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Abstract—Crowdsourcing is an emerging field that allows to
tackle difficult problems by soliciting contributions from common
people, rather than trained professionals. In the post-pc era,
where smartphones dominate the personal computing market of-
fering both constant mobility and large amounts of spatiotempo-
ral sensory data, crowdsourcing is becoming increasingly popular.
In this context, crowdsourcing stands as the only viable solution
for collecting the large amount of location-related network
data required to support location-based services, e.g., the signal
strength radiomap of a fingerprinting localization system inside a
multi-floor building. However, this benefit does not come for free,
because crowdsourcing also poses new challenges in radiomap
creation. We focus on the problem of device diversity that occurs
frequently as the contributors usually carry heterogeneous mobile
devices that report network measurements very differently. We
demonstrate with simulations and experimental results that the
traditional signal strength values from the surrounding network
infrastructure are not suitable for crowdsourcing the radiomap.
Moreover, we present an alternative approach, based on signal
strength differences, that is far more robust to device variations
and maintains the localization accuracy regardless of the number
of contributing devices.
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I. INTRODUCTION

A major limitation that hinders the proliferation of WiFi-

based fingerprinting systems is the construction of the Re-

ceived Signal Strength (RSS) radiomap. This task involves

one or more people visiting several locations that span the

whole localization area in order to collect a large volume

of RSS data prior to positioning. This is not only laborious

and time consuming, but it may also become cost prohibitive

if it is undertaken by trained professionals. For instance,

the radiomap generation survey upon the installation of the

Ekahau commercial localization system [1] can cost $10,000

for a large office building with no maintenance included, as

reported in [2]. To make things worse, the radiomap usually

becomes obsolete after some time and needs to be updated

occasionally, especially if the localization environment is

altered due to furniture relocation, removal of existing Access

Points (AP) or deployment of new APs for network operation

reasons. It is clear that the traditional radiomap creation

methodology cannot not easily scale to large indoor multi-

floor environments.
In this context, crowdsourcing is a new paradigm that

leverages ubiquitous mobile devices for collaborative sens-

ing tasks [3], [4]. Several companies have already deployed

crowdsourcing solutions, including Google with their Indoor

Maps project1 and Waze with their real-time traffic monitoring

application2. In particular, crowdsourcing approaches have

been introduced to facilitate the radiomap creation through

user collaboration [5], [6]. Essentially, volunteers are col-

lecting location dependent RSS samples in a participatory

sensing fashion, which they later contribute to the system.

Although this approach is appealing because it splits the

burden among the crowd, it raises new challenges, such as

filtering incorrect contributions (i.e., polluted data), handling

non-uniform fingerprint distribution, managing the radiomap

size and most importantly coping with heterogeneous devices.

In this work, we focus on the device heterogeneity issue

that comes naturally in crowdsourced fingerprinting systems

because users typically carry diverse mobile devices, including

smartphones, PDAs, tablets, laptops, etc. These devices do

not report the RSS values in a similar way and cross-device

measurements are incompatible, thus rendering the fusion of

location-tagged RSS values from different devices in a single

radiomap a great challenge. We propose the use of differential

fingerprints, i.e., fingerprints that contain RSS differences

instead of absolute RSS values, as a means of combining

heterogeneous RSS data. Although the use of differential

fingerprints for tracking diverse devices using a radiomap

collected with a single reference device is well understood

[7], [8], the applicability of this approach to radiomap creation

and updating in crowdsourced systems has not been explored

yet. The contributions of this work are twofold. First, we

formulate the problem of radiomap crowdsourcing in finger-

printing systems and introduce the notion of RSS differences

in our formulation. Second, we evaluate two approaches for

computing the differential fingerprints, using simulations and

real-life data. Our results indicate that the differential RSS

approach can be the key to device-independent radiomap

crowdsourcing in future fingerprinting systems.

In the envisioned system, several volunteers cover different,

possibly overlapping, parts of the localization area and con-

tribute their collected data to the system that computes the

1Indoor Maps, http://maps.google.com/help/maps/indoormaps/, July 2013.
2Waze Free GPS Navigation, http://www.waze.com, July 2013.
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differences among RSS values and then fuses them in a com-

mon crowdsourced differential RSS radiomap. Subsequently, a

new device can be localized using this crowdsourced radiomap

and the RSS values observed in the unknown location.

In Section II, we overview the related work on device diver-

sity and discuss existing crowdsourced localization systems.

Section III, presents the proposed radiomap crowdsourcing

approach based on differential RSS values, followed by a

performance evaluation in Section IV using both simulation

and experimental data. In Section V, we conclude our work

and outline our future steps.

II. RELATED WORK

A. Device Diversity

Most of the existing localization systems assume that the

RSS data contained in the radiomap have been collected using

a single reference device, e.g., D(1), while the user may carry

any device D(m), m = 1, . . . ,M during positioning.

In order to support different user devices, some systems

employ a calibration step to make the new device compatible

with the existing radiomap. In this case, device calibration

is usually performed prior to positioning by means of data

fitting methods that create a linear mapping between the RSS

values collected with heterogeneous devices. These calibration

data need to be collected in advance at a sufficient number of

known or unknown locations [9]–[11]. Alternatively, automatic

solutions avoid the tedious data collection task and calculate

the fitting parameters simultaneously with positioning by

using RSS values directly [12], [13] or by employing RSS

histograms [14]. However, data fitting methods require either

the collection of a considerable volume of RSS data in advance

or walking around for some time before the fitting parameters

are calculated and the user device is adequately calibrated,

which may not be suitable for some applications.

To this end, calibration-free methods deliver reliable loca-

tion information for any device through data transformation, as

soon as the user enters the area. For instance, the Hyperbolic

Location Fingerprinting (HLF) approach combines normalized

logarithm ratios of the RSS power from different APs [15]. On

a different line, the Rank Based Fingerprinting (RBF) method

ranks the RSS values from a set of APs from high to low,

because the ranking is not affected by device-specific hardware

features [16]. Another calibration-free approach uses differ-

ences between RSS values, instead of absolute RSS values,

to cope with device diversity. For instance, the DIFF method

creates the differential fingerprints by taking the difference

between all possible AP pairs [7], while the Signal Strength

Difference (SSD) method subtracts the RSS value of an anchor

AP from the other RSS values [8].

B. Crowdsourced Localization Systems

Crowdsourcing has recently emerged as a viable solution

to address the maintenance cost, as well as scalability issues,

related to the RSS radiomap. Some early systems employed the

idea of crowdsourcing to expand a core radiomap created by

trained contributors. For instance, the Active Campus project

developed a user-assisted system that employs user feedback

for fast, accurate and low-maintenance localization [17]. Along

the same line, the system presented in [18] reduces the

radiomap creation effort by merging user-supplied data with

an initial radiomap set up by the system operator.

On the other hand, Place Lab is a fully crowdsourced

solution, i.e., it does not require an initial radiomap, although

it does not rely on RSS fingerprinting, but rather uses a Google

Maps wardriving approach for populating a database with

approximate AP coordinates [5]. Redpin is one of the first

attempts to build a fingerprinting system that relies entirely on

user collaboration [6]. Other fully crowdsourced localization

systems have also been presented in [19]–[21], however, all

these systems do not consider device heterogeneity.
The WiFiSLAM application, which was recently acquired by

Apple [22], allows the user to carry any device during local-

ization. Still, a homogeneous radiomap, i.e., built from RSS

data collected with a single device or by several contributors

carrying the same devices, is required. Similarly, the Molé

system relies on a homogeneous radiomap and applies a linear

transformation of signal strengths followed by kernelisation of

the RSS histogram to support different user devices during

localization [2]. Yet, these systems cannot exploit the full

benefit of crowdsourcing, as they do not address the device

diversity issue for creating the radiomap.
The Elekspot system deals with device heterogeneity for the

radiomap creation and uses linear relations among device pairs

based on duplicated contributions in the same location, while

the linear parameters are maintained in a square matrix for all

devices [23]. However, this approach relies on the condition

that enough duplicated contributions are made. Alternatively,

authors in [24] use standard clustering algorithms to put

similar devices in the same cluster, so that they can share

the fingerprints among them. In case a new device wants to

contribute data to the system, they employ an Expectation-

Maximization algorithm to learn the linear fitting parameters

for matching the best cluster. Finally, the FreeLoc system han-

dles heterogeneous data by using relative, rather than absolute,

RSS values in the radiomap fingerprints [25]. However, the

fine-grain information of the RSS values is lost and the quality

of the crowdsourced radiomap may deteriorate.
We build upon the notion of differential RSS fingerprints

and apply this approach for fusing RSS data contributed from

diverse devices into a usable crowdsourced radiomap.

III. RADIOMAP FUSION FOR DIVERSE DEVICES

A. Crowdsourced RSS Fingerprinting

In this work, we assume that the RSS values are given by

the simple log-distance radio propagation model

RSS[dBm] = A− 10γ log10 d+X, (1)

where d denotes the physical distance between the transmitter

(e.g., a WiFi AP) and the receiver (e.g., a mobile device), while

the intercept term A provides the RSS value when d = 1m

and encapsulates device specific characteristics, such as the

antenna gain, as well as the transmitter power. The coefficient
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γ is the path loss exponent that depends on the propagation

conditions. The RSS values are disturbed by Gaussian noise,

i.e., X ∼ N (0, σ2).
Traditionally, RSS fingerprinting consists of two phases,

namely the offline (training) and the online (localization)

phases. In the offline phase, we consider a set of predefined

reference locations {L : ℓi = (xi, yi), i = 1, . . . , l} on a

grid over the localization area. We collect RSS measurements

from n APs with a set of heterogeneous devices D(m), m =
1, . . . ,M , while device m visits a subset of the reference

locations {L(m) : ℓi = (xi, yi), i = 1, . . . , l(m)}, so that

L(m) ⊆ L and L =
⋃M

m=1 L
(m). A reference fingerprint

r
(m)
i = [r

(m)
i1 , . . . , r

(m)
in ]T associated with location ℓi is a

vector of RSS samples and r
(m)
ij denotes the RSS value from

the j-th AP collected using device D(m). These fingerprints

are contained in the device-specific radiomap R
(m) ∈ Z

−

l(m)×n

that may partially cover the area, while all devices contribute

their respective radiomaps for building the crowdsourced ra-

diomap R ∈ Z
−
l×n that covers the whole area. This is done by

aggregating the RSS values for each AP across all contributing

devices Mi at location ℓi, where 1 ≤ Mi ≤ M , according to

rij =
1

Mi

Mi∑

m=1

r
(m)
ij . (2)

Note that this formulation includes the extreme cases where

the device-specific radiomaps correspond to non-overlapping

contributions (i.e., Mi = 1, ∀i) in the localization area, as

opposed to fully overlapping contributions (i.e., Mi = M, ∀i).
In the online phase, we exploit the crowdsourced radiomap

R to obtain a location estimate ℓ̂, given a new fingerprint

s = [s1, . . . , sn]
T measured at the unknown location ℓ by the

user carried device D(m′), m′ ∈ {1, . . . ,M}. In this work,

we employ the well-known Nearest Neighbor (NN) method

[26] that estimates location by

ℓ̂(s) = argmin
ℓi

d2i , d2i =

n∑

j=1

(
rij − sj

)2
, (3)

where d2i is the squared Euclidean distance between the

crowdsourced fingerprints ri and the observed fingerprint s.

Essentially, all reference locations are ordered according to

increasing di and location ℓi with the shortest distance between

ri and s in the n-dimensional RSS space is returned as the

location estimate. We point out that this RSS crowdsourcing

approach, as well as our differential RSS approach presented

next, are independent of the underlying localization method.

Thus, more sophisticated methods, than the NN method, can

be employed, including probabilistic methods [27], neural

network-based methods [28] and others.

B. Crowdsourcing with Differential Fingerprints

Mobile devices do not report the RSS values in the same

way and several studies report a linear relation between the

RSS values measured by heterogeneous devices [9]–[11], [14],

as depicted in Fig. 1 using experimental data. In this case,

r
(m2)
ij = αm1m2r

(m1)
ij + βm1m2 , m1,m2 ∈ {1, . . . ,M}, (4)
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Fig. 1. Linear relation between RSS values from diverse devices.

where (αm1m2 , βm1m2) are the linear fitting parameters be-

tween devices D(m1) and D(m2). Therefore, direct fusion of

the RSS radiomaps collected with different devices using (2)

may compromise the quality of the resulting crowdsourced

radiomap. To address this issue, we propose to use signal

strength differences in order to remove the term A in (1)

and make the fingerprints of diverse devices compatible with

each other. In the following, we investigate two approaches

for creating the differential radiomap from the crowdsourced

RSS radiomap, namely the DIFF and SSD methods.

The DIFF method creates the differential fingerprints by tak-

ing the difference between all possible pairwise AP combina-

tions, thus the transformed fingerprints contain
(
n

2

)
= n(n−1)

2
RSS differences [7]. In this sense, the DIFF fingerprint at

location ℓi in the crowdsourced differential radiomap R̃ and

the DIFF positioning fingerprint s̃ are defined as

r̃i = [r̃i12, . . . , r̃i(n−1)n]
T (5)

s̃ = [s̃12, . . . , s̃(n−1)n]
T , (6)

where r̃ijk = rij − rik and s̃jk = sj − sk, 1 ≤ j < k ≤ n

denote the RSS difference between the j-th and k-th APs in the

radiomap and positioning fingerprint, respectively. Positioning

with the NN method is performed by replacing d2i in (3) with

d̃2i =

n∑

k=2

k−1∑

j=1

(
r̃ijk − s̃jk

)2
. (7)

In the SSD method, the differential fingerprints are created

by subtracting the RSS value of an anchor AP from the

other RSS values in the original fingerprint [8]. Thus, the

transformed fingerprints contain only the n−1 RSS differences

that are independent. Without loss of generality we assume that

k is the anchor AP and we define the SSD radiomap fingerprint
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at location ℓi in the crowdsourced differential radiomap Ř and

the SSD positioning fingerprint š as

ři = [ři1, . . . , ři(n−1)]
T (8)

š = [š1, . . . , šn−1]
T , (9)

where řij = rij − rik and šj = sj − sk, j = 1, . . . , n, j 6= k

denote the RSS difference between the j-th AP and the anchor

AP k in the radiomap and positioning fingerprint, respectively.

Positioning with the NN method is performed by replacing d2i
in (3) with

ď2i =

n∑

j=1
j 6=k

(
řij − šj

)2
. (10)

IV. PERFORMANCE EVALUATION

First, we assess the performance of the crowdsourced differ-

ential radiomap, using either the DIFF or the SSD method, in

a simulation setup. Then, we present results with experimental

data collected in a real office environment.

A. Simulation Results

For our simulations, we adopt the simple localization system

depicted in Fig. 2 [29]. There are l = 9 reference locations

(marked with circles) that are uniformly spread over a square

grid, while the grid spacing is 1m. The WiFi APs (marked

with triangles) are deployed in the perimeter of the localization

area and we start out with n = 4 APs that are placed at the four

corners of the area, as shown in Fig. 2, while the maximum

number is n = 16 APs.

We assume that the first contributor carries device D(1) and

the RSS values r
(1)
ij at the reference locations are given by the

propagation model of (1). We use typical values for the model

parameters and set the intercept term A to −22.7 dBm, while

γ = 3.3. We also assume that r
(1)
ij is deterministic because it

has been averaged over a sufficiently large number of samples

to filter out the noise. These RSS values, generated at all 9

locations, constitute the device-specific radiomap R
(1).

A number of heterogeneous devices D(m), m = 2, . . . ,M
also cover the whole area and we assume the linear relation

of (4) between the RSS values reported by any device D(m)

and the corresponding RSS values of device D(1) such that

r
(m)
ij = α1mr

(1)
ij + β1m, m = 2, . . . ,M, (11)

where (α1m, β1m) are the linear fitting parameters between

devices D(m) and D(1). All M devices contribute their respec-

tive radiomaps R
(m) and the crowdsourced RSS radiomap R

is created by aggregating the RSS values of all contributing

devices at each location according to (2). We also create

the corresponding DIFF and SSD crowdsourced radiomaps as

described in Section III-B.

Finally, we assume that a user carries device D(1) during

localization and that the user is allowed to reside at any

location ℓi, i = 1, . . . , 9. We generate the RSS position-

ing fingerprint s by taking the corresponding RSS location

fingerprint r
(1)
i in the device-specific radiomap R

(1) and

disturbing it with additive Gaussian noise. Then, we use

AP
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Fig. 2. Simulation setup.

the NN localization method to estimate the user location.

We report our results in terms of the probability of correct

location estimation defined as Pc = Nc

Ns
, where Nc denotes

the number of times that the correct location ℓi was identified,

while Ns is the total number of simulations. We evaluate the

standard RSS crowdsourcing approach and compare it against

the DIFF and SSD approaches. For SSD we have used k = 1
as the anchor AP. We also report the probability Pc when

the traditional device-specific RSS radiomap R
(1), instead of

the crowdsourced radiomap R, is employed. This approach,

denoted DS, provides an upper bound on the performance.

The results pertaining to 10,000 simulated positioning fin-

gerprints are illustrated in Fig. 3. We start out with two devices

for crowdsourcing, i.e., D(1) and D(2) with (α12, β12) =
(0.9, 15), and we investigate the effect of increasing the

number of APs, while we have fixed the noise standard

deviation to σ = 3 dBm. Our first observation is that the

DIFF crowdsourcing approach is not affected by device di-

versity and maintains the same level of performance, as in

the case of using the device-spesific radiomap; see Fig. 3a.

The SSD crowdsourcing approach also achieves acceptable

performance, however it performs worse compared to DIFF.

This behavior is attributed to the lower dimensionality of

the SSD fingerprints. Interestingly, the SSD fingerprints are

outperformed by the RSS fingerprints when a large number

of APs is considered, e.g., n > 11. This indicates that in

localization areas with high density of APs the use of SSD

fingerprints may not be justified.

As expected, the RSS crowdsourcing approach performs

poorly, especially when a few APs are available. For instance,

Pc is only around 0.45 when n = 6 APs. However, the

performance is improved as more APs are considered, while

there are peaks in the probability curve at certain points

corresponding to n ∈ {4, 8, 12, 16} APs. This may seem

surprising, however looking carefully at the AP deployment

in Fig. 2 we can tell that this situation occurs when the APs

are evenly distributed around the localization area. This was

also reported in the case of localizing diverse devices using

a non-crowdsourced radiomap collected with a single device

[12]. However, in real-life applications usually the installed
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Fig. 3. Probability of correct location estimation for localizing device D
(1). (a) Varying number of APs with M = 2 devices and σ = 3 dBm. (b) Varying

noise standard deviation with M = 2 devices and n = 6 APs. (c) Varying number of crowdsourcing devices with σ = 3 dBm and n = 6 APs.

APs are not evenly deployed and in addition indoor spaces

are much more complex than our simple simulation setup.

This implies that the use of traditional RSS fingerprints in

crowdsourced localization systems should be avoided.

The probability of correct location estimation for varying

noise standard deviation σ is plotted in Fig. 3b, where we have

fixed the number of APs to 6. We observe that in low noise

conditions (i.e., σ = 1 dBm and σ = 2 dBm) the performance

of the SSD approach is similar with the DIFF approach.

However, beyond that point the SSD fingerprints perform

worse as σ is increased and Pc is decreased by around 5%–

10% compared with the DIFF fingerprints. On the other hand,

DIFF attains almost the same level of performance with the DS

approach, while Pc remains below 0.5 for the RSS approach

even under low noise conditions. The inappropriateness of the

RSS fingerprinting approach is also evident when more devices

are used for crowdsourcing the radiomap. The results in Fig. 3c

indicate that Pc decays linearly for the RSS approach, as the

number of contributing devices grows larger. In contrast, both

differential crowdsourcing approaches seem to be extremely

robust and their performance is not affected.

B. Experimental Validation

We validate our simulation results using experimental data

from the publicly available KIOS dataset3. This dataset con-

tains RSS measurements collected with 5 different devices

(one HP iPAQ PDA running Windows mobile, one Asus eeePC

laptop running Windows 7, one HTC Flyer Android tablet,

one HTC Desire and another Samsung Nexus S Android

smartphones) at the KIOS Research Center, Nicosia, Cyprus.

Specifically, it contains 2100 location-tagged fingerprints for

each device collected at 105 reference locations. We used these

data to build the device-specific radiomaps and also create the

crowdsourced radiomap using different device combinations.

In addition, there are 960 location-tagged fingerprints for each

device collected at 96 test locations. We used these data

to evaluate the various crowdsourcing approaches in terms

3The KIOS experimentation area and measurement setup is described in
detail in [14], while the dataset is available to download at http://goo.gl/u7IoG.

of the localization error, which is defined as the physical

distance between the actual and estimated user locations, and

we examine the distribution of the localization error pertaining

to the test set for each device.
In particular, we examine the performance when the RSS

crowdsourced radiomap is used, denoted RSS, while the

distance between the RSS fingerprints in the computations of

the NN localization method is given by (3). We also compare

the two variants of the differential crowdsourced radiomap,

namely the DIFF and SSD approaches where the distance

between the fingerprints is given by (7) and (10), respectively.

For completeness we report the localization error when the

device-specific RSS radiomap of the test device, instead of

the crowdsourced RSS radiomap, is considered. This approach,

denoted DS, provides the lower bound on the localization error.
First, we consider only two contributing devices, namely

the iPAQ and Nexus devices, and each device fully covers

the localization area for crowdsourcing the radiomap. The

experimental results are depicted in Fig. 4 as box plots and

in each box the central mark is the median localization error,

the edges indicate the 25th and 75th percentiles, while the

whiskers extend to the 5th and 95th percentiles of the distri-

bution. Figure 4a plots the experimental results when the iPAQ

serves as the test device for localization. We observe that the

localization error is considerably reduced with the differential

approaches. For instance, the median error is 3.4m for RSS

compared with around 2m for the DIFF and SSD approaches.

Moreover, the 75th percentile drops from 5.2m to 2.7m and

3.2m for DIFF and SSD, respectively. More importantly,

the performance is very close to the non-crowdsourcing DS

approach that uses the RSS radiomap collected only with the

iPAQ device. Using another test device (i.e., HTC Desire),

which was not considered for crowsourcing, produces similar

results and again the DIFF approach filters out high errors

more effectively, compared with SSD; see Fig. 4b.
In case more devices are used for crowdsourcing, the

performance of the RSS approach may deteriorate further, as

shown in Fig. 5 where the bars depict the median localization

error. For instance, using data from five devices to crowdsource

the radiomap increases the median localization error to 4.3m
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(a) Localization of the iPAQ device.
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(b) Localization of the Desire device.

Fig. 4. Localization with two-device (iPAQ and Nexus) crowdsourced radiomaps.
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(a) Localization of the iPAQ device with fully overlapping radiomaps.
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(b) Localization of the eeePC device with non-overlapping radiomaps.

Fig. 5. Crowdsourcing with increasing number of contributing devices.

for the iPAQ device (Fig. 5a). This is much lower compared

with the 1.8m and 2.3m median error of the DIFF and SSD

approaches, respectively. We observe that the localization error

of both differential approaches does not vary significantly

as the number of crowdsourcing devices increases, which

confirms our simulation results in Fig. 3c. Another interesting

observation is that the DIFF approach seems to perform better

than the DS approach. This is not surprising because the area is

covered by all five devices, thus the crowdsourced differential

radiomap has been created by aggregating data from more than

one device in each location, contrary to DS that uses RSS data

collected only with the iPAQ device. However, this is not the

case with SSD, which also performs worse compared with

DIFF for any number of contributing devices, as suggested

by our simulation results. Even though the performance of

the RSS approach with respect to the median error can be

adequate in some cases, the DIFF and SSD approaches still

provide some improvement, as shown in Fig. 5b where the

eeePC device is localized using non-overlapping radiomaps

from a varying number of devices.
The experimental results indicate that the differential ap-

proaches are more robust to device diversity and should be

preferred for crowdsourcing, especially as the number of

the devices that contribute data to the system grows larger.

Moreover, the DIFF approach achieves higher accuracy than

the SSD approach. However, by looking at (7) and (10), it is

clear that this improvement comes at the expense of increased

computations during localization, which may be important

when low-resource mobile devices are considered.

V. CONCLUSIONS

Crowdsourcing is an efficient and cost-effective solution for

building the RSS radiomap, which is an important component

in fingerprinting localization systems. However, the fact that

RSS data contributed by users carrying heterogeneous devices
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are not compatible with each other, has impeded the wide

acceptance of such systems. In this work, we study the use of

differential RSS fingerprints for handling the data uploaded by

diverse devices and examine two possible methods for creating

the RSS difference values from the original RSS fingerprints.

Our findings, using simulation and experimental data, suggest

that the differential fingerprinting approach is a promising

solution that is applicable to crowdsourced localization.

As part of our future work we plan to investigate other

issues related to crowdsourcing in fingerprinting systems that

are equally significant with device diversity, including polluted

data, non-uniform fingerprint distribution and the fast growing

radiomap size.
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