
Efficient Exploration of Telco Big Data with
Compression and Decaying

Constantinos Costa, Georgios Chatzimilioudis
∗Dept. of Computer Science

University of Cyprus

1678 Nicosia, Cyprus

{costa.c, gchatzim, dzeina}@cs.ucy.ac.cy

Demetrios Zeinalipour-Yazti‡∗
‡Max Planck Institute for Informatics

Saarland Informatics Campus

66123 Saarbrücken, Germany

dzeinali@mpi-inf.mpg.de

Mohamed F. Mokbel
Dept. of Computer Sc. & Engr.

University of Minnesota

Minneapolis, MN 55455, USA

mokbel@cs.umn.edu

Abstract—In the realm of smart cities, telecommunication
companies (telcos) are expected to play a protagonistic role as
these can capture a variety of natural phenomena on an ongoing
basis, e.g., traffic in a city, mobility patterns for emergency
response or city planning. The key challenges for telcos in this
era is to ingest in the most compact manner huge amounts
of network logs, perform big data exploration and analytics
on the generated data within a tolerable elapsed time. This
paper introduces SPATE, an innovative telco big data exploration
framework whose objectives are two-fold: (i) minimizing the
storage space needed to incrementally retain data over time;
and (ii) minimizing the response time for spatiotemporal data
exploration queries over recent data. The storage layer of our
framework uses lossless data compression to ingest recent streams
of telco big data in the most compact manner retaining full
resolution for data exploration tasks. The indexing layer of
our system then takes care of the progressive loss of detail
in information, coined decaying, as data ages with time. The
exploration layer provides visual means to explore the generated
spatio-temporal information space. We measure the efficiency
of the proposed framework using a 5GB anonymized real telco
network trace and a variety of telco-specific tasks, such as OLAP
and OLTP querying, privacy-aware data sharing, multivariate
statistics, clustering and regression. We show that out framework
can achieve comparable response times to the state-of-the-art
using an order of magnitude less storage space.

I. INTRODUCTION

Unprecedented amounts and variety of spatiotemporal big

data are generated every few minutes by the infrastructure of

a telecommunication company (telco). The rapid expansion of

broadband mobile networks, the pervasiveness of smartphones,

and the introduction of dedicated Narrow Band connections

for smart devices and Internet of Things (NB-IoT) [1] have

contributed to this explosion. An early example of the data

volume and velocity of telco big data is described in [2], where

a telco collects 5TBs per day, i.e., almost 2PBs per year, in a

single city of 10M cell phone customers.

Data exploration queries over big telco data are of great

interest to both the telco operators and the smart city enablers

(e.g., municipalities, public services, startups, authorities, and

companies), as these allow for interactive analysis at various

granularities, narrowing it down for a variety of tasks includ-

ing: network plan optimization and user experience evaluation,

precise marketing, emergency response, urban planning and

new urban services [2], [3], [4], [5], [6]. Data exploration and

���� ������� �����������

��	
�

�����

����	
���	�

���
���

��	
�

���������

���
������

������

��	
�

������

�	��
����	�

Fig. 1. SPATE is an efficient telco big data exploration framework that deploys
compression, decaying and exploration of the collected data.

visualization might be the most important tools in the big data

era [7], [8], [9], where decision support makers, ranging from

CEOs to front-line support engineers, aim to draw valuable

insights and conclusions visually.

One key challenge in this new era of telco big data is to

minimize the storage costs associated with the data exploration

tasks, as big data traces and computed indexes can have

a tremendous storage and I/O footprint on the data centers

of telcos. Although the volume of electronically stored data

doubles every year, storage capacity costs decline only at a rate

of less than 1/5 per year [10]. Storing big data locally, due to

the sensitive nature of data that cannot reside on public cloud

storage, adds great challenges and costs that reach beyond

the simplistic capacity cost calculated per GB [11]. From a

telco’s perspective, the requirement is to: (i) incrementally

store big data in the most compact manner, and (ii) improve

the response time for data exploration queries. These two

objectives are naturally conflicting, as conjectured in [12].

In this paper we present SPATE1, a SPAtio-TEmporal frame-

work that uses both lossless data compression and lossy data

decaying to ingest large quantities of telco big data in the

most compact manner. Compression refers to the encoding of

data using fewer bits than the original representation and is

important as it shifts the resource bottlenecks from storage-

and network-I/O to CPU, whose cycles are increasing at a

much faster pace [13], [14], [15]. It also enables data explo-

1SPATE: “a large number of things that appear or happen in a short period

of time” (Merriam-Webster dictionary)

ration tasks to retain full resolution over the most important

collected data. Decaying on the other hand, as suggested in

[16], refers to the progressive loss of detail in information as

data ages with time until it has completely disappeared (the

schema of the database does not decay [17]). This enables

data exploration tasks to retain high-level data exploration

capabilities for predefined aggregates over long time windows,

without consuming enormous amounts of storage.

SPATE can be regarded as a domain-specific streaming data

warehouse, which is divided into the following layers: (i) the

Storage layer, which passes newly arrived network streams

(coined snapshots), arriving with a periodic clock, through

a lossless compression process that stores the results on a

replicated big data file system for availability and perfor-

mance; (ii) the Indexing layer, which provides the structures

for efficient data exploration but also invokes the decaying

process. Particularly, it is responsible for storing the upcoming

snapshots on disk with the incremence module, for identifying

interesting event summaries with the highlights module and for

decaying the oldest leaf nodes of the index, i.e., by pruning-

off parts of the tree index using a provided decaying function

(i.e., data fungus). Indexing is the standard mechanism to

speed up queries in incremental spatio-temporal querying and

visualization systems [9], [5], [2], [6]; and (iii) the Application

Layer, which holds components responsible for processing

user queries and presenting results through a spatio-temporal

visual user interface and a declarative SQL user interface.

We evaluate the performance of the SPATE framework using

a 5GB anonymized real telco big data trace, whose structure

is explained in the next section. To show the utility of SPATE,

we carry out a variety of telco-specific querying tasks, such as

OLAP and OLTP querying, clustering, regression and privacy

sanitization. Our results indicate that SPATE requires sub-

linear storage space with respect to the amount of data in-

gested, an update time of only a few seconds without affecting

the online data, and a data exploration response time that is

independent of the queried temporal window. SPATE achieves

similar query response times to state-of-the-art solutions [9],

but using only a fraction of the data storage space.

There is no prior work that studies data decay and efficient

data exploration for telco big data in combination. In previous

work, custom data management systems have been designed

with the objectives to save storage space using compression,

and speed up temporal range queries using indices [18], [19],

[20], [21]. None of these considers the notion of “decay” as

expressed in [16], which suggests sacrificing either accuracy

or read efficiency for less frequently accessed data to save

space. Furthermore, these solutions are tailored specifically

for managing scientific (floating point) data.

In contrast, we focus on compressing and decaying in-

cremental telco big data, which mostly contains string and

integer values, on spatiotemporal data exploration queries in

a telco setting, and also develop our solution on top of off-

the-shelf open source systems (e.g., Hadoop, Spark) that are

widely used in industry, with low installation, administration

and maintenance costs.

Our contributions can be summarized as follows:

• We apply efficient compression algorithms in order to

reduce the storage space and minimally affect query

response time to exploratory search queries in a telco

big data setting.

• We propose a multi-resolution spatio-temporal index that

supports the notion of data decaying.

• We provide an extensive experimental evaluation using a

variety of telco-specific tasks to show the benefits of our

approach.

II. PRELIMINARIES

In this section we describe the special characteristics of telco

big data and the telco network that produces them.

A. The Anatomy of a Telco Network

A telco network consists of the Radio and the Core Network,

as shown in Figure 2. A Radio Network operates in three

different modes, namely GSM/GPRS, UMTS and LTE. The

Global System for Mobile Communications (GSM) is the

standard developed for voice communications in a digital

circuit-switched cellular network (2G). To allow for data

communication, the GSM standard expanded over time to

become a packet-switched network via General Packet Radio

Service (GPRS). The Universal Mobile Telecommunications

System (UMTS) extends GPRS to deal with increased data

needs and constitutes the third generation (3G) mobile cellular

system that moves toward an all-IP network. Finally, the Long-

Term Evolution (LTE) standard was developed to increase the

capacity and speed using a different radio interface together

with Core Network improvements. It is sometimes called the

fourth generation (4G) mobile cellular system. Overall, all

three modes interleave one another to offer the best possible

coverage to the users. In the future, fifth generation (5G)

networks are expected to improve the radio coverage, capac-

ity, data rate and latency with technologies like femtocells,

millimeter waves, massive MIMO, beamforming and full

duplex [22], i.e., mainly advancing the Radio Network.

The GSM operation is supported by base stations called

Base Transceiver Stations (BTS), which are controlled by

Base Station Controllers (BSC). Each BTS is equipped with

transceivers for transmitting and receiving radio signals, an-

tennas and components for encrypting and decrypting the

messages using the BSC. The BSC controls hundreds of BTSs

and is responsible for the allocation of radio channels, receives

measurements from the mobile phones, and controls hand-

overs from BTS to BTS. It ultimately combines the multiple

low-capacity connections of its BTSs into combined “virtual”

connections that are sent over to the Mobile Switching Center

(MSC) in the Core Network. Finally, it provides data to

the Operation Support Subsystem (OSS), whose data will be

described extensively in the next subsection.

The UMTS operation is supported by base stations, called

Node B, which are controlled by Radio Network Controllers

(RNC). The RNC provides similar functions to that of BSC,

���

����

���	
��
��

�����

���

���

���
�������� �����������

����

��� ����

���	���
��

�����

��������

 ����
�!

�����

"
!#	
!#$

 ����%����

����!�

�����

������

��%���$$
��

���

������

��

��	����
!���������%$

���

&��

���

��%�	
���� �
		
�!

���

���������

���

��

���

Fig. 2. The anatomy of a typical telco network architecture that generates telco big data streams consumed by SPATE.

���

���

����

�	
���� ����	� ���	����� �	
���	�	� ���������	
 ��� �
 ��������� ������	�� �������
	�� ���

�	���	���	���	 �	���	�� ��
�� ������	 �������	 �	�� �	���	

�	���	�	�������� �����	
���	���	 �	���	���	 ���	�����	�����

Fig. 3. The relational schema of the telco’s data shows the first 10 out of ∼200 attributes of the CDR data and all the attributes of the NMS and CELL data.

only for the UMTS network. RNC connects to the circuit-

switched Core Network through the Serving GPRS Support

Node (SGSN). The RNC also provides data to the OSS. The

LTE operation is supported by base stations, called eNode B,

which can directly connect to the core network. The Mobility

Management Entity (MME) authenticates the wireless devices

connected to eNode Bs and is involved in hand-offs between

LTE and previous standards.

The data generated by the network can be considered as

data streams, which are aggregated continuously on the telco’s

data center for operational purposes but also replicated to an

exploration and visualization system like SPATE, for efficient

indexing, querying, visual exploration and analysis.

B. The Structure of Telco Big Data

Typical telco big data streams [4] consist of: (i) Business

Supporting Systems (BSS) data, which are used to run the

telco business operations towards customers (e.g., orders,

payment issues, revenues). BSS are associated with the fol-

lowing specific types of data and stored in conventional SQL

databases: User Base Behavior (UBB) records, compliance

records, billing records, as well as voice/message Call De-

tailed Records (CDR). BSS data has only a limited volume

of around 24GB per day (for a 2M+ clientele of a China

telco) [4] and were widespread within telco operational and

analytical IT infrastructure even before the big data era;

and (ii) Operation Supporting Systems (OSS) data, which is

generated by the telco’s computer systems used to manage its

networks and stored in NoSQL big data stores. OSS comprises

of data in the following parts: Circuit Switch (CS), Packet

Switch (PS) - often referred as Mobile BroadBand (MBB)

data - and Measurement Report (MR). CS data describe call

connection quality, PS data describe users’ web behavior

(e.g., web speed, connection success rate) and MR includes

a variety of measurement reports (e.g., for estimating user lo-

cation [23]). By analyzing OSS one can observe important call

connection quality statistics and user experience indicators. As

a representative source of OSS, we use Network Measurement

System (NMS) reports that contain counters for call drop rates,

call duration measurements, antenna throughput. OSS data has

a volume of around 2.2TB per day, occupying over 97% data

volume of the entire dataset [4].

A CDR contains only metadata with fields that describe

a specific telecommunication session (i.e., transaction), but

does not contain the actual content of that transaction. For

example, a CDR describing a phone call may contain the

phone numbers of the calling and receiving party, the start

time, end time, call type, and duration of that call. CDR is

the primitive data source for customer billing purposes. On

the other hand, the OSS logs contain aggregated performance

counters for the three different network types. In general, the

data is highly structured and comprises of relational records

based on a predetermined schema with a large number (∼ 200)

of attributes that take mostly nominal text and interval-scaled

discrete numerical values (see Figure 3).

We analyzed a real anonymized dataset in an effort to

understand what compression ratios can be achieved. The time

duration of the dataset was 1 week and it consisted of about

1.7M CDR and 21M NMS records coming from approximately

300K users. The total size of the dataset was 5GB. Based on

 0

 1

 2

 3

 4

 5

 50 100 150 200

E
nt

ro
py

Attributes

CDR: Entropy of Attributes

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8

E
nt

ro
py

Attributes

NMS: Entropy of Attributes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8 9 10

E
nt

ro
py

Attributes

CELL: Entropy of Attributes

Fig. 4. The entropy of each attribute in (Left) CDR data, (Center) NMS data, and (Right) CELL data.

Shannon’s source coding theorem [24], the minimum number

of bits needed to express a symbol given a set of possible

symbols S and their probabilities P is −
∑

pi∈P log
2
pi, and

the maximum compression ratio possible is inversely propor-

tional to the entropy H = −
∑

pi∈P pi log2 pi of the data. In

Figure 4, we plot the entropy of the attributes included in three

different file types that arrive at a telco data center. Looking at

the first plot that corresponds to CDR data files, it immediately

stands out that most attributes have an entropy smaller than 1

and some even have an entropy of 0. This confirms that high

compression ratios can be achieved. The attributes that have

0 entropy are optional attributes that usually are left blank.

The data arrives at the data center in batches, called hence-

forth snapshot data noted by di, in the form of horizontally

segmented files every 30 minutes, a period we call ingestion

cycle or epoch. A snapshot di contains records of user activity

(e.g., phone call completion) or network activity that took

place at some timepoint within the corresponding ingestion

cycle, and records that express aggregate values over the same

ingestion cycle (e.g., call drops, throughput). Each snapshot di
can be seen as a table of records (rows) with a predefined set

of attributes (columns).

Regarding the spatial information inherent within the telco

network data, every record is linked to a specific cell ID

c. Each cell ID corresponds to a cell that covers a specific

area ac and is attached to a base station that has a known

location. Therefore, we can not talk about spatial data in

the traditional sense, as each record is only associated with

a specific geographical cellular area ac that usually spans

hundreds of meters and estimating user location, as in [23], is

outside the scope of this work.

III. SPATE: OVERVIEW

In this section we provide an overview of the SPATE

architecture, which consists of three layers (see Figure 1): the

storage, the indexing and the application layer. We start out

with a problem formulation and then outline our solution.

A. Problem Formulation

Given a telco setting, where telco big data arrives periodi-

cally in batches, we want to: (i) minimize the space needed to

store/archive data; and at the same time (ii) minimize response

time for spatiotemporal data exploration queries and tasks.

Given storage space S needed for storing data before any

compression is performed, storage space Sc needed for the

data after compression and storage space Si needed for storing

the access method information (e.g., index), we can measure

the ratio of contribution towards the first objective as O1 =
S/S′, where S′ = Sc+Si. Similarly, given the query response

time T over the uncompressed data and the query response

time Tci over compressed and indexed data, we can measure

the ratio of contribution towards the second objective of this

work as O2 = T/Tci.

B. Our Solution

We express our solution in three layers overviewed next and

described in detail in the following sections:

Storage Layer: implements the compression logic in

SPATE. The Storage layer passes newly arrived network

snapshots through a lossless compression process storing the

results on a replicated big data file system for availability and

performance. This component is responsible for minimizing

the required storage space with minimal overhead on the query

response time. The intuition is to use compression techniques

that yield high compression ratios but at the same time guaran-

tee small decompression times. We particularly use GZIP com-

pression that offers high compression/decompression speeds,

with a high compression ratio and has maximum compatibility

with I/O stream libraries in the big data ecosystem we use. The

storage layer is basically only responsible for the leaf pages

of the SPATE index described in the next layer.

Indexing Layer: is responsible for minimizing the query

response time for data exploration queries. It maintains and

uses a multi-resolution spatiotemporal index that consists

of the Incremence module and the Highlights module. The

Incremence module receives the newly arriving snapshot di
and incorporates it into the index by incrementing it on

the right-most path. The Highlights module combines data

from the stored snapshots to create efficient representations

of interesting events, called “highlights”. These highlights are

constructed for each day, month and year and the end of

each such period, respectively. The highlights of a month are

constructed from the daily highlights, and the highlights of a

year are constructed from the monthly highlights. Finally, this

layer is also responsible for the gradual decay of the data. It

does so by pruning-off parts of the tree index by using the

notion of data fungus we will explain.

Application Layer: implements the querying module and

the user interface. In our case, we present the Data Exploration

module, which receives a data exploration query Q(a, b, w)

and based on a, b, and w uses the index to combine the needed

highlights to answer the query. Finally, SPATE is equipped

with an easy-to-use map-based web interface that hides the

complexity of the system and accesses all SPATE functionality.

Details of the web interface are described in Section VI.

IV. SPATE: STORAGE (COMPRESSION) LAYER

This section describes the lowest layer of the SPATE frame-

work that relates to storage. The SPATE storage layer takes

care of compressing snapshots of telco streams as they arrive

periodically. In our setting, exploratory queries need to be

able to perform exact queries over recent data, therefore our

compression mechanisms have to be lossless. In the following

subsections we provide basic compression terminology and

the desiderata of our approach. We then provide a qualitative

description of various lossless compression libraries that are

compared against in a microbenchmark that follows.

A. Terminology and Desiderata

We start out with some basic terminology and then provide

our objectives. Given a lossless compression codec c and a

dataset d that occupies space S, the codec can compress d
into Sc space in compression time Tc1. The compression ratio,

which quantifies the reduction in data size produced by a data

compression algorithm, is defined by rc = S/Sc and depends

on both c and d. Finally, c can decompress d back to its

original state in decompression time Tc2.

The first objective of SPATE relates to saving space. Par-

ticularly, the compression mechanism needs to achieve a high

compression ratio. On the other hand, the query response time

needs to be kept low (second objective), therefore the com-

pression mechanism needs to have a small decompression time,

since this overhead will be paid for every query. It is important

to notice that our approach is not particularly concerned with

the compression time, as the compression cost is only paid for

a single snapshot in each round. One final argument of concern

is compatibility with existing stream readers. For example,

GZIP [25] is widely supported by various environments and

its usage provides maximum portability.

B. Lossless Compression Libraries

In this section we overview some traditional and some

emerging big data lossless compression libraries, which can

be linked directly to existing big data processing software

like SPATE. These libraries also have respective standalone

command-line tools.

• GZIP [25]: is a traditional file format and a software

library used for file compression and decompression. It

is based on the DEFLATE algorithm that uses a combi-

nation of Lempel-Ziv coding (LZ77) [26] and Huffman

coding. In LZ77, repeated occurrences (in a look-ahead

buffer) are replaced with pointers to a recently encoded

sequence (sliding window buffer). In this sense, it is a

sequential data compression technique with a dictionary

that is constructed during the encoding process. On the

TABLE I
LOSSLESS COMPRESSION WITH DIFFERENT LIBRARIES IN SPATE

(AVERAGE RESULTS PER 30-MIN SNAPSHOT)

❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤

Objectives
Libraries

GZIP 7z SNAPPY ZSTD

Compress. Ratio (rc) 9.06 11.75 4.94 9.72
Compress. Time (Tc1) in sec 21.37 20.99 21.39 21.07
Decompress. Time (Tc2) in sec 0.11 0.12 0.13 0.11

contrary, in Huffman coding, a one-to-one symbol-to-

code map is constructed based on occurrence probabilities

of symbols in a learning corpus (i.e., entropy-based). The

DEFLATE algorithm, defined through RFC1951, is then

a hybrid algorithm that consists of a series of blocks

encoded in either LZ77 or Huffman and preceded by a

respective header.

• 7z [27]: is another traditional dictionary-based compres-

sion tool and library based on the LZMA and LZMA2

algorithms. Like GZIP, it aims to build a good statistical

model or “dictionary” for the input data upon which

bit sequences of frequently encountered data can be

compacted more densely.

• SNAPPY [28]: is a modern open-source compression and

decompression library by Google that aims for maximum

compression speed as opposed to maximum compression

ratios. In SNAPPY, the compressed files are reported to

be 20% to 100% bigger than other compression tools but

compression and decompression speeds are reported to be

faster due to an optimized implementation. The library

has been used extensively by Google in its BigTable,

MapReduce and internal RPC systems.

• ZSTD [29]: is another modern open-source lossless com-

pression/decompression library developed by Facebook,

which targets real-time compression scenarios. ZSTD

(aka Zstandard) uses new generation entropy coders

HUFF0 (Huffman) and FSE (Fine State Entropy), which

are designed to perform well on modern CPUs and be-

long to the Asymmetric Numeral Systems (ANS) family

of entropy algorithms. Compared to prior tools, ZSTD

allows building domain-specific training dictionaries.

C. Microbenchmark

Our objective in this subsection is to empirically assess the

presented compression libraries as part of the SPATE storage

layer, which stores snapshots in a directory hierarchy. Our

dataset includes 200 snapshots from the 5GB anonymized and

uncompressed telco dataset that comprises of 1.7M CDR and

21M NMS records. Our microbenchmark is performed on top

of an HDFS v2.5.2 filesystem (more details about the testbed

are provided in Section VII). We particularly focus on the three

common metrics: compression ratio rc, compression time Tc1

and decompression time Tc2.

Table I shows the results of our evaluation. Our first

observation is that rc is similarly satisfactory for GZIP, 7z

and ZSTD. On the other hand, SNAPPY shows that its rc

is only half as good as the rest libraries so it might not

be a good alternative for SPATE. The Tc1 and Tc2 results

relate to compression and decompression time, respectively,

for a single snapshot and are measured in seconds. Looking

at these numbers we clearly observe that Tc1 takes always

more time than Tc2, which is very typical for compression

algorithms. Looking at the costs more carefully, we observe

that the Tc1/Tc2 ratio is about 200 instead of the more typical

2. This is attributed to the fact that SPATE performs many

additional CPU-bound functions in each compression round,

such as parsing. Finally, SNAPPY does not expose any speed

benefits overall, as the slow I/O is hiding its benefits.

As a conclusion, we denote that the SPATE storage layer

can operate with a variety of libraries, each of them coming

with different performance trade-offs. In our implementation

and evaluation, we chose the GZIP library, which was readily

available from within the java.util.zip core libraries and

was also supported readily by certain parts of the application

layer described in Section VI.

V. SPATE: INDEXING (DECAYING) LAYER

The Indexing layer provides the structures for efficient data

exploration but also invokes the decaying process. Particularly,

it is responsible for augmenting the upcoming snapshots on

disk with the incremence module, identifying interesting event

summaries with the highlights module and decaying the oldest

leaf nodes of the index, i.e., by pruning-off parts of the tree

index using the so called data fungus. In the remainder of this

section, we outline the three modules of the SPATE indexing

layer.

A. Incremence Module

This module is responsible for the incremental construction

of a multi-resolution spatio-temporal index as data snapshots

are ingested by SPATE. Our index has 4 levels of temporal

resolutions (i.e., epoch (30 minutes), day, month, year), with

each leaf level containing 2 spatial dimensions (x,y) and N

additional domain-specific dimensions (e.g., CDR and NMS).

Figure 5 shows an example index in SPATE. As we can

see, the root node points to year-nodes, each representing a

single year. Each year node points to 12 month-nodes, each

representing a single month. Similarly, the month nodes point

to their corresponding day-nodes, and each day node points to

its corresponding 48 snapshot leaves.

Every time a new snapshot arrives, it is compressed by the

storage layer and then the temporal index is incremented on its

right-most path. If the new snapshot belongs to an incomplete

day, it is just added as a leaf under the existing right-most

day-node. Else, we first need to add a new dummy day-node.

If this new day is the first day of a new month, we also need

to add a new dummy month-node. Similarly, if the new month

is the first month of a new year, we first need to add a new

dummy year-node.

Each leaf node could store an additional spatial index (e.g.,

R-tree or quad-tree variant) to speed up data exploration

queries within a snapshot. For example, a query like: “find

���

�

���� ���� ��������

����	

��

�����

���

���

���

���

��� ���

���

����

���

	

��� ��� ��� ��� ��� ��� ��� ���

���

�� �� �� �� �� �� �� ��

��� ��� ��� ��� ��� ���

Fig. 5. The multi-resolution spatio-temporal index in SPATE. Our index has
4 levels of temporal resolutions with each leaf level containing 2 spatial
dimensions (x,y) and N additional domain-specific dimensions (e.g., related
to CDR and NMS). The red line denotes the decaying data fungus that evicts
progressively the oldest leaf and non-leaf nodes of the tree.

the aggregates regarding some object of interest in a given

spatial bounding rectangle for a specific time range” could

benefit from such an embedded spatial index after reaching the

leaf level of the index. Such an index would allow to quickly

scan the attributes stored per snapshot. However, snapshots are

usually not very large (i.e., have a 30 min timespan), thus an

additional index would only provide modest additional query

response time benefits at the price of additional storage space

that we aim to minimize.

B. Highlights Module

To enable interactive data exploration we compute “high-

lights” from the underlying raw data for each internal node of

the temporal index structure. Such highlights are effectively

materialized views to long-standing queries of users (e.g., the

drop-call counters, bandwidth statistics), which are executed

in a periodic manner as the snapshots stream to SPATE. In

this sense, the highlights can be perceived as an OLAP cube

whose construction cost is amortized over time. Building the

highlights cube enables the application layer, we will describe

next, to swiftly go over the generated statistics for visualization

purposes. Consequently, users can drill down or roll up to the

desired aggregates without additional delays.

Below we outline the operation of the highlights module: At

the end of each day, when all the snapshots of that day have

been added as leaves, the highlights of that day are calculated

from the compressed data of its snapshots, and are stored in the

day-node. They are also forwarded to the parent month-node,

which increments its own monthly highlights. Similarly, at

the end of each month/year, the highlights of that month/year

are calculated from the highlights of its days/months and are

stored in the month/year-node and forwarded to its parent

node, which in-turn increments its own highlights. This way

the root will store the highlights of all the completed years.

The computation is based on the frequency of occurrence

of a value in the data. Frequent values with an occurrence

frequency above threshold θ are treated as no-highlights,

whereas values with an occurrence frequency below threshold

θ are considered highlights. A highlight is described by its

type (in case of categorical data) or its peaking point (in case

of continuous numerical values) and its duration. Its important

to observe that for each level of resolution (day, month, year)

a separate frequency threshold θi can be used, e.g., lower

thresholds for higher levels resolution.

C. Decaying Module

The last module of the indexing layer deals with decaying of

compressed snapshot data and aggregated highlights. Decaying

refers to the progressive loss of detail in information as data

ages with time until it has completely disappeared. Kersten

refers to the existence of data fungus in [16], e.g., “Evict

Grouped Individuals”, which helps in the decaying processing.

In our work, we chose a data fungus we coin “Evict Oldest

Individuals” as it helps us to deal more pragmatically with

telco network signals, where more recent signals contain more

important operational value that needs to be retained fully.

We particularly devise a scheme where operators chose the

rate at which the temporal decaying policy becomes effective.

The red line in Figure 5, denotes one hypothetical such policy

that aims to retain up to one year of data exploration with full

resolution along with yearly progressive decay. This policy is

translated into a continuous decaying process where leaf and

non-leaf entries of the spatio-temporal index are purged from

replicated storage in a sliding window manner.

The result of the decaying process is that the data ex-

ploration warehouse can retain the highest possible data

exploration resolution for predefined aggregate queries over

extremely long time windows without consuming enormous

amounts of storage. Otherwise, the storage overheads would

soon enforce administrators to delete large quantities of telco

big data traces, purging at the same time the hope to learn

valuable insights from big data at the macroscopic scale.

VI. SPATE: APPLICATION LAYER

In this section we present the Application layer that holds

components responsible for receiving user queries and present-

ing the results. These are implemented in the query exploration

interfaces, according to a query evaluation process we outline.

A. Query Evaluation and Processing

This module receives a data exploration query and accesses

the index maintained by the Indexing layer of SPATE.

In our setup, a data exploration query Q(a, b, w) consists

of an attribute selection a, a spatial bounding box b, and

a temporal window of interest w. A b can cover an area

a few hundreds of square meters up to several hundreds of

square kilometers. Similarly, a temporal window can span a

few hours to several months or even years. A query Q(a, b, w)
can be expressed as “Explore the values of a within the spatial

box b and temporal window w”. Such queries have direct

applicability to interactive visualization tools used for data

exploration that present data overlaying a geographical map.

The users zoom into the map (thus defining the b) and select

the attributes (a) and the time period (w), for which they would

like to observe the query results as snapshots or as a video

(i.e., “playback highlights in fast-forward”).

Fig. 6. SPATE-UI: A spatio-temporal telco data exploration user interface we
developed on top of Google Maps, which enables combining network models
(e.g., coverage heatmaps) with real network measurements (e.g., CDR, NMS,
CELL) encapsulated in the compressed SPATE structure.

Given a data exploration query Q(a, b, w) the index is

accessed to find the temporal node whose period completely

covers w. For example, if the temporal window is from 15

September 2016 until 15 October 2016, the index is accessed

up to the year level and the highlights of year-node 2016

are retrieved. Once the correct temporal node is found, all

highlight summaries or actual available data whose spatial

bounds completely cover b are then retrieved.

SPATE might retrieve records for a larger period than the

one requested. However, this is not a problem given that users

very often like to have a quick glance to the period before and

after the chosen window. In this case, our decision to retrieve

a larger period serves as an implicit prefetching mechanism.

When users decide to focus on a smaller window within w,

it is considered as a data exploration query Q(a, b, w′) with

|w′| < |w|, which can be served directly from the cache of

the user interface that is explained in the next subsection.

B. Query Exploration Interfaces

We have realized two separate interfaces for the SPATE

framework: (i) SPATE-UI, which is a visual spatio-temporal

data exploration interface developed on top of Google Maps;

and (ii) SPATE-SQL, which is a declarative data exploration

interface in Apache Hue (Hadoop User Experience).

The SPATE-UI interface allows the user to interactively

navigate in space and time (see Figure 6). Particularly, the

user can set a temporal and spatial predicate and observe the

behavior of vital network statistics and how these compare

to precomputed network models. For instance, the network

coverage is a precomputed heatmap model that is overlayed

and can be visually compared against the real measurements

that are loaded from storage to memory through the SPATE

structure. The above effectively translates to the execution

of a variety of spatial range queries on top of the SPATE

structure. We will show in our experimental section that both

range queries as well as other OLTP and OLAP queries retain

desirable retrieval properties (response time) at enormous

storage savings. The SPATE-UI finally also provides a search

box that enables a user to narrow the spatial bounding box

based on well-known Points-of-Interests (POIs) organized by

Google or some other provider (e.g., Openstreetmap). The

SPATE-UI also contains a query bar that enables the execu-

tion of template queries for drop calls and downflux/upflux,

heatmap statistics (e.g., showing the RSSi signal intensity

around antennas), satellite/terrain map layers (e.g., for Cellular

signal propagation faults due to the terrain) and others.

The SPATE-SQL interface allows expert users and data

scientists to explore the collected data through declarative

SQL. The current configuration currently allows all basic

SELECT-FROM-WHERE block queries, nested queries, joins,

aggregates, etc. directly through the compressed Hadoop Dis-

tributed File System (HDFS) representation of the SPATE

structure, which aims to provide means for ad-hoc query

execution with the same storage savings with SPATE-UI.

VII. EXPERIMENTAL TESTBED AND METHODOLOGY

To validate our proposed ideas and evaluate SPATE, we have

implemented a trace-driven experimental testbed on which we

conducted a comprehensive set of experiments. Particularly,

we compare SPATE against two competing approaches for

three different metrics and eight different usage scenarios.

A. Compared Frameworks

Our aim in this experimental evaluation is to compare the

following three frameworks:

• RAW: This is the default solution that stores the telco

snapshots as data files on the HDFS file system without

any compression, indexing or decaying.

• SHAHED: This is a MapReduce-based system for query-

ing and visualizing spatio-temporal satellite data pro-

posed in [9]. SHAHED is appropriate for online querying

and visualization, but does not deploy compression or

decaying in its internal structures. To allow fair compar-

ison, we isolated the spatio-temporal aggregate index of

SHAHED, part of SpatialHadoop 2.4 [30], and executed

it along with the other frameworks in Spark [31].

• SPATE: This is the framework proposed in this work.

SPATE aims to minimize the usage of disk space by

retaining fast spatio-temporal querying means.

B. Experimental Testbed

Our experimental testbed is implemented on top of a

Hadoop Distributed File System (HDFS) [32] along with

Apache Hive [32] for online querying and Apache Spark [31]

for offline (i.e., data-intensive distributed in-memory) data pro-

cessing. Our testbed stores data in either text format (for RAW

and SHAHED) or compressed (for SPATE). We use an HDFS

file system with 64MB block size and default replication 3.

In order to streamline the trace-driven experimental evaluation

process, we have formulated the evaluation tasks as individual

Scala programs submitted directly to the Spark computation

master. In this way, we managed to circumvent additional

latencies and overheads introduced by the query exploration

interfaces introduced in Section VI.

Our evaluation is carried out on the DMSL-UCY laboratory

VCenter IaaS datacenter, a private cloud, which encompasses 5

IBM System x3550 M3 and HP Proliant DL 360 G7 rackables

featuring single socket (8 cores) or dual socket (16 cores)

Intel(R) Xeon(R) CPU E5620 @ 2.40GHz, respectively. The

datacenter is managed through a VMWare vCenter Server 5.1

that connects to the respective VMWare ESXi 5.0.0 hosts.

The computing cluster, deployed over our VCenter IaaS,

comprises of 4 Ubuntu 14.04 server images, each featuring

8GB of RAM with 2 virtual CPUs (@ 2.40GHz). The images

utilize slow 7.2K RPM RAID-5 SAS 6 Gbps disks, available

through a IBM storage system DS3512, formatted with VMFS

5.54 (1MB block size). Each node features the following

frameworks, i.e., Hadoop v2.5.2, Spark 1.6.0 and Hive 2.0.

C. Datasets

We utilize an anonymized dataset of telco traces comprising

of 1.7M call detail records (CDR), 21M network measure-

ments records (NMS) and 3660 cells (CELL) coming from

1192 2G, 3G and LTE antennas distributed in an area of about

6000 km2. The data traffic is created from about 300K users

and has a total size of ∼5GB. To evaluate the ingestion and

querying time of our propositions for various day periods, we

have generated the following four large datasets based on the

arrival time of the snapshots:

• Morning Dataset: was generated by extracting the data

that have time arrival between 5 am to 12 pm (noon).

• Afternoon Dataset: was generated by extracting the data

that have time arrival between 12 pm to 5 pm.

• Evening Dataset: was generated by extracting the data

that have time arrival between 5 pm to 9 pm.

• Night Dataset: was generated by extracting the data that

have time arrival between 9 pm to 5 am.

In order to better understand the behavior of our real dataset,

we have additionally partitioned the dataset into seven zones

at the granularity of week days (i.e., Monday to Sunday).

D. Metrics

We utilize three metrics, the first two targeting the storage

and indexing process and the third one the data querying and

exploration process, as follows:

• Ingestion Time: this measures the cost incurred for stor-

ing each arriving snapshot and incrementing the index.

Given a compression library c and a data snapshot d, the

ingestion time includes the compression time Tc1 needed

to compress d and the time needed to run the Incremence

module that adds the data into our spatiotemporal index.

• Space: this measures the total space S′ that data and

index occupy throughout the whole distributed system

in Megabytes (MB). Space S′ is calculated after all

incoming snapshots have been compressed and ingested.

• Response Time: this measures the response time for

answering a query in seconds (sec). The time is being

calculated from the query submission until the answer is

calculated. This includes the accessing of the spatiotem-

poral index, the decompression of the retrieved data and

 10

 20

 30

 40

 50

 60

Morning Afternoon Evening Night

In
ge

st
io

n
tim

e
(s

ec
)

INGESTION: Ingestion time per snapshot
(Arrival rate = 30 mins)

RAW
SHAHED

SPATE

Fig. 7. Ingestion time: We compare SPATE against RAW and SHAHED on
real data partitioned by day period.

the presentation of the results. Times are averaged over

five iterations measured in seconds.

E. Data Exploration Tasks

Our experimental evaluation has been conducted based

on an a diverse mix of OLTP, OLAP, privacy sanitization,

statistics, data mining, and Machine Learning (ML) workloads.

All aforementioned workloads are driven by a telco-specific

domain task. We particularly formulated the following eight

tasks segmented into two groups: (i) T1-T5 represent basic

operational and analytical queries as well as privacy saniti-

zation tasks that were executed without Spark parallelization;

and (ii) T6-T8 represent heavier computational tasks that were

executed with Spark parallelization.

T1. Equality: This task aims to retrieve the download

and upload bytes for a requested snapshot, e.g.,

SELECT upflux, downflux FROM CDR WHERE

ts=‘‘201601221530’’;

T2. Range: this aims to retrieve the download and upload

bytes for a requested time window, e.g., SELECT upflux,

downflux FROM CDR WHERE ts>=‘‘2015’’ AND

ts<=‘‘2016’’;

T3. Aggregate: this aims to retrieve the NMS counters for the

drop calls of each cell tower and calculate the drop call rate for

each cluster of cells, e.g., SELECT cellid, SUM(val)

FROM NMS WHERE ... GROUP BY cellid;

T4. Join: this query involves a self-join among two CDR

tables. Particularly, it aims to identify the products that have

changed their location (as identified by the cell towers).
T5. Privacy: This task retrieves and anonymizes the result set

based on the k-anonymity model proposed in [33] through

the ARX [34] Java library. Particularly, it generates a k-

anonymized dataset by generalizing, substituting, inserting,

and removing information as appropriate in order to make the

quasi-identifiers indistinguishable among k rows.
T6. Statistics: This task aims to generate a variety of mul-

tivariate statistics using Spark’s Machine Learning (ML) li-

brary (i.e., Statistics.colStats(observations)).

 0.1

 1

 10

 100

Morning Afternoon Evening Night

S
pa

ce
 (

G
B

)

SPACE: Disk space for the whole real dataset

RAW
SHAHED

SPATE

Fig. 8. Disk space: We compare SPATE against RAW and SHAHED on real
data partitioned by day period.

The goal is to calculate the column-wise max, min, mean,

variance, number of non-zeros and the total count.

T7. Clustering: This task aims to cluster a specific range of

snapshots using the k-means algorithm in Spark based on the

CDR and NMS data.

T8. Regression: This task estimates relationships among the

attributes in our dataset using linear regression over a specific

temporal window. Spark’s Machine Learning (ML) library is

used (i.e., regression.LinearRegression).

VIII. EXPERIMENTAL EVALUATION

In this section we carry out an extensive experimental

evaluation that aims to uncover the performance properties

of our propositions.

A. Performance over varying day-periods

This experimental series studies the effect that the various

day periods (i.e., morning, afternoon, evening, night) have on

the ingestion time and disk space needed to index and store

the incoming snapshots of both NMS and CDR data.

In Figure 7 we see that SPATE has the slowest ingestion

time, although still comparable (i.e., a maximum of 1.25x

slower). We also observe that the data load per snapshot

affects the ingestion time only negligibly, assuming that the

data load varies among day periods. Even though SPATE is

somewhat slower during ingestion, its benefits are manifested

in Figure 8, where we observe that SPATE requires an order of

magnitude less disk space compared to the other techniques.

This performance is also steady with respect to the varying

data loads associated with each different day period.

We conclude that SPATE achieves a large improvement

in expensive disk space requirements trading-off a negligible

overhead on the ingestion time. Since each snapshot arrives

only every 30 minutes (i.e., 1800 seconds) and the ingestion

completes within two orders of magnitude less time, we can

claim that the small delay in ingestion time is acceptable.

 10

 20

 30

 40

 50

 60

Mon Tue Wed Thu Fri Sat Sun

In
ge

st
io

n
tim

e
(s

ec
)

INGESTION: Ingestion time per snapshot
(Arrival rate = 30 mins)

RAW
SHAHED

SPATE

Fig. 9. Ingestion time: We compare SPATE against RAW and SHAHED on
real data partitioned by day of week.

B. Performance over days of the week

This experimental series studies the effect that the various

week days (i.e., Monday through Sunday) have on the in-

gestion time and disk space needed to index and store the

incoming snapshots of both NMS and CDR data. In Figure

9, we see again that SPATE has the slowest ingestion time,

although still comparable (i.e., a maximum of 1.2x slower

this time). We also observe that the data load per snapshot

affects the ingestion time only negligibly, assuming that the

data load varies between days. In Figure 10, we observe that

SPATE requires again an order of magnitude less disk space.

This performance is also steady with respect to the varying

data loads among week days. The conclusion here is similar,

SPATE achieves a large improvement in disk space, trading-off

a negligible overhead on the ingestion time.

C. Response time

This experimental series studies the response time each in-

gestion framework achieves for the tasks described in Section

VII-E using the CDR dataset.

In Figure 11, we present the query response time for the

simpler tasks T1-T5, all of which either involve a single scan

or a nested loop on the data stored on HDFS. We observe

that SPATE is only slightly slower than SHAHED for T1-T3

and T5 (i.e., from 0.1s to 3s), which is due to the fact that

SPATE requires time to decompress the files stored on the

HDFS before returning the results. On the other hand, for the

join task T4, SPATE achieves a 4-5x speed up compared to

SHAHED, mainly due to the fact that T4 involves a nested

loop and that such a loop is much faster in SPATE where the

HDFS input streams are already compressed in GZIP.

In Figure 12, we present the query response time for the

heavier tasks T6-T8 in log-scale, which are executed with

Spark parallelization on. Our first observation is that the query

response time of all three tasks are now in the order of many

thousand seconds, but SPATE remains close the running time

of SHAHED in all cases. The second observation is that some

tasks, such as the k-means computation in T7 and the Linear

 0.01

 0.1

 1

 10

Mon Tue Wed Thu Fri Sat Sun

S
pa

ce
 (

G
B

)

SPACE: Disk space for the whole real dataset

RAW
SHAHED

SPATE

Fig. 10. Disk space: We compare SPATE against RAW and SHAHED on real
data partitioned by day of week.

Regression in T8, the query response time benefits for SPATE

are not so apparent. This happens as both T7 and T8 are

CPU-bound rather than I/O-bound problems and as such, the

existence of compressed input streams is not helping the query

response time significantly. The significant benefit of SPATE

over the other two frameworks for T7 and T8 are still of course

that it requires significantly less storage (i.e., 10x reduction).

For all eight tasks, SPATE requires the least storage space,

i.e., 0.49GB vs. 5.37GB and 5.32GB required by SHAHED

and RAW, respectively.

IX. RELATED WORK

In this section we present existing research on telco big

data and on compressing incremental archives. These works

are not directly comparable to SPATE, but are presented for

completeness.

A. Telco Big Data Research

Telco big data research falls in the following categories: (i)

real-time analytics and detection; (ii) experience, behavior and

retention analytics; and (iii) privacy. There is also traditional

telco research not related to big data, rather comprises of topics

related to business (BSS) data in relational databases.

Real-time Analytics and Detection: Zhang et al. [5] devel-

oped OceanRT, which was one of the first real-time telco

big data analytic demonstrations. Yuan et al. [2] present

OceanST which features: (i) an efficient loading mechanism of

ever-growing telco MBB data; (ii) new spatiotemporal index

structures to process exact and approximate spatiotemporal

aggregate queries. Iyer et al. [6] present CellIQ to optimize

queries such as “spatiotemporal traffic hotspots” and “hand-

off sequences with performance problems”. It represents the

snapshots of cellular network data as graphs and leverages on

the spatial and temporal locality of cellular network data. Zhu

et al. [23] deal with the usage of telco MR data for city-scale

localization, which is complementary to the scope of our work.

Braun et al. [35] develop a scalable distributed system that

efficiently processes mixed workloads to answer event stream

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

T1 T2 T3 T4 T5

R
es

po
ns

e
tim

e
(s

ec
)

TASKS: Response time
(Arrival rate = 30 mins)

RAW
SHAHED

SPATE

Fig. 11. Response time for simpler tasks T1-T4: We compare SPATE

against RAW and SHAHED on the complete real dataset.

and analytic queries over telco data. Bouillet et al. [36] develop

a system on top of IBM’s InfoSphere Streams middleware

that analyzes 6 billion CDR per day in real-time. Abbasoğlu

et al. [37] present a system for maintaining call profiles

of customers in a streaming setting by applying scalable

distributed stream processing. All aforementioned efforts have

a similar scope to SPATE, but don’t incorporate concepts of

compression or decaying of data.

Experience, Behavior and Retention Analytics: Huang et

al. [4] empirically demonstrate that customer churn prediction

performance can be significantly improved with telco big data.

Although BSS data have been utilized in churn prediction very

well in the past decade, the authors show how with a primitive

Random Forest classifier telco big data can improve churn

prediction accuracy from 68% to 95%. Luo et al. [38] propose

a framework to predict user behavior involving more than

one million telco users. They represent users as documents

containing a collection of changing spatiotemporal “words”

that express user behavior. By extracting the users’ space-

time access records from MBB data, they learn user-specific

compact topic features that they use for user activity level

prediction. Ho et. al. [39] propose a distributed community

detection algorithm that aims to discover groups of users that

share similar edge properties reflecting customer behavior.

Iterative learning algorithms are not the primary target for

SPATE, but can be supported at similar costs to RAW data

(i.e., decompression occurs in first iteration).

Privacy: Hu et al. [40] study Differential Privacy for data

mining applications over telco big data and show that for

real-word industrial data mining systems the strong privacy

guarantees given by differential privacy are traded with a

15% to 30% loss of accuracy. Privacy and confidentiality

are critical for telcos’ reliability due to the highly sensitive

attributes of user data located in CDR, such as billing records,

calling numbers, call duration, data sessions, and trajectory

information. SPATE deals with privacy-aware data sharing as

a functionality for next generation smart-city applications.

 1

 10

 100

 1000

 10000

 100000

 1x106

T6 T7 T8

R
es

po
ns

e
tim

e
(s

ec
)

TASKS: Response time
(Arrival rate = 30 mins)

RAW
SHAHED

SPATE

Fig. 12. Response time for heavier tasks T5-T8: We compare SPATE against
RAW and SHAHED on the complete real dataset.

B. Compressing Incremental Archives

Domain-specific compression techniques have previously

been proposed, e.g., for compressing spatiotemporal climate

data [41], text document collections [42], scientific simulation

floating point data [18], [19], [20], [21], and floating point data

streams [43]. None of these prior works has been proposed for

distributed systems and can not be directly applied to telco

data, which mostly contains generic string and integer values.

Works [44], [45], [46] have studied differential compression

techniques and the trade-off between compression ratio and

decompression times for incremental archival data. Differential

compression is a topic we will investigate more carefully in

the future as it can reduce the storage layer overheads in each

acquisition cycle.

X. CONCLUSIONS AND FUTURE WORK

In this paper we proposed an innovative telco big data

exploration stack, coined SPATE, whose objectives are two-

fold: (i) minimizing the storage space needed to incrementally

retain data over time; and (ii) minimizing the response time

for spatiotemporal data exploration queries over recent data.

We have measured the efficiency of our proposition using a

real telco trace and a variety of telco-specific tasks, such as

OLAP and OLTP querying, clustering, regression and privacy

sanitizing, and showed that we can achieve comparable re-

sponse times to the state-of-the-art with an order of magnitude

less storage space. In the future, we aim to investigate a

variety of advanced smart city application scenarios on top

of SPATE, namely an automated car traffic mapping system

and an emergency recovery system after natural disasters.

ACKNOWLEDGMENTS

This work was supported in part by the University of

Cyprus, an industrial sponsorship by MTN Cyprus and EU

COST Action IC1304. The third author’s research is supported

by the Alexander von Humboldt-Foundation, Germany. The

last author’s research is supported by NSF grants IIS-0952977,

IIS-1218168, IIS-1525953, CNS-1512877.

REFERENCES

[1] Ericsson.com, “Cellular Networks For Massive IoT enabling low power
wide area applications,” 2016. [Online]. Available: https://goo.gl/Sf2Cj4

[2] M. Yuan, K. Deng, J. Zeng, Y. Li, B. Ni, X. He, F. Wang, W. Dai,
and Q. Yang, “Oceanst: A distributed analytic system for large-scale
spatiotemporal mobile broadband data,” Proc. VLDB Endow., vol. 7,
no. 13, pp. 1561–1564, Aug. 2014.

[3] J. Reades, F. Calabrese, A. Sevtsuk, and C. Ratti, “Cellular census:
Explorations in urban data collection,” IEEE Pervasive Computing,
vol. 6, no. 3, pp. 30–38, 2007.

[4] Y. Huang, F. Zhu, M. Yuan, K. Deng, Y. Li, B. Ni, W. Dai, Q. Yang,
and J. Zeng, “Telco churn prediction with big data,” in Proceedings of

the 2015 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD. New York, NY, USA: ACM, 2015, pp. 607–618.

[5] S. Zhang, Y. Yang, W. Fan, L. Lan, and M. Yuan, “Oceanrt: Real-
time analytics over large temporal data,” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’14. New York, NY, USA: ACM, 2014, pp. 1099–1102.

[6] A. P. Iyer, L. E. Li, and I. Stoica, “Celliq: Real-time cellular network
analytics at scale,” in Proceedings of the 12th USENIX Conference on

Networked Systems Design and Implementation, ser. NSDI’15. Berke-
ley, CA, USA: USENIX Association, 2015, pp. 309–322.

[7] H. Chen, R. H. Chiang, and V. C. Storey, “Business intelligence and
analytics: From big data to big impact.” MIS quarterly, vol. 36, no. 4,
pp. 1165–1188, 2012.

[8] TeraLab, “TeraLab Data Science for Europe,” 2016. [Online]. Available:
http://www.teralab-datascience.fr/

[9] A. Eldawy, M. F. Mokbel, S. Alharthi, A. Alzaidy, K. Tarek, and
S. Ghani, “Shahed: A mapreduce-based system for querying and visu-
alizing spatio-temporal satellite data,” in 2015 IEEE 31st International

Conference on Data Engineering, April 2015, pp. 1585–1596.
[10] C. LaChapelle, “The cost of data storage and management: where

is the it headed in 2016?” 2016. [Online]. Available: http://www.
datacenterjournal.com/cost-data-storage-management-headed-2016/

[11] Z. Li, A. Mukker, and E. Zadok, “On the importance of evaluating
storage systems’ $costs,” in 6th USENIX Workshop on Hot Topics in

Storage and File Systems (HotStorage), Philadelphia, PA, 2014.
[12] M. Athanassoulis, M. S. Kester, L. M. Maas, R. Stoica, S. Idreos,

A. Ailamaki, and M. Callaghan, “Designing access methods: The rum
conjecture,” in Intl. Conf. on Ext. Database Technology (EDBT), 2016.

[13] Y. Chen, A. Ganapathi, and R. H. Katz, “To compress or not to
compress - compute vs. io tradeoffs for mapreduce energy efficiency,”
in Proceedings of the First ACM SIGCOMM Workshop on Green

Networking, ser. Green Networking ’10, 2010, pp. 23–28.
[14] B. Welton, D. Kimpe, J. Cope, C. M. Patrick, K. Iskra, and R. Ross,

“Improving i/o forwarding throughput with data compression,” in 2011

IEEE Intl. Conference on Cluster Computing, Sept 2011, pp. 438–445.
[15] T. Bicer, J. Yin, D. Chiu, G. Agrawal, and K. Schuchardt, “Integrating

online compression to accelerate large-scale data analytics applications,”
in Parallel Distributed Processing (IPDPS), 2013 IEEE 27th Interna-
tional Symposium on, May 2013, pp. 1205–1216.

[16] M. L. Kersten, “Big data space fungus,” in CIDR 2015, Seventh Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA,

January 4-7, 2015, Online Proceedings, 2015.
[17] M. Stonebraker, R. Castro, F. Dong Deng, and M. Brodie,

“Database decay and what to do about it.” 2016. [Online]. Available:
https://goo.gl/tJNa9m

[18] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham,
R. Ross, and N. F. Samatova, “Compressing the incompressible with
isabela: In-situ reduction of spatio-temporal data,” in European Confer-
ence on Parallel Processing. Springer, 2011, pp. 366–379.

[19] E. R. Schendel, Y. Jin, N. Shah, J. Chen, C.-S. Chang, S.-H. Ku,
S. Ethier, S. Klasky, R. Latham, R. Ross et al., “Isobar preconditioner
for effective and high-throughput lossless data compression,” in IEEE

28th Intl. Conference on Data Engineering, 2012, pp. 138–149.
[20] J. Jenkins, I. Arkatkar, S. Lakshminarasimhan, D. A. Boyuka II, E. R.

Schendel, N. Shah, S. Ethier, C.-S. Chang, J. Chen, H. Kolla et al.,
“Alacrity: Analytics-driven lossless data compression for rapid in-situ
indexing, storing, and querying,” in Transactions on Large-Scale Data-
and Knowledge-Centered Systems X. Springer, 2013, pp. 95–114.

[21] E. Soroush and M. Balazinska, “Time travel in a scientific array
database,” in Data Engineering (ICDE), 2013 IEEE 29th International

Conference on. IEEE, 2013, pp. 98–109.

[22] A. Gupta and R. K. Jha, “A survey of 5g network: Architecture and
emerging technologies,” IEEE Access, vol. 3, pp. 1206–1232, 2015.

[23] F. Zhu, C. Luo, M. Yuan, Y. Zhu, Z. Zhang, T. Gu, K. Deng, W. Rao,
and J. Zeng, “City-scale localization with telco big data,” in Proceedings

of the 25th ACM International on Conference on Information and
Knowledge Management, ser. CIKM. New York, NY, USA: ACM,
2016, pp. 439–448.

[24] C. Shannon, “A mathematical theory of communication, bell system
technical journal 27: 379-423 and 623–656,” Mathematical Reviews

(MathSciNet): MR10, 133e, 1948.
[25] “Gzip.” [Online]. Available: http://gzip.org/
[26] J. Ziv and A. Lempel, “A universal algorithm for sequential data

compression,” IEEE Trans. Inf. Theor., vol. 23, no. 3, pp. 337–343, Sep.
2006.

[27] “7z.” [Online]. Available: http://7-zip.org/
[28] “Snappy.” [Online]. Available: http://google.github.io/snappy/
[29] “Zstd.” [Online]. Available: https://github.com/facebook/zstd
[30] A. Eldawy and M. F. Mokbel, “SpatialHadoop: A MapReduce Frame-

work for Spatial Data,” in 31st IEEE International Conference on Data
Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, 2015,
pp. 1352–1363.

[31] “Apache Spark.” [Online]. Available: http://spark.apache.org/
[32] “Apache Hive.” [Online]. Available: http://hadoop.apache.org/
[33] L. Sweeney, “K-anonymity: A model for protecting privacy,” Int. J.

Uncertain. Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 557–570,
Oct. 2002.

[34] “Arx data anonymization tool.” [Online]. Available: http:
//arx.deidentifier.org/

[35] L. Braun, T. Etter, G. Gasparis, M. Kaufmann, D. Kossmann, D. Widmer,
A. Avitzur, A. Iliopoulos, E. Levy, and N. Liang, “Analytics in motion:
High performance event-processing and real-time analytics in the same
database,” in Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, ser. SIGMOD. New York, NY,
USA: ACM, 2015, pp. 251–264.

[36] E. Bouillet, R. Kothari, V. Kumar, L. Mignet, S. Nathan, A. Ran-
ganathan, D. S. Turaga, O. Udrea, and O. Verscheure, “Processing 6
billion cdrs/day: From research to production (experience report),” in
Proceedings of the 6th ACM Intl. Conference on Distributed Event-Based

Systems, ser. DEBS, 2012, pp. 264–267.
[37] M. A. Abbasoğlu, B. Gedik, and H. Ferhatosmanoğlu, “Aggregate profile

clustering for telco analytics,” Proc. VLDB Endow., vol. 6, no. 12, pp.
1234–1237, Aug. 2013.

[38] C. Luo, J. Zeng, M. Yuan, W. Dai, and Q. Yang, “Telco user activity level
prediction with massive mobile broadband data,” ACM Trans. Intell. Syst.
Technol., vol. 7, no. 4, pp. 63:1–63:30, May 2016.

[39] Q. Ho, W. Lin, E. Shaham, S. Krishnaswamy, T. A. Dang, J. Wang,
I. C. Zhongyan, and A. She-Nash, “A distributed graph algorithm for
discovering unique behavioral groups from large-scale telco data,” in
Proceedings of the 25th ACM International on Conference on Informa-

tion and Knowledge Management, ser. CIKM. New York, NY, USA:
ACM, 2016, pp. 1353–1362.

[40] X. Hu, M. Yuan, J. Yao, Y. Deng, L. Chen, Q. Yang, H. Guan, and
J. Zeng, “Differential privacy in telco big data platform,” Proc. VLDB

Endow., vol. 8, no. 12, pp. 1692–1703, Aug. 2015.
[41] T. Bicer, J. Yin, D. Chiu, G. Agrawal, and K. Schuchardt, “Integrating

online compression to accelerate large-scale data analytics applications,”
in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th Inter-

national Symposium on. IEEE, 2013, pp. 1205–1216.
[42] H. Yan, S. Ding, and T. Suel, “Inverted index compression and query

processing with optimized document ordering,” in Proceedings of the

18th intl. conference on World wide web. ACM, 2009, pp. 401–410.
[43] M. Burtscher and P. Ratanaworabhan, “Fpc: A high-speed compressor

for double-precision floating-point data,” IEEE Transactions on Com-

puters, vol. 58, no. 1, pp. 18–31, 2009.
[44] F. Douglis and A. Iyengar, “Application-specific delta-encoding via re-

semblance detection.” in USENIX Annual Technical Conference, General

Track, 2003, pp. 113–126.
[45] L. L. You, K. T. Pollack, D. D. Long, and K. Gopinath, “Presidio: a

framework for efficient archival data storage,” ACM Transactions on
Storage (TOS), vol. 7, no. 2, p. 6, 2011.

[46] S. Bhattacherjee, A. Chavan, S. Huang, A. Deshpande, and
A. Parameswaran, “Principles of dataset versioning: Exploring the recre-
ation/storage tradeoff,” Proceedings of the VLDB Endowment, vol. 8,
no. 12, pp. 1346–1357, 2015.

