
Distributed In-Memory Processing of

All k Nearest Neighbor Queries (Extended Abstract)

Georgios Chatzimilioudis∗, Constantinos Costa∗, Demetrios Zeinalipour-Yazti∗,

Wang-Chien Lee† and Evaggelia Pitoura‡

∗ University of Cyprus, 1678 Nicosia, Cyprus
† Pennsylvania State University, PA 16802, USA
‡ University of Ioannina, 45110 Ioannina, Greece

Abstract—A wide spectrum of Internet-scale mobile appli-
cations, ranging from social networking, gaming and enter-
tainment to emergency response and crisis management, all
require efficient and scalable All k Nearest Neighbor (AkNN)
computations over millions of moving objects every few seconds
to be operational. In this paper we present Spitfire, a distributed
algorithm that provides a scalable and high-performance AkNN
processing framework to our award-winning geo-social network
named Rayzit. The proposed algorithm deploys a fast load-
balanced partitioning along with an efficient replication-set se-
lection, to provide fast main-memory computations of the exact
AkNN results in a batch-oriented manner. We evaluate, both
analytically and experimentally, how the pruning efficiency of the
Spitfire algorithm plays a pivotal role in reducing communication
and response time up to an order of magnitude, compared to
three state-of-the-art distributed AkNN algorithms executed in
distributed main-memory.

I. INTRODUCTION

In the age of smart urban and mobile environments, the
mobile crowd generates and consumes massive amounts of
heterogeneous data. Such streaming data may offer a wide
spectrum of enhanced science and services, ranging from
mobile gaming and entertainment, social networking, to emer-
gency and crisis management services [3]. One useful query
for the aforementioned services is the All kNN (AkNN) query:
finding the k nearest neighbors for all moving objects.

Formally, the kNN of an object o from some dataset O,
denoted as kNN(o,O), are the k objects that have the most
similar attributes to o. Specifically, given objects oa 6=ob 6=oc,
∀ob ∈ kNN(oa, O) and ∀oc ∈ O−kNN(oa, O) it always
holds that dist(oa, ob)≤dist(oa, oc)

1. An All kNN (AkNN) query
generates a kNN graph. It computes the kNN(o,O) result for
every o ∈ O and has a quadratic worst-case bound. An AkNN
query can alternatively be viewed as a kNN Self-Join: Given a
dataset O and an integer k, the kNN Self-Join of O combines
each object oa ∈ O with its k nearest neighbors from O, i.e.,
O⊲⊳kNNO = {(oa, ob)|oa, ob ∈ O and ob ∈ kNN(oa, O)}.

A real-world application based on such a query is
Rayzit [3]2, our award-winning crowd messaging architecture,
that connects users instantly to their k Nearest Neighbors
(kNN) as they move in space (Figure 1, left). The dynamic
AkNN network in Rayzit allows the propagation of microblog
messages to the closest neighbors of a user. Similar to other so-
cial network applications (e.g., Twitter, Facebook), scalability

1In our discussion, dist can be any Lp-norm distance metric, such as
Manhattan (L1), Euclidean (L2) or Chebyshev (L∞).

2Rayzit: http://rayzit.com/

Oi

Adj� EC�

o�

o�

A� on s�

Oj

B� (∀b∈A�) EC��

A� on s�

[A�: Sub-Area | s�: Server | O�: Object Subset]

b

Fig. 1. (Left) Our Rayzit crowd messenger enabling users to interact
with their k geographic Nearest Neighbors. (Right) Distributed main-memory
AkNN computation in Rayzit is enabled through the Spitfire algorithm, which
is a batch-oriented algorithm working in three steps.

is key in making Rayzit functional and operational. Therefore
we are challenged with the necessity to perform a fast com-
putation of an AkNN query every few seconds in a scalable
architecture. The wide availability of off-the-shelf, shared-
nothing, cloud infrastructures brings a natural framework to
cope with scalability, fault-tolerance and performance issues
faced in processing AkNN queries. Only recently researchers
have proposed algorithms for optimizing AkNN queries in such
infrastructures.

The state-of-the-art AkNN algorithm for the cloud envi-
ronment [4] consists of three phases, namely partitioning the
geographic area into sub-areas, computing the kNN candidates
for each sub-area that need to be replicated among servers in
order to guarantee correctness and finally, computing locally
the global AkNN for the objects within each sub-area taking
the candidates into consideration. The given algorithm has
been designed with an offline (i.e., analytic-oriented) AkNN
processing scenario in mind, as opposed to an online (i.e.,
operational-oriented) AkNN processing scenario we aim for in
this work. The performance of [4] can be greatly improved, by
introducing an optimized partitioning and replication strategy.
These improvements, theoretically and experimentally shown
to be superior, are critical in dramatically reducing the AkNN
query processing cost yielding results within in a few seconds,
as opposed to minutes, for million-scale object scenarios.

II. THE SPITFIRE ALGORITHM

In [1], we devise a high-performance distributed main-
memory algorithm named Spitfire. The name Spitfire is derived
by a syllable play using the meaning of these three steps,

namely Split, Refine replicate, which implies good mechanical
performance. Below we outline its three internal steps and its
intrinsic characteristics.

Step 1 (Partitioning): Initially, O is partitioned into (disjoint)
sub-areas with an approximately equal number of objects, i.e.,
O =

⋃
1≤i≤m Oi. We use a simple but fast centralized hash-

based adaptation of equi-depth histograms to achieve good load
balancing in O(n+

√
nm) time, where n denotes the number of

objects. It first hashes the objects based on their locations into
a number of sorted equi-width buckets on each axis and then
partitions each axis sequentially by grouping these buckets
in an equi-depth fashion. Figure 1 (right) shows one such
partitition, where each Oi belongs to area Ai handled by server
si, Bi denotes the border segments surrounding Ai (i.e., right-
dashed area outside Oi), and Adji the adjacent servers to si
(i.e., gray area). Its important to notice that the partitioning
step guarantees that each si will have at least k objects.

Step 2 (Replication): Subsequently, each si computes a subset
of Oi, coined External Candidates ECji, which is possibly
needed by its neighboring sj for carrying out a local AkNN
computation in Step 3 (refinement). The given set ECji is
transmitted by si to sj (i.e., left-dashed area within Oi, as
depicted again in Figure 1 (right)). Since each sj applies the
above operation as well, we also have the notion of ECij .
The union of ECij for all neighboring sj ∈ Adji defines the
External Candidates of Oi, i.e., ECi =

⋃
1≤j≤Adji

ECij . The
cardinality of all ECi defines the Spitfire replication factor.

Step 3 (Refinement): Finally, each si performs a local
Oi ⊲⊳kNN (Oi ∪ ECi) computation, which is optimized by
using a heap structure along with internal geographic grouping
and bulk processing.

Spitfire’s main advantages to prior work follow are as fol-
lows: i) it is suitable for online operational AkNN workloads
as opposed to offline analytic AkNN workloads. Particularly,
it is able to compute the AkNN result-set every few seconds
as opposed to minutes required by state-of-the-art AkNN
algorithms configured in main-memory; ii) it uses a pruning
strategy that achieves replication factor fSpitfire, which is shown
analytically and experimentally to be always better than that
achieved by state-of-the-art AkNN algorithms; and iii) it is a
single round algorithm as opposed to state-of-the-art AkNN
algorithms that require multiple rounds.

III. EXPERIMENTAL EVALUATION

To validate our proposed ideas and evaluate Spitfire, we
conduct a comprehensive set of experiments over our VCenter
IaaS cloud. For our experiments, we use 9 Ubuntu 12.04 server
images (i.e., denoted earlier as si), each featuring 8GB of
RAM with 2 virtual CPUs (@ 2.40GHz).

Methodology: We use four datasets scaling up to 1M objects:
Random (synthetic), Oldenburg (realistic), Geolife (realistic)
and Rayzit (real). We compare one centralized (Proximity [2])
and four Hadoop-oriented algorithms, namely H-BNLJ [5], H-
BRJ [5] and PGBJ [4]. Given that Hadoop transfers interme-
diate results between tasks through a disk-oriented Hadoop
Distributed File System (HDFS), we deploy UC Berkeley’s
Tachyon in-memory file system to enable memory-oriented
data-sharing across MapReduce jobs. Our metrics are i) Re-
sponse Time, which represents the actual time required by

 1

 10

 100

 1000

 10000

 100000

10
4

10
5

10
6R

e
s
p

o
n

s
e

 t
im

e
 i
n

 l
o

g
-s

c
a

le
 (

s
e

c
)

Number of online users (n)

OLDENBURG: Total Computation for varying number of users
(k=64, m=9)

Proximity
H-BNLJ

H-BRJ
PGBJ

Spitfire

O
u

t
O

f
M

e
m

o
ry

O
u

t
O

f
M

e
m

o
ry

O
u

t
O

f
M

e
m

o
ry

 1

 3

 5

 7

 9

 11

10
4

10
5

10
6

R
e

p
li
c
a

ti
o

n
 f

a
c
to

r
(f

)

Number of Users (n)

OLDENBURG: Replication factor for varying number of users
(k=64, m=9)

H-BNLJ
H-BRJ
PGBJ

Spitfire

Fig. 2. (Left) AkNN query response time with increasing number of users.
(Right) Replication factor f with increasing number of users. The optimal
value for f is 1, signifying no replication between workers.

a distributed AkNN algorithm to compute its result; and ii)
Replication Factor (f), which represents the number of times
the n objects are replicated between servers to guarantee
correctness of the AkNN computation. Below we present an
indicative result for the above algorithms with an emphasis on
the Oldenburg dataset.

Results: In Figure 2 (left), we increase the workload of the
system by growing the number of online users (n) exponen-
tially and measure the response time and replication factor
of the algorithms under evaluation. We can clearly see that
Spitfire outperforms all other algorithms in every case. It is
also evident that H-BNLJ and H-BRJ do not scale. H-BRJ
achieves the worst time for 106 users. Our analysis shows that
H-BRJ’s response time is spent on communication, which is
indicated by its communication complexity of O(

√
mn).

For 104 online users, Spitfire outperforms all algorithms
by at least 85% for all dataset, whereas for 105 Spitfire
outperforms PGBJ, by 75%, 75% and 53% for the Ran-
dom, Oldenburg and Geolife datasets, respectively. Spitfire and
PGBJ are the only algorithms that scale. For a million online
users (n=106), Spitfire and PGBJ are the fastest algorithms,
but Spitfire still outperforms PGBJ by 67%, 75%, 14% for the
Random, Oldenburg and Geolife datasets, respectively.

Figure 2 (right) shows the replication factor for the dis-
tributed algorithms. It is noteworthy that the replication factor
fSpitfire of Spitfire is always close to the optimal value 1. Spitfire
only selects a very small candidate set around the border of
each server and that provides it with a better performance than
PGBJ.

REFERENCES

[1] G. Chatzimilioudis, C. Costa, D. Zeinalipour-Yazti, W.-C. Lee, and
E. Pitoura. Distributed in-memory processing of all k nearest neighbor
queries. Knowledge and Data Engineering, IEEE Transactions on,
x(x):x–x, 2016.

[2] G. Chatzimilioudis, D. Zeinalipour-Yazti, W.-C. Lee, and M. Dikaiakos.
Continuous all k-nearest-neighbor querying in smartphone networks.
In Mobile Data Management (MDM), 2012 IEEE 13th International

Conference on, pages 79–88, July 2012.

[3] C. Costa, C. Anastasiou, G. Chatzimilioudis, and D. Zeinalipour-Yazti.
Rayzit: An anonymous and dynamic crowd messaging architecture.
In Mobile Data Management (MDM), 2015 16th IEEE International

Conference on, volume 2, pages 98–103, June 2015.

[4] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient processing of k nearest
neighbor joins using mapreduce. Proc. VLDB Endow., 5(10):1016–1027,
June 2012.

[5] C. Zhang, F. Li, and J. Jestes. Efficient parallel knn joins for large data
in mapreduce. In Proceedings of the 15th International Conference on

Extending Database Technology, EDBT ’12, pages 38–49, New York,
NY, USA, 2012. ACM.

