incurs 35% maximum and 7% average congestion for PITT
dataset due to the outdoor exposure limit preference. CBFS
spends more than 42% maximum and 6% average congestion.

With an outdoor exposure time limit of 300 seconds and
15% congestion tolerance limit (O/C LIMIT) as shown in
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Fig. 12. Examining the execution time for finding the longest path in the
PITT dataset without any preferences defined (left), with outdoor exposure
time limit of 300 seconds (center), with outdoor exposure time limit of 300
seconds and 15% congestion tolerance limit (right).

Figure 11 top and bottom right, Dijkstra incurs 4% maximum
and 2% average congestion for PITT dataset due to the new
limit preferences. CBFS spends more than 13% maximum and
4% average congestion.

Figure 12 shows that for all three cases (i.e., no limits, with
outdoor exposure limit, and with outdoor exposure and con-
gestion limit) the CBFS is faster by one order of magnitude.
Based on these results, we are currently adopting CBFS in
our proposed system and we are currently exploring an A*
variation that optimizes the response time of Dijkstra.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present HealthDist, a novel system that
supports safe navigation based on the context, location and
user’s preferences. HealthDist combines state-of-the-art sys-
tems, software programs, algorithms and easy to set-up infras-
tructure to provide an alternative and complementary solution
to the contact-tracing only systems. Our experimental results
show that HealthDist can reduce the risk of COVID-19 expo-
sure by satisfying the user’s predefined maximum congestion
tolerance and outdoor exposure limit. We also found that the
WkNN algorithm offers the best accuracy in a quick and
simple (unoptimized) BLE deployment, which is often the case
during field/pilot deployment and no retrofitting.

In the future, we aim to enhance the congestion modeling
process to further improve the forecasting accuracy and ef-
ficiency of the models by exploring new Machine Learning
models. We also plan to enhance our system with real-
time information using crowdsourcing and sensing devices to
achieve higher accuracy. Currently the fingerprint mapping re-
quires a human to manually make any environmental changes,
we plan to enhance our system by making these updates a
continuous, online process. We aim to enhance the experiments
by conducting a real deployment of HealthDist and examining
potential impact on users’ behavior. Lastly, we plan to enhance
the privacy of our system by considering a stronger threat
model that does not assume a trusted central server.
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