
SmartTrace: Finding Similar Trajectories in

Smartphone Networks without Disclosing the Traces

Costandinos Costa∗, Christos Laoudias∗, Demetrios Zeinalipour-Yazti∗ and Dimitrios Gunopulos‡

∗ University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
‡ University of Athens, 15784 Athens, Greece

cs07cc6@cs.ucy.ac.cy, laoudias@ucy.ac.cy, dzeina@cs.ucy.ac.cy, dg@di.uoa.gr

Abstract—In this demonstration paper, we present a powerful
distributed framework for finding similar trajectories in a smart-
phone network, without disclosing the traces of participating
users. Our framework, exploits opportunistic and participatory
sensing in order to quickly answer queries of the form: “Report
objects (i.e., trajectories) that follow a similar spatio-temporal
motion to Q, where Q is some query trajectory.” SmartTrace,
relies on an in-situ data storage model, where geo-location data
is recorded locally on smartphones for both performance and
privacy reasons. SmartTrace then deploys an efficient top-K
query processing algorithm that exploits distributed trajectory
similarity measures, resilient to spatial and temporal noise, in
order to derive the most relevant answers to Q quickly and
efficiently. Our demonstration shows how the SmartTrace algo-
rithmics are ported on a network of Android-based smartphone
devices with impressive query response times.

To demonstrate the capabilities of SmartTrace during the
conference, we will allow the attendees to query local smartphone
networks in the following two modes: i) Interactive Mode, where
devices will be handed out to participants aiming to identify
who is moving similar to the querying node; and ii) Trace-
driven Mode, where a large-scale deployment can be launched
in order to show how the K most similar trajectories can be
identified quickly and efficiently. The conference attendees will
be able to appreciate how interesting spatio-temporal search
applications can be implemented efficiently (for performance
reasons) and without disclosing the complete user traces to the
query processor (for privacy reasons)1. For instance, an attendee
might be able to determine other attendees that have participated
in common sessions, in order to initiate new discussions and
collaborations, without knowing their trajectory or revealing
his/her own trajectory either.

I. INTRODUCTION

The widespread deployment of smartphone devices featur-

ing geo-location (e.g., AGPS, Cell tower and WLAN position-

ing) and other sensing capabilities (e.g., proximity, ambient

light, accelerometer, camera, microphone, etc.) along with

Internet connectivity through WLAN, WCDMA/UMTS(3G),

HSPA(3.5G) and LTE/WiMAX(4G) networks, have brought

a revolution in location-oriented mobile applications and ser-

vices. IMS Research and Comscore reported over 225M smart-

phone sales in February 2010 (i.e., RIM, Apple, Microsoft,

Google and Palm) and according to the Focal Point Group,

handheld smart devices (including mobile phones and PDAs)

1Video Presentation available at the following URL:
http://www.cs.ucy.ac.cy/∼dzeina/smarttrace/

could number 1 billion in 2010. We define a Smartphone

Network as “a set of smartphone devices that communicate

in an unobtrusive manner, without explicit user interactions,

in order to realize a collaborative or social task.”

There is already a proliferation of innovative applications

founded on smartphone networks. One example is opportunis-

tic and participatory sensing [6], [1], [3], where applications

can task mobile nodes in a given region to provide infor-

mation about their vicinity using their sensing capabilities.

Another example is road traffic delay estimation [9] using

WiFi beams collected by smartphone devices rather than

invoking expensive GPS acquisition. On the social site, Google

Latitude[7] enables users to track the places they and their

social network have visited. The given service already reports

over 3M enrolled users and over 1M active users, despite

the controversial privacy concerns. Similarly, mobile social

networking applications like Foursquare, Gowalla and Loopt

enjoy enormous success in the Smartphone community and

academic efforts in this direction are also underway.

To formalize our description, let {A1, A2, · · · , Am} denote

a collection of spatiotemporal trajectories. A spatio-temporal

trajectory Ai (i ≤ m) is defined as a sequence of l multidi-

mensional tuples {a1, ..., al} where each tuple is characterized

by two spatial dimensions and one temporal dimension (i.e.

aj(xj , yj , tj), ∀j ∈ 1, .., l). Each trajectory Ai resides in

its entirety in-situ, which is cheaper and more efficient for

smartphone environments. Given a query Q, itself expressed as

a spatio-temporal trajectory, we compare each Ai to the points

of Q within some temporal and spatial window. SmartTrace,

circumvents expensive and massive similarity executions by

running an inexpensive linear-time computation on the smart-

phones in a pre-processing step. It then uses an iterative top-

K processing algorithm in order to iteratively identify the K
most similar trajectories to Q, without ever pulling the target

trajectories to the centralized query processor.

The notion of similarity captures the trajectories that differ

only slightly, in the whole sequence, from the given search

query Q. An example query might be: (e.g., “Find whether

there is a cycling route from the Metropolitan Museum of Art

in Manhattan, through central park to the Juilliard School”),

or “Find which Zebras moved more closely to Zebra named

Abby before it got injured” [8]. There are already centralized

http://www.cs.ucy.ac.cy/~dzeina/smarttrace/

trajectory search services such as GeoLife2, GPS-Waypoints3,

ShareMyRoutes4, and their academic counterparts [4], to per-

form this kind of querying. However, these services store

user’s trajectories on a centralized or cloud-like infrastructure.

On the other hand, the techniques utilized by SmartTrace

are decentralized and maintain the data in-situ (i.e., on the

smartphone that generated the data). When a query emerges,

we collect a set of scores from participating nodes (as opposed

to collecting their location continuously) and derive the answer

intelligently based on these scores only, without ever unveiling

the target trajectories to the query processor. While this cannot

take advantage of global knowledge structures available in a

centralized setting (e.g., catalogs, indexes, etc.), our setting has

numerous advantages for the environments under discussion as

explained next.

In this demonstration paper, we will start out by presenting

the high-level algorithms behind SmartTrace. We shall then

present the complexities that arise in indoor environments,

where location can not be derived by absolute means. We will

finally present our demonstration setting and plan that will

support both interactive scenarios and trace-driven scenarios.

II. BACKGROUND AND INTERNAL ALGORITHMS

A. Preliminaries

First note that the similarity query Q is initiated by some

querying node QN (or alternatively at some smartphone that

propagates its Q towards QN). QN then disseminates Q to

all active smartphone users in a pre-specified spatial boundary.

Upon receiving Q, each candidate smartphone executes locally

an inexpensive linear-time matching function. QN then col-

lects these scores and puts together a vector of upper bounds

UB = (ub1, · · · , ubm). We will refer to the UB-vector con-

structed on QN as METADATA and to the actual trajectories

stored locally on each smartphone as DATA. Obviously, DATA

is orders of magnitudes larger than METADATA, thus DATA

needs to stay on the smartphone during query resolution. Our

objective is to intelligently exploit the METADATA scores in

order to identify the K highest ranked answers without pulling

DATA to QN .

B. The SmartTrace Algorithm

The SmartTrace algorithm is a novel iterative algorithm for

retrieving the K most similar trajectories to a query trajectory

Q. Our proposed scheme performs well both with respect

to response time and energy, but also does so without ever

revealing the complete target trajectories to QN (i.e., it only

returns the matched subsequence, if any.)

Description: In step 1 of the SmartTrace algorithm, QN

instructs all m nodes to invoke the computation of the linear-

time upper-bounding function LCSS(MBEQ, Ai) (i ≤ m).

In that way it circumvents the massive deployment of the

expensive similarity function LCSS(Q,Ai) [11], presented

2GeoLife, 11/2010, http://research.microsoft.com/en-us/projects/geolife/
3GPS Waypoints, 11/2010, http://www.gps-waypoints.net
4ShareMyRoutes.com, 11/2010, http://www.sharemyroutes.com/

next, which performs local stretching in both time and space

to overcome the temporal and spatial distortions in trajectories.

In particular, each node compares its local trajectory Ai to a

bounding envelope of the query, i.e.,

LCSS(MBEQ, Ai) =

|Ai|
∑

j=1

{

1 if Ai[j] within envelope
0 otherwise

In step 2, QN retrieves all these upper bounds and adds

them in descending order to a local METADATA vector. By

doing this, QN obtains a quick summary of the trajectories

similar to Q.

Steps 3 to 5 are executed iteratively until convergence. In

particular, during step 3, QN adds the identities of the objects

with the λ+1 highest upper bounds to a set named S. These

objects provide the first line of candidates for the answer set,

as these objects have the highest LCSS(MBEQ, Ai) value.

The given objects will be analyzed more carefully in the next

step of the algorithm in order to determine the correct top-K

set. Please notice that the objects in the S-set, do not again

define the final top-K result. In particular, it is absolutely

possible that some arbitrary object in the S-set with a high

LCSS(MBEQ, Ai) score has a low full score LCSS(Q,Ai).
Consequently, the algorithm can still not converge with the

desired result.

The λ parameter, mentioned previously, expresses an

application-specific confidence in the METADATA bounds. In

particular, when the METADATA vector contains tight bounds,

then λ might be set to a small value. So this parameter defines

how aggressively some application wants to determine the top-

K results. It can be proven that SmartTrace will not perform

more than O(m/λ) iterations in the worst case.

In step 4, QN asks each smartphone in the S-set, to compute

the full scores (if a smartphone has been contacted in a

previous iteration we do not contact it again). In particular,

we ask each smartphone to locally compute FullM(Q,Ai),
where Ai is stored locally, and only transmit the value of

FullM(Q,Ai) towards QN (i.e., the decentralized way).

Alternatively, we could have also fetched the S-set to the

sink and then compute FullM(Q,Ai) ∀Ai ∈ S (i.e., the

centralized way), however this would violate both the trace

disclosure factor and also degrade the response time of the

algorithm to a level comparable to the centralized algorithm.

Notice that the fourth step of the algorithm applies only to the

elements in the S-set, as opposed to all m elements so this

is really much cheaper in terms of energy consumed on the

smartphone as |S| << m.

In our case, FullM(Q,Ai) is the LCSS similarity, which

has been extensively used in many 1-D sequence problems,

such as string matching. The 2-dimensional adaptation of

LCSS using the L∞

5 is defined as following:

Definition: Given integers δ and ǫ, the Longest Common Sub-

Sequence similarity LCSSδ,ǫ(A,B) between two sequences A

and B is defined as:

5We could also use L1 or L2 for the recursion step.

LCSSδ,ǫ(A,B) =

0, if A or B is empty

1+ LCSSδ,ǫ(Tail(A),Tail(B))

if |ax:l1 − bx:l2 | < ǫ and

|ay:l1 − by:l2 | < ǫ and |l1 − l2| < δ

max(LCSSδ,ǫ(Tail(A),B),LCSSδ,ǫ(A,Tail(B)))

otherwise

where δ and ǫ are application-specific parameters that allow

flexible matching in the time (e.g., if we have two identical

trajectories, but the first one moves earlier in time) and the

space (e.g., we have two identical trajectories but the first

has some slight deviation in its spatial movement) domain,

respectively. LCSS deals with both aforementioned limitations

of the Lp-Norm family of distances, because these cases

are simply dropped from the matching without skewing the

measure.

In step 5, we determine whether the algorithm has reached

a termination condition. In particular, we check if the (λ+1)-

th highest UB is smaller than the K-th highest full matching

value. If this is the case, then we can safely terminate the

execution of the algorithm being sure that the correct top-K

has been identified. If this condition does not hold (i.e., when

the UB of an object X is larger than the K-th highest full

matching value Y), then we are enforced to perform another

iteration as the answer is not deterministic (i.e., either X or Y
can be the K-th answer). Consequently, we increase the step

increment λ so that it identifies the next λ candidates in the

next round.

In the final step, which occurs only once at the very end, we

might ship each matched subsequence Amatch
i (|Amatch

i | <<
|Ai|) to QN , which can then return it to the user. Notice,

that identified nodes si (i ≤ K) might choose not to share

the matching or share it based on some local trace disclosure

profile [5], in order to preserve k-anonymity and other higher

anonymity schemes. In any case, neither QN nor the querying

user will ever see the complete trajectory of participating users.

III. SMARTTRACE IN INDOOR ENVIRONMENTS

In this section we show how our algorithm can operate in an

indoor environment and in the absence of absolute positioning

techniques, such as GPS. In particular, we show how the

SmartTrace algorithm can exploit location-related information,

such as signals emitted by WiFi access points, in order to

conduct the similarity search.

A. Overview

It is well known that satellite signals, used by GPS receivers,

are severely attenuated or blocked inside buildings, thus failing

to provide accurate location information. Yet, the massive

availability of smartphone devices in conjunction with the

fact that human spend over 90% of their time in indoor

environments has revitalized the interest in indoor location-

aware applications (e.g., applications for company premises,

shopping malls, libraries, hospitals, homes, etc.)

-4

-2

 0

 2

 4

 6

 8

 10

-5 0 5 10 15 20

Y
-a

xi
s

(m
et

er
s)

X-axis (meters)

Prototype Deployment of SmartTrace with RSS Trajectories
 (Area= 20m x 28m, K=2, AP= WiFi Access Point)

(((AP))) (((AP)))

(((AP)))
Q

T1

T2

T3

T4

Fig. 1. Real Deployment of SmartTrace Indoors at the KIOS Research
Center.

Notice that built-in Cell Tower or WLAN positioning tech-

niques for smartphones, cannot provide an accuracy good

enough for computing trajectory similarities for indoor envi-

ronments. For instance, the “My Location” service by Google,

can only provide accuracies of about 200m while Cell Tower

Positioning provides accuracies of several thousand meters.

Thus, both techniques can not cope with indoor spaces we

consider in this section.

A spatio-temporal trajectory Ai (i ≤ m), denoted

as RSS Trajectory, is a sequence of l multidimen-

sional tuples {a1, ..., al}. Each tuple is characterized by

n spatial dimensions and one temporal dimension, i.e.

aj(tj , , S
1

j , S
2

j , . . . , S
n
j), j ≤ l, where tj denotes the times-

tamp on which the record was generated and Sk
j (k ≤ n, j ≤

l) the RSS value from the k-th Access Point (AP), measured

by Ai at tj . Using the above model, the similarity between

two queries can now be computed using the LCSS metrics on

individual attributes and combining them linearly.

We have conducted an example validation experiment in

an area that is roughly 28m x 20m containing office rooms,

open plan workstations and meeting rooms connected with

corridors. In the above scenario we have conducted a top-2

query for one of the five (5) trajectories (See Figure 1). The

trajectories T2 and T3 were correctly identified as the top-2

answers to the above query.

IV. ANDROID IMPLEMENTATION

We have developed a prototype system that realizes the

SmartTrace framework (see Figure 2). Our client-side software

is developed around the Google Map API and its installation

package (i.e., APK) has a size of 510KB. Our code is written

in JAVA and consists of approximately 4,500 lines-of-code

(LOC). In particular, our server-code uses ∼1,500 LOC and

runs over JDK 6 and Ubuntu Linux, our smartphone-code

uses ∼2,500 LOC plus ∼250 lines of XML elements. The

client-code runs over the Dalvik VM. In the future we plan

to take the computationally-intensive and IO-intensive tasks

outside the VM by implementing them in native (C) code

using the Android NDK. The SmartTrace GUI allows a user to

query other devices by example, plot and iterate through the

responses using a variety of presentation functions, as well

as to configure a wide range of parameters, such as K. Our

prototype finally enables a user to switch between Offline and

Online Mode, offering in that way the possibility to simulate

movement (i.e., the trajectory file can be stored on the flash

media as opposed to be collected in real time). The given

setting helps with playing back recorded scenarios.

V. DEMONSTRATION SETTINGS

A. Equipment

For the actual demo at the conference we will use 5

HTC Desire smartphone devices running Android 2.1 (Eclair).

These devices are equipped with a Qualcomm Snapdragon

QSD 8250 1 GHz processor and provide 512 MB of Flash

ROM as well as 512 MB of RAM. Although our Desire

devices feature multi-homing capabilities and support Quad-

band GSM/GPRS/EDGE as well as Bluetooth 2.0, we will

utilize its built-in 802.11 b/g Wi-Fi connection to connect

to the SmartTrace server. In the trace-driven demonstration

mode, all trajectories will be logged on the 512MB on-board

flash ROM for performance reasons. Alternatively, we can

also utilize the 4GB external microSD memory card but at

a performance penalty.

Our base station is a standard Macbook Pro running Mac

OS X 10.6. The given laptop will connect to the HTC Desire

devices through the available Wi-Fi hotspot. We will use a

projector along with an a smartphone display export utility to

present the interactions on a smartphone directly on a wall (so

that attendees will be able to follow the interactions).

B. Demo Plan

Interactive Mode: At the conference site, and prior to our

demonstration, we will hand out 10 smartphone devices to

selected participants (after providing identification details).

These participants will then be asked to start moving around

for a few minutes, indoors and/or outdoors, by enabling the

“Online”-mode, supported from within the user interface of

SmartTrace (see 2, left). This mode will log the user’s spatio-

temporal trajectory to the flash card. Two arbitrary users X
and Y will be asked to walk within proximity during the

largest interval of their walk. At the end of this interval we

will ask X to connect its device, through USB, to a laptop

that will project X’s screen on a projector. We will then

conduct a top-1 query through X. This execution should reveal

the trajectory of the Y user. The result will show up on an

interactive Google-maps interface, so that user X can compare

the returned subsequence to its query trajectory (see Figure 2,

right). Our tests have shown that such an action is taking only

a few seconds, even for large trajectories, so we expect this

feature to be of particular interest.

Trace-driven Mode, In this mode, we will allow attendees to

select among a number of available traces (e.g., GeoLife [12]

and Oldenburg [2]). Based on these datasets, we will sample

out one query trajectory Q, and add interpolated peaks of

Gaussian noise, in order to create variations in the pattern

of Q. We will then show how the SmartTrace framework is

Fig. 2. Screenshots of the SmartTrace demonstration system Left: The
configuration panel on the Android-based smartphone client; Middle: A Query
Response Message; Right: The matched trajectory displayed using Google
Maps.

able to identify the K most similar trajectories to Q quickly

and efficiently.

Through our demo, the conference attendees will be able to

appreciate how interesting spatio-temporal search applications

can be implemented efficiently (for performance reasons) and

without disclosing the user traces to the query processor

(for privacy reasons). For instance, an attendee might be

able to determine other attendees that have participated in

common sessions, in order to initiate new discussions and

collaborations.

Acknowledgments: This work was supported in part the

third author’s Startup Grant, funded by the University of

Cyprus between 2010-2011, EU’s FP6 Marie Curie TOK

“SEARCHiN” project, EU’s FP7 “CONET” project and EU’s

FP7 “SemSorGrid4Env” and “MODAP” projects.

REFERENCES

[1] Azizyan M., Constandache I., Choudhury R.-R., “SurroundSense:
mobile phone localization via ambience fingerprinting,” In MobiCom,
2009.

[2] Brinkhoff T. : “A Framework for Generating Network-Based Moving
Objects”, GeoInformatica 6(2): 153-180 (2002)

[3] Campbell A., Eisenman S., Lane N., Miluzzo E., and Peterson R.,
“People-centric urban sensing,” In WICON, 2006.

[4] Chen Z., Shen H-T., Zhou X., Zheng Y., Xie X. “Searching trajectories
by locations: an efficiency study,” In SIGMOD, 2010.

[5] Chow C-Y., Mokbel M.F., Aref W.G., “Casper*: Query Processing
for Location Services without Compromising Privacy” In ACM TODS
34(4), pp. 1-48, 2009.

[6] Das T., Mohan P., Padmanabhan V.N., Ramjee R., Sharma A., “PRISM:
platform for remote sensing using smartphones,” In MobiSys, 2010.

[7] Google Latitude, 11/2010, http://www.google.com/latitude
[8] Liu T., Sadler C.M., Zhang P., Martonosi M., “Implementing Software

on Resource-Constrained Mobile Sensors: Experiences with Impala and
ZebraNet,” In MobiSys, 2004.

[9] Thiagarajan A., Ravindranath L., LaCurts K., Madden S., Balakrishnan
H., Toledo S., Eriksson J., “VTrack: Accurate, Energy-aware Road
Traffic Delay Estimation using Mobile Phones,” In SenSys, 2009.

[10] Vlachos M., Hadjieleftheriou M., Gunopulos D., Keogh E., “Index-
ing multi-dimensional time-series with support for multiple distance
measures” In SIGKDD, 2003.

[11] Zeinalipour-Yazti D., Lin S., Gunopulos D., “Distributed Spatio-
Temporal Similarity Search” In CIKM, 2006.

[12] Zheng Y., Liu L., Wang L., Xie X., “Learning transportation mode
from raw gps data for geographic applications on the web,” In WWW,
2008.

