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SUMMARY 
The early suppression of fires on ro-ro vessels requires rapid fire identification as a fire of medium growth exponentially reaches 50kW 
after only 1 minute. Fire patrol members (e.g., able seamen) are asked to act as first responders in such fire incident cases. They do 
however lack the necessary digital technology for immediate localization, verification and coordination with the bridge and other first 
responders. Indoor localization requires dense referencing systems (such as Wi-Fi, UWB, Bluetooth antennas), but these technologies 
require expensive installations and maintenance. Also, Satellite-based indoor localization is obstructed by the bulky steel structures of 
vessels, so this doesn’t work either. Within the LASH FIRE project, an H2020 funded project (Grant Agreement #814975) in which 
this publication is framed, research has been carried out to develop a ground-breaking localization technology that requires zero 
infrastructure using computer vision on commodity smartphone devices attached to the gear of first responders. The developed solution 
comprises of three steps: (i) Training, where vessel owners supply video recordings that are processed on a deep learning data center to 
produce an accurate computer vision machine learning model; (ii) Logging, where a mobile app allows referencing non-movable objects 
to the (x,y,deck) coordinates of a vessel; and (iii) Localization, where first responders localize on a digital map. Additionally, in case a 
sparse communication network is available, first responders can share their location, emergency messages and heat scan images with 
nearby first responders and the bridge. Our proposed technology is shown to be 80% and 90% accurate for localization and tracking 
scenarios, respectively, in a study we carried out with video traces from a real ro-ro vessel. The overall developed Smart Alert System 
(SMAS), streamlines the lengthy fire verification, coordination, and reaction process in the early stages of a fire, improving fire safety.  
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1. INTRODUCTION 
 
The early suppression of fires on ro-ro vessels requires 
rapid fire identification as a fire of medium growth 
exponentially reaches 50kW after only 1 minute. Fire 
patrol members (e.g., able seamen) are asked to act as first 
responders in such fire incident cases. Even though a 
variety of effective technologies are currently in 
deployment (e.g., VHF/UHF communication, push 
alarms, checkpoint RFID readers, heat scanners, fixed 
telephony, and temperature dashboards with drencher 
knobs at the bridge), a unified digital tool for immediate 
local localization but also verification and coordination 
with the bridge and other first responders is not available.  
 
LASH FIRE is an international EU-funded research 
project aiming to significantly reduce the risk of fires on 
board ro-ro ships. A particular focus in the project is the 
development and validation of smart technical solutions 
for quick first response and effective fighting of fires in 
their initial stage. One challenging task was the 
development of an innovative geo-positioning technology 
(i.e., longitude, latitude, and deck with area level 
accuracy). To this end, we develope and demonstrate a 
ground-breaking localization system that requires zero 
infrastructure, reducing costs and maintenance. Our 
solution uses static visual elements of vessel spaces as 
reference points that can be recognized by commodity 
smartphone cameras (e.g., deck patterns, bulkhead 
patterns, hoses, fixed installations, signs, control buttons). 
The spatial location of vessel objects is collected as a one-
off process and can then be utilized by any first responder.  
 
Our localization subsystem does not require any sort of 
communication infrastructure, as the localization function 
is executed on the smartphone device with offline data and 
is, as such, considered a zero-infrastructure solution. 

   
Figure 1: Fire patrol members (e.g., able seamen) are asked to 
act as first responders in fire incidents. We develop the Smart 
Alert System (SMAS) for smartphones that introduces a zero-
infrastructure localization system using Computer Vision (CV). 
 
Our proposed localization system relies on three stages: 
 
• Training: vessel owners supply video recordings of 

vessel interior spaces that are consumed by a deep 
learning computing server that learns to recognize 
static vessel objects. This process is carried out once 
per vessel type (or vessel family, in case of vessels 
with similar objects); 

• Logging: technology providers or vessel owners walk 
around the vessel collecting objects and associating 
them with locations (i.e., by long-pressing on a map), 
yielding a Fingerprint DataBase (FDB). Logging is 
carried out once per unique vessel; and 

• Localization: The first responders utilize a 
smartphone application that uses FDB to find their 
location when necessary. 
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In the context of this work, we present our zero-
infrastructure localization algorithm, named Surface, 
whose aim is to provide area-level localization (i.e., within 
10 meters). The name is inspired by the literal meaning of 
the word, namely our aim is to uncover “the continuous 
set of objects that have length and breadth but no 
thickness” and organize those objects together with their 
spatial coordinates (x,y,deck) in a database we name 
Fingerprint Database (FDB). When a user (u) aims to 
localize, u queries in a transparent manner through a 
mobile app the set of objects currently stored in FDB 
retrieving the (x,y,deck) of the highest-ranked result.  
 
Our Surface algorithm uses a combination of Global and 
Local pruning strategies, where the Surface Global (SG) 
algorithm is responsible to find a location from the 
complete FDB, while the Surface Local (SL) algorithm is 
responsible to find the next location from FDB based on 
the prior (x,y,deck). The latter is used for tracking 
scenarios, where a continuous location over time is 
necessary. Realizing the SG and SL algorithms in a 
scalable and portable manner requires a high performance 
embedded spatial data management environment that we 
achieved using SQLite and innovative spatial algorithms. 
 
Besides the core geo-positioning technology, our aim was 
also to develop a prototype vessel indoor location 
information system that will provide fire intelligence 
during patrol operations (for cases a sparse data 
communication network is available). For the above 
purpose, we developed a fully functional vessel 
communication software system, coined Smart Alert 
System (SMAS), which integrates our zero-infrastructure 
localization technology to a variety of subsystems (e.g., 
alert, nearest neighbor multimedia chat) allowing first 
responders to exchange messages and data (e.g., heat 
scans or images as shown in Figure 2). Although data 
communication networks might be widely available in ro-
ro spaces, dense deployment of radio antennas necessary 
to provide accurate localization will remain an open 
problem because of installation and maintenance costs. 
Surface aims to fill this gap as it requires no infrastructure. 
 
Additionally, by equipping first responders with powerful 
mobile computing devices has many benefits as it will 
allow them to increase their cyber-physical senses (i.e., 
multiple sensing devices, like heat scanner or measuring 
apps), be informed (e.g., carrying bulky manuals and maps 
in digital form), be intelligent (e.g., carrying deep learning 
neural networks that can recognize and track objects), be 
location-aware (i.e., localization, navigation and tracking 
of mobile and static assets) and be connected (with the 
bridge and other personnel, discarding possibly outdated 
communication gear). All these dimensions, packed in a 
tiny device, will increase fire safety to a new level by the 
means of state-of-the-art computer vision technology that 
has proven itself [7,8,9] and that is for the same reason 
also unobtrusive, with a low learning curve, adaptable 
through software and economically-viable for massive 
deployment.  

   
Figure 2: (left) SMAS also provides a location-aware vessel chat 
channel using the CV localization technology we develop; (right) 
integration with built-in heat scanners digitizes unnecessary gear 
and make the images available to nearby first responders.  
 
To assess the correctness and usefulness of our 
propositions, we carried out an experimental study with 
extensive video footage from a real ro-ro vessel. We use 
these for a variety of tests and experiments in the 
laboratory showing a high accuracy of 80% and 90%, 
respectively, for localization and tracking. Our study 
shows that SMAS is an extremely promising technology 
that promotes situational awareness beyond the current 
state. There is no other technology that can provide 
infrastructure-free localization on a vessel nowadays. Our 
solutions are developed with open and free technology 
having no barriers-of-entry and a low cost of operation and 
maintenance. 
 
2. RELATED WORK  
 
The core technology for localization services is the type of 
hardware enabling the localization process [1,2,3,4,5]. 
This section surveys the current state. 
 
2.1 NEW-INFRASTRUCTURE LOCALIZATION 
 
These require the deployment of additional dedicated 
equipment, including proprietary transmitters, beacons, 
antennas, and cabling, for the provision of location 
signals. Industrial solutions in this field are termed Real-
Time Locating Systems (RTLS) and current vendors 
specialize in specific markets for tracking assets using 
Active or Passive RFID, Bluetooth Low Energy (BLE 
Smart) beacons (e.g., Apple’s iBeacon, Estimote.com 
context stickers), Wi-Fi beacons (e.g., Aeroscout.com 
Active RFID Tags and Kontakt.io cloud/BLE beacon) or 
Ultra-Wide-Band (UWB) chips (e.g., DecaWave.com 
UWB transceiver offering a 10cm localization accuracy) 
Assisted-GPS products (e.g., from Qualcomm) or multi-
constellation solutions like CSR’s SiRFusion chipset that 
employs information from GPS, Galileo, GLONASS and 
Compass satellites. These can improve availability in 
urban canyons and some indoor environments. However, 
to meet typical horizontal and vertical accuracy 
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requirements indoors, both solutions fuse satellite 
measurements with other complementary source of 
information including cellular and/or Wi-Fi and/or 
multiple inertial sensors [1].  
 
On the other hand, a prominent academic effort is the 
Epsilon system by Microsoft Research, which relies on 
LEDs that flash in millisecond intervals, so that only a 
smartphone camera can pick up the pulses (e.g., one 
commercial effort that uses this idea is Bytelight.com). 
Subsequently, a smartphone user can be localized on the 
intersection of circles defined by those distances (i.e., 
multi-lateration). The emerging Li-Fi standard extends the 
idea of LEDs into communications. Another academic 
effort is the ALPS system by Carnegie Mellon University, 
which employs ultrasound audio signals captured by the 
smartphone’s integrated microphone.  
 
In theory, all solutions have the potential to achieve sub-
meter level accuracy at high deployment densities. 
However, these solutions raise scalability issues in case of 
large indoor spaces. For example, Indoo.rs required 300 
StickNFind beacons (i.e., estimated at 15,000 USD) to 
provide guidance to visually blind people at the 60,000 m2 
Terminal 2 of the San Francisco Intl. Airport, USA. 
Additionally, there are costs associated with maintaining 
the batteries of beacons, tuning their signal levels, 
transmission frequencies as well as interference issues. 
 
2.2  EXISTING-INFRASTRUCTURE LOCALIZATION 
 
This category includes systems that use location-
dependent measurements from existing wireless 
communication infrastructure, such as Wi-Fi access points 
and cellular base stations. Field tests revealed that these 
can attain localization accuracy that is comparable or even 
better than costly new infrastructure-based systems [2].  
 
In this context, our team has over the years developed the 
Anyplace Indoor Information System [1,2,3], which is a 
Wi-Fi fingerprint localization system that won many 
awards for its utility and accuracy. Anyplace has 
traditionally only focused on Wi-Fi localization but will 
also support CV localization after this work given the fact 
that dense Wi-Fi installations are not frequently available 
on ro-ro vessel and other scenarios. In Figure 3, we show 
how the indoor model of a real ro-ro vessel used in this 
study was mapped using our Anyplace Architect tool 
(https://anyplace.cs.ucy.ac.cy). 
 
In this category we can also classify a special type of 
RTLS that emerge by enterprise wireless LAN vendors. 
Companies such as Cisco, Ericsson, Ekahau.com, 
Arubanetworks.com and Aerohive.com allow enterprises 
to manage their enterprise WLAN networks but also offer 
location tracking extensions to their services. Also, Wi-Fi 
routers with proprietary operating systems (e.g., 
OpenWrt.org) can be configured for these scenarios to 
acquire the signal intensity of users and localize them.  

 
 

 

Figure 3: (top) Mapping the ro-ro vessel in our evaluation using 
our Anyplace Architect tool; (bottom) Obtaining navigation 
instructions and information search in Anyplace Viewer. 
 
2.3 ZERO-INFRASTRUCTURE LOCALIZATION 
 
These are used in environments where there is no 
localization infrastructure available. In this category we 
find Magnetic localization systems (e.g., IndoorAtlas), 
which take advantage of the magnetic field anomalies 
typical of indoor settings by using them as distinctive 
place recognition signatures. This sort of technology 
offers accuracy without any hardware requirements and a 
relatively low total cost of ownership. On the other hand, 
these sorts of signatures work only for stationary steel 
structures in specific coordinates but not for vessels that 
are always moving to different locations. As such, 
magnetic localization is not applicable when it comes to 
mobile indoor spaces like vessels.  
 
Infrastructure-free localization often also refers to solely 
IMU-based approaches that have been extensively studied 
in the context of Pedestrian Dead Reckoning (PDR) 
systems. Particularly, sensory data reported by Inertial 
Measurement Units (IMU), including accelerometers, 
gyroscopes, and digital compasses (e.g., CyweeKIOS or 
WiFiSLAM) [1]. Such sensor modules are either 
integrated into modern consumer electronics, or attached 
externally on the human body, i.e., head, back, waist or 
foot mounted while processing occurs by low-power co-
processor (e.g., motion coprocessors on iPhones). IMU 
solutions can be used to provide relative location of a 
mobile but is known to suffer from drifting (i.e., even the 
slightest localization or orientation error builds up over 
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short future windows yielding high location errors). As 
such, IMU solutions are known to require an infrastructure 
to correct the location signal over time. In Anyplace we 
traditionally utilize Wi-Fi to correct the IMU signal. 
Likewise in this work, we will consider in the future a 
hybrid tracking algorithm by the means of fusing the CV 
signals to the IMU signals, to cope with the drifting 
problem of IMU. 
 
The SMAS zero-infrastructure localization system 
developed in this work, proposes the Surface algorithm, 
which exploits novel data management ranking 
algorithms with deep learning models trained on ro-ro 
vessel footage to carry out accurate zero-infrastructure 
indoor localization with smartphones.  
 
3. SURFACE ALGORITHM 
 
3.1 OVERVIEW 
 
In this section we describe our Surface algorithm, 
explaining its rational through various examples. Our 
Surface algorithm uses a combination of Global and Local 
pruning strategies, where the Surface Global (SG) 
algorithm is responsible to find a location from the 
complete FDB; while the Surface Local (SL) algorithm is 
responsible to find the next location from FDB based on 
the prior (x,y,deck). These algorithms deploy sophisticated 
object ranking functions founded on the concepts 
enumerated below and that are implemented with the 
expressive power of the Standard Query Language (SQL): 
 
• Multiset Subtraction (SG & SL algorithms), where we 

scan through the Fingerprint Database (FDB) and 
identify the (x,y,deck) locations that have their set of 
objects more closely to the query object-set.  

• Global Partitioned Frequency Counting (SG & SL 
algorithms), which captures the frequency a given 
object has after the FDB creation stage (i.e., after 
logging). This way, the Surface algorithm knows 
which objects are of high importance and takes those 
objects into the ranking process of candidates. The 
objective is to return the (x,y,deck) triples whose 
object-set  resembles more closely the object-set of 
the query. Clustering of the frequencies is carried out 
with spatial hashing. 

• Spatial Partitioning of Fingerprints (SG & SL 
algorithms), which clusters close-by fingerprints 
based on a system-derived clustering parameter (in 
our setting 10 meters) that allows more accurate 
ranking of location similarity results. 

• Bounding Box Filtering of Fingerprints (SL 
algorithm), which applies to the case of the SL 
algorithm and tracking scenarios where location 
estimates are aimed to be at most 100 meters and +/- 
1 deck apart. If the bounding box filter is too 
aggressive yielding no results, the global localization 
algorithm alleviates the problem and finds 
temporarily  the best result until a better estimate can 
be made. 

3.2 DATA PROCESSING CONCEPTS 
 
In this section we explain the underlying concepts of the 
Surface algorithm in further detail. 
 
3.2 (a) Multi-set Subtraction 
 
A set in Mathematics is generally defined as an unordered 
collection of distinct objects. In the case of objects 
captured during CV logging, a given object might appear 
multiple times (e.g., an area contains multiple drenchers). 
As such, we relax the discussion and adopt the notion of a 
multiset, which allows the repetition of objects in the 
collection. A multiset difference is generally defined in the 
set builder notation as A − B = {x	|	x	 ∈ 	A	and	x	 ∉ 	B}, 
considering that the set is permitted to contain duplicates.  
 
The below example shows the basic object subtraction 
operation that takes place in Surface. 
 
Example Multiset Subtraction (Query – FDB Record): 
• {drencher, charger} – {drencher, charger} = ∅   

Dissimilarity = 0 
• {drencher, charger} – {drencher, charger, door} = ∅  

Dissimilarity = 0 
• {drencher, charger} – {drencher} = {charger}  

Dissimilarity = 1 
• {door, door, door} – {door} = {door, door} 

Dissimilarity = 2 
• {door} – {door, door, door} = ∅  

Dissimilarity = 0 
 
3.2 (b) Global Partitioned Frequency Counting 
 
The Fingerprint view in the SMAS data layer contains all 
the (x,y,deck) locations that have been collected during the 
SMAS Logging stage. For an object, whether unique or 
frequent, we might have a dozen of fingerprints depending 
on the coverage effort during logging and the physical 
space characteristics. Effectively, the number of 
fingerprints is clearly not a good indication of whether an 
object is unique and whether this uniqueness can be 
exploited to yield a higher accuracy localization.  
 
To alleviate this problem, we decided to carry out a spatial 
hashing of objects to locations and create the so-called 
OBJECT_COUNT view. This allows identifying how 
unique an object is in relation to its location. For example, 
if a signGather object appears in three locations then this 
will have a frequency counter of 3, otherwise if these three 
locations map to the same location the frequency counter 
will be 1. This also simplifies logging, as we can collect 
multiple fingerprints and retain stable frequency counters. 
 
In order to normalize the importance of 
OBJECT_COUNT objects we average over the total 
number of objects yielding the OBJECT_FREQUENCY 
table. This was implemented as a materialized table, as 
opposed to view, to avoid computing the view for each 
query (i.e., for performance reasons). 
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3.2 (c) Spatial Partitioning of Fingerprints 
 
Even though the original OBJECT_COUNT idea clusters 
fingerprints on (oid,x,y,deck), where oid is the unique 
object identifier,  one problem is that the fingerprints will 
rarely be precisely on the same (x,y,deck) because the 
location we use in the logging process has very high 
precision (e.g., we use Google Maps that uses WGS84 
with 1 meter accuracy.)  
 
The below shows one example of an (x,y) point we 
represent in the SMAS application as WGS84 location 
(longitude, latitude) pair: (57.695137769363, 
11.911948062479). With 4 decimal places of precision, 
we get a clustering of ~11 meters. The above clustering 
will be exploited in both the SG and the SL algorithms. In 
Table 2 we present the OBJECT_FREQUENCY table for 
the top-5 (most rare) and lower-5 (most common) objects.  
 
3.2 (d) Bounding Rectangle Filtering of Fingerprints 
 
One problem with the discussion so far is that we consider 
object ranking to be a global task, namely an object 
contributes the same way to a ranking whether it appears 
a few meters apart from the prior location or whether it is 
3 decks above. To this end, we endanger resolving object-
sets to irrelevant locations on the vessel in tracking 
scenarios (i.e., where the localization task takes place 
every few seconds or after the inertial sensor triggers a re-
computation.)  
 
To alleviate this problem, we aim to rank object 
similarities based on the prior location of a user (prevX, 
prevY, prevDeck). To do so, we create a bounding 
rectangle around the prior location and carry out a 
counting and ranking of objects in that area only. This 
allows finding the closest most relevant object set to the 
query, which effectively will not be very far from the prior 
location. In our case, we set the bounding rectangle to be 
100 meters and not more than +/- 1 decks, but these 
parameters are configurable. In case this threshold does 
not yield any relevant fingerprint (e.g., a user entering an 
elevator and coming out a few decks away), we 
automatically run the global ranking SG algorithm that 
will find the closest match through the complete vessel.  
 
In order to visualize the Bounding Rectangle, consider the 
example in Figure 4. Here we show the FDB clustered 
using the Spatial Partitioning we introduced earlier. The 
sample also shows how the bounding rectangle drawn 
around the prior location reduces the prospective database 
fingerprints that will be examined for relevance to the 
query fingerprint. We observe that the prospective objects 
and the query object are now in spatial locality, as opposed 
to having the complete fingerprint database as the search 
object space. This means that the next location will be 
derived from the bounding rectangle and not from the 
complete spatial database, which makes the localization 
more accurate and usually also faster. 
 

3.3 LOCALIZATION ALGORITHMS 
 
3.3 (a) The Surface Global (SG) Algorithm 
 
The SG algorithm is an algorithm that can be executed 
without any prior localization state. SG will search 
through the fingerprint database FDB to find the closest 
match that can be in any of the vessel decks. SG deploys 
multiset subtraction, global partitioned frequency 
counting and spatial partitioning of fingerprints to rank 
and return the closest fingerprint to the localization query. 
Given that SG is a less restrictive case of the Surface Local 
(SL) Algorithm, we present next, we will defer its detailed 
presentation for Section 3.3 (c) where we present both 
algorithms in a more elaborate fashion. 
 
3.3 (b) The Surface Local (SL) Algorithm 
 
This algorithm requires the prior location of a user (prevX, 
prevY and prevDeck) to find the most relevant fingerprints 
from FDB using the concept of Bounding Box Filtering of 
Fingerprints. SL searches for the closest dissimilar objects 
in a bounding box that is system-defined (e.g., 100m and 
not more than +/- 1 decks). Figure 4 presents an example: 
We observe that the bounding rectangle prunes the object 
space to a small subset of results, yielding a sub-ranking 
of results within this box. 
 

 
Figure 4: Example with Bounding Rectangle Filtering of 
Fingerprints in the Surface Local (SL) Algorithm. 
 
The SL algorithm is particularly suited for tracking 
scenarios where fingerprints need to be dynamically re-
ranked based on where a user currently is. Of course, such 
a sub-ranking might not always yield a result. As such, the 
SL algorithm will invoke the SG algorithm (global 
ranking) as fallback case in case it yields an ∅ set. 
 
3.3 (c) Surface Implementation in SQLite 
 
Figure 5 presents the implementation of the Surface 
algorithm in SQLite, which is a C-language library that 
implements a small, fast, self-contained, high-reliability, 
full-featured, SQL database engine. SQLite is the most 
deployed database in the world as it is embedded in 
smartphone operating systems SDKs (e.g., iOS and 
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Android), web browsers (Chrome, Safari), Web 
application frameworks (e.g., drupal, Django) and others. 
For brevity we will explain the common components of 
SL and SG together and finally focus on the additional 
restrictive aspect of the SL algorithm. 
 

 
Figure 5: Implementation of the Surface Local (SL) Algorithm 
in SQLite as part of the SMAS backend. 
 
The common parts of both algorithms are the following: 
(i) the computation of a dissimilarity score using the 
notation of multiset subtraction.  This is achieved as part 
of the pre-last predicate in the outermost SELECT block 
(lines 4-10); (ii) the computation of the frequency ranking 
given higher ranking precedence to rare objects. This is 
achieved as part of the last predicate in the outermost 
SELECT block (i.e., lines 12-20). The clause 
IFNULL(AVG(weight),1) aims to penalize objects in the 
ranking process for objects that are part of the Query but 
not the Database. For all cases, given that ranking is a 
global process, which might yield a large result set, we 
filter the results set on two predicates: 
 
• Partitioning: We exploit the spatial partitioning of 

fingerprints that we discussed in object frequency 
discussion (line 29). 

• Overlap: We require at least one object overlap 
between the Query and the FDB (line 31). 

• Sorting: We sort the results by importance (line 33). 
• Top-1: We return the highest-ranked result (line 35). 
 
Contrary to the SG algorithm, the SL algorithm computes 
the following two additional concepts: 
 
• Bounding Rectangle Filtering of Fingerprints: that 

filters results using the bounding box we described 
earlier (line 24). 

• Query Deviation: that provides the deviation of the 
query from the returned result (line 2). 

 
3.3 (d) Discussion 
 
Structured Query Language (SQL) is a standardized 
programming language that is used to manage relational 
databases and perform various operations on the data in 
them. We use this powerful programming language as a 

novel paradigm to implement a state-of-the-art algorithm, 
where localization algorithms are traditionally 
implemented in imperative programming languages 
(featuring control loops and other programming 
constructs). Expressing the localization algorithm in SQL 
has the following benefits: 
 
• Declarative: It exploits a declarative query language 

that has expressive power without getting into the 
implementation details – we describe what we want 
not how we want it. This allows quickly prototyping 
complex ideas that would have otherwise taken 
numerous man-hours to be developed in an 
imperative host language like Kotlin (i.e., the SMAS 
front-end layer). 

• Relational: It allows expressing the localization task 
as a sequence of set-theoretic operators on a 
relationally-complete language (i.e., SQL), which is 
founded on the mathematical pillars of relational 
algebra upon which the complete relational data 
management field is founded and succesful. 

• Structured: Perceiving the data in relations with 
relationships allows easier development of ideas as 
data is organized in tabular form with constraints and 
foreign keys. 

• Performance: It allows testing important aspects (like 
query response time) early in the algorithm 
development stage and applying respective remedies 
if needed (e.g., indices, view materialization). I/O 
performance tuning now becomes a first-class citizen. 

• Portability: The code runs directly both in the cloud 
on an extremely powerful server and on a low-end 
device. More importantly, it runs on the SMAS 
android app written in Android that is natively 
supported by SQLite and SQL.  

• Data-driven Algorithm Design: We are able to design 
the algorithm by looking at the data through various 
SQL predicates. We found this extremely powerful in 
designing and progressing the logic of our algorithm. 

 
In the future we aim to deploy more complex spatial 
operators by deploying a designated extension (e.g., 
SpatiaLite). This will provide more expressive power in 
capturing the importance of further optimization 
criterions, e.g.., closeness of objects based on rectangle 
size, orientation, and map-matching for grounding 
localization requests to the underlying indoor graph 
topology we maintain but also more study with capturing 
in low-light conditions (e.g., first responder with torch for 
which our preliminary findings suggest that we can retain 
good localization accuracy). 
 
4 EXPERIMENTAL EVALUATION 
 
To assess the correctness and performance of the SMAS 
architecture and implementation, we carried out a remote 
study, where we collect CV logs for the vessel based on 
video footage that the operator provided us. We use these 
logs to carry out a variety of tests and experiments in the 
laboratory (i.e., in vitro). 
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4.1 METHODOLOGY 
 
Dataset: We use 14 videos captured by a commercial ro-
ro operator as part of the LASH FIRE project with a total 
size of 11GB (i.e., approximately 800MB per file). The 
footage is from one specific ro-ro vessel that we name 
VESSEL for the remainder of this work. The dataset had a 
total length of 1 hour and thirty minutes (i.e., each video 
was 6.55 minutes with standard deviation 2.83 minutes.) 
The videos capture a variety of areas like, Open ro-ro, 
Closed ro-ro, Weather deck, PAX public areas, Cabin 
areas but not any Crew areas. The focus of the research 
has been mainly the Closed ro-ro, Open ro-ro and Weather 
deck, which are the decks 3 and 4 of the given vessel, as 
such, the bulk of footage comes from these areas. 
Additionally in the above areas there is no privacy concern 
for the usage of the camera localization system.  Results 
from deploying our system on the real vessel might be 
presented in the future as we plan to carry out an on-board 
study of SMAS very soon. 
 
Table 1: VESSEL Video traces used for training and localization. 

 
 

CV Model Training: Computer Vision Annotation Tool 
(CVAT) is a free, open source, web-based image and 
video annotation tool which is used for labeling data for 
computer vision algorithms. Originally developed by 
Intel, CVAT is designed for use by a professional data 
annotation team, with a user interface optimized for 
computer vision annotation tasks. To execute CVAT in 
our environment we use a dedicated deep learning server, 
namely an HP DL380 Gen10 with 80 logical processors 
and a powerful NVIDIA V100 card. This card reduces 
training time down to a few hours from several days or 
weeks we required initially on Google’s free Colab 
environment (https://colab.research.google.com/).  
 
Additionally, by processing our data locally allows us to 
improve I/O performance as handling large video traces 
over a slow network can become the bottleneck. The 
videos were annotated by a team of 5 persons over a period 
of 4 weeks with several iterations, to refine the quality of 
the constructed LASHCO neural network model we built 
for VESSEL (24MB with approximately 100 classes). Our 
builds were initially encoded in YOLO [6]. One problem 
is that the YOLO models are not sufficiently efficient on 
smartphones, as such, we export the models in Tensorflow 
Lite [8], which is a mobile library for deploying models 
on mobile, microcontrollers and other edge devices. To 

reduce the size of the trained Neural Networks (NN), we 
chose to apply the quantization method during training. 
This has to do with the number of bits used to represent 
the floating point numeric in the NN models. Under 
normal circumstances, all FPN (Floating Point Number) 
computations are carried out on 32-bit byte sequences. 
With quantization however to 16-bit, we managed to 
dramatically reduce the NN model size by over 50%. This 
size reduction had an impact on the performance of the 
model with no great loss in accuracy.  
 
Localization Hardware: We use a standard led monitor 
that shows the video files playing with the VLC tool. For 
the logging and localization tasks, we use the Caterpillar 
S62 smartphone, which was selected as the experimental 
apparatus for its rugged properties, battery lifetime and 
embedded heat camera. Particularly, the device features 
the following specs: Android 10, Qualcomm Snapdragon 
660 (Qualcomm Kryo 260 CPU, Octa-core CPU, 64-bit, 
1.95 GHz to 2.2 GHz), 4GB RAM, 128GB ROM, 4000 
mAh non-removable Lithium-Ion battery, Image Signal 
Processor Qualcomm Spectra 160 image signal processor, 
14-bit, 2x Image Signal Processor (ISP), Single Camera, 
MFNR, ZSL, 30fps: Up to 25 MP, Hybrid Autofocus, 
Optical Zoom, Qualcomm Clear Sight camera features, 
Zero Shutter Lag. Even though the description of the 
camera sounds very specific, the system works well with 
any smartphone having a capable camera. 
 
Tuning Remote Logging: The video player was 
configured in the Logging experiments at “Medium” 
speed to provide our camera system enough time to 
capture the various objects. Generally, due to varying 
lighting conditions as well as inherent pixelation and 
discretization of a computer monitor output, we observe 
that our logger and localization engines did not recognize 
as many objects as they would recognize if the input came 
directly from the camera. We observed this in the 
laboratory with both UCYCO, which was trained by us, 
and COCO [9] that comes pre-trained. As such, the 
logging and localization accuracy provides a worst-case 
bound on the accuracy we will obtain in a live 
environment. We aim to validate this claim in the on-board 
study where logging and localization will happen directly 
through the camera-system of our smartphone. 
 
4.2 LOGGING TIME EVALUATION 
 
The purpose of this evaluation was to observe the effort 
necessary to collect object-sets through the SMAS 
Logger, which subsequently will enable zero 
infrastructure localization on a vessel. For this series, our 
evaluation metric is expressed mainly in logging time, but 
we do also measure the number of objects that were 
collected per deck. Figure 6 present some example 
fingerprints in closed ro-ro, PAX public and shows how 
these are marked on a map (that subsequently registers the 
reading in FDB). We include fingerprints with varying 
light intensities as well as camera visibility obstructions 
(e.g., corridors between trucks). 
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Figure 6: CV fingerprints collected from VESSEL and entered 
to the Fingerprint Database (FDB) through a map interface and 
OCR example shown last. 
 
Results: In Figure 7 (top), we show the logging time 
required to model the VESSEL. Deck 5 required the most 
time by far, with a logging time of a bit more than 2 hours. 
This was the most diverse deck of the vessel in terms of 
room types, consisting of 4 restaurant areas, a bar, a 
lounge space, a reception hall, 2 outdoor spaces, amongst 
others. Deck 4 required about 10 mins, while Deck 3 and 
Deck 7 required less than 30 minutes. Deck 6 did not have 
a lengthy capturing and required just 10 minutes. For each 
spot it required roughly 3 mins. Given that we cluster 
close-by fingerprints in the OBJECT_FREQUENCY 
view, collecting many fingerprints per location is good. 
 
In Figure 7 (bottom), we visualize the fingerprint objects 
that were captured during the modeling of VESSEL. In 
total about 460 objects were stored in 5 different decks. 
Those were clustered in 81 geographic locations. More 
than half of the objects were assigned in Deck 5, which 
was the most diverse deck in terms of space types. Deck 4 
had a bit more than 100 objects, while the remaining 3 
decks had 25 fingerprinted objects on average. 
 
In Table 2 we present the top-5 and lower-5 objects 
identified in our logging task as part of the 
OBJECT_FREQUENCY view. The given view ranks 
objects by rarity using by using our WGS84 11-meter 
clustering method. These weights determine the ranking 
of localization results after the dissimilarity criterion. Note 
that all objects with the OCR are passed through Google’s 
ML kit on-device Optical Character Recognition (OCR) 
library (available in multiple languages), which can refine 
an object recognition. For example, for Figure 6 (last) it 
reads “STB PILOT DOOR BUNKER TTION”, missing 
only the “station”. OCR will be used further in the future. 

 
Figure 7: (top) Time necessary to perform the logging task per 
deck on VESSEL using footage from 14 videos; (right) 
Fingerprint Objects collected per deck. 
                 
 

Table 2: OBJECT_FREQUENCY View after Logging 
Object ID 

(oid) Object Description  Weight (rare to 
frequent) 

98 signBathroomDisabled 0.0052631 

95 signFireSafetyLever 0.0052631 

93 wallSingleDigitOCR 0.0052631 

92 specificTankDeck 0.0052631 

91 signNumberOCR 0.0052631 

… … … 

49 wallPatternRedWhite 0.0315789 

4 signExitPersonLetters 0.0315789 

69 signLetterOCR 0.0368421 

43 doorBlue 0.0368421 

52 wallFireExtinguisherEmbedded 0.0473684 
 
4.3 LOCALIZATION EVALUATION  

The purpose of this evaluation was to remotely assess the 
CV localization system when localizing without any prior 
knowledge of the user’s location (e.g., for the first time). 
Particularly, we test the effectiveness of the SG algorithm. 
Our aim is to observe whether Surface can distinguish in 
each of the 15 scenes the correct location within 10 meters 
(i.e., room or area-level accuracy).  
 
Metric: We use Localization Accuracy (A) as the metric 
for our evaluation. Generally, accuracy measures the 
closeness of measurements to the true value of the quantity 
being measured. In our case, an expert user judges the 
closeness of the result.  Specifically, the expert user judges 
that the localization query (i.e., 𝑅𝑒𝑠𝑢𝑙𝑡!) is successful 
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(i.e., 𝑅𝑒𝑠𝑢𝑙𝑡! = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡!), when the user localizes 
within 10 meters of the ground truth (i.e., 𝐶𝑜𝑟𝑟𝑒𝑐𝑡!). The 
above is repeated n times (in our experiments n=10). 
Below we provide the definition of our accuracy using a 
set-theoretic notation, where Result indicates the returned 
location and Correct location the ground truth. 
 

𝐴 = (.
|𝑅𝑒𝑠𝑢𝑙𝑡! 	∩ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡!|

|𝐶𝑜𝑟𝑟𝑒𝑐𝑡!|
)/𝑛

"

!#$

∗ 100 

 
Description: For this experiment we have used footage 
from 6 different videos. We have used 15 different scenes 
in total, with two thirds concerning cargo/ro-ro areas and 
one third concerning passenger areas (PAX). We made 
this decision as our project focused on the former areas. 
Table 3 lists the 7 different dimensions that each scene 
had, as well a short description. These include whether the 
scene was used in training or not, the deck number, the 
video source, the lighting conditions of the scene, the 
objects that were contained by the scene (e.g., cars, trucks, 
passengers, or mixed), the density of those objects in the 
scene, and finally whether the camera that captured the 
footage was moving or not. 
 

Table 3: Scenes used in SG Localization Experiment 

 
 
The first scene, (i.e., S01) the user was in front of a lift in 
Deck 3, with many objects recognized. In S02, the user 
was standing in front of the Cargo Office in Deck 3, but 
only a few objects were recognized. In S03, the user was 
in front of walls that are surrounding a funnel, recognizing 
a few labels on that wall. In S04, the user was walking 
between trucks, recognizing some labels on the front of 
the vessel. In S05, the user was recognizing some outdoor 
equipment. In S06 and in S08, the user was crossing 
between the lanes that are used for parking trucks or cars, 
recognizing some labels and doors on the outer wall of the 
vessel. In S07, the user was walking in open ro-ro space 
recognizing some labels and doors on the wall. In S09, the 
user was walking between trucks and the left-outer wall of 

the vessel, recognizing some equipment. In S10, the user 
was freely walking in Deck 4, recognizing some patterns, 
bins, labels, and other objects in the wall. In S11, the user 
was walking in front of the Information Desk in the 
vessel’s Reception, recognizing it. In S14, the user was 
walking in the restaurant/lounge bar area, recognizing 
specific table and chair types. In S13, the user was 
outdoors, in the Open-Deck area, recognizing life-saving 
equipment. In S14, the user was passing in front of in the 
main stairs close to the restaurant in Deck 5, recognizing 
them. Finally, in S15, the user was in the cabin rooms of 
Deck 6, recognizing some labels and some lights that are 
present only in cabin corridors. Video V13, contained 
around half of those scenes, while the remaining scenes 
were distributed to 5 other videos. Quite importantly, V13 
was not used for building our ML model, as such, was a 
good test of our constructed model. 

 
Figure 8: Localization Accuracy for the 15 scenes of Table 
3 as well as the average (last column) showing that Surface 
exposes an 80% accuracy on average. 
 
Results: Figure 8 shows the localization success 
percentage for each of the 15 Scenes (labeled S01-S15), 
as well the average. In more than two thirds of the scenes 
we were able to achieve between 80%-100% accuracy, 
with an average of 80%, in a total of 150 localization 
attempts. For about two thirds of the scenes, we were able 
to achieve a remarkable 80% success, while for 3 scenes 
we achieved a perfect score. On average, we achieved an 
80% localization success. Scenes S04, S09, and S15 were 
the ones with the lowest percentage, that was still 60%. In 
S04, the user was walking in a lane that had high-height 
trucks on both sides and was not able to recognize a 
necessary number of objects before attempting to localize 
(for such scenarios the SL algorithm will be beneficial). 
There is a similar scenario in S09, with the only difference 
that the user was walking in a lane that had trucks on the 
one side and the vessel’s wall on the other. Lastly, in S15, 
the lighting and stabilization conditions for the footage 
were not ideal, hence the CV system was not able to 
readily identify the objects.  
 
The most contributing factors in these 3 cases were the 
lighting conditions, monitor reflection (due to the remote 
execution of this experiment), as well the naturally low 
number of objects in those areas. We have scheduled an 
onboard study on a ro-ro vessel to verify these claims and 
will report new results in the future. 
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4.4 TRACKING EVALUATION  
 
The purpose of this evaluation is to remotely assess the 
Computer Vision localization system when localizing on 
a particular trajectory. Particularly, we test the 
effectiveness of the SL algorithm in a tracking scenario 
(without IMU and without a particle filter fusion). We 
have used two different trajectories. We used footage from 
two different videos, namely V13 (closed ro-ro) and V09 
(Public PAX), following two different trajectories playing 
at normal speed. Each trajectory had 5 points, and for each 
point we performed the localization 5 times. Figure 9 
shows visually Trajectory 1 for V13 (closed ro-ro). 
 

 
Figure 9: Trajectory 1 (with V13) used in Tracking Experiment 
 
Figure 10 shows the Trajectory Accuracy results for the 
two trajectories. The average accuracy percentage was 
88% and 92% for Trajectory 1 and 2, respectively.  
 
We have achieved a perfect score for 3 out of the 5 points 
of Trajectory 1, and 4 out of the 5 points for Trajectory 2. 
The lowest point in Trajectory 1 was T05, at 60%, where 
the user was not able to recognize some floor objects due 
to fast video movement.  
 
The lowest point in Trajectory 2 was T01, and similarly at 
60%, where the user was capturing only one out of the two 
objects. As a result, the localization algorithm pointed the 
user to a nearby location, instead of the Drivers 
Restaurant. Capturing in a live scenario would have 
presumably corrected this issue and we will verify this 
claim in the planned onboard study. 
 

 
Figure 10: (top) Trajectory 1 with V13 and (bottom) Trajectory 
2 (with V09); in the Tracking Experiment. The average accuracy 
in both trajectories was 90%. 
 
 
4.5 SCALABILITY EVALUATION 
 
The purpose of this evaluation was to assess the scalability 
of the localization algorithms. In particular, our aim was 
to observe the localization response time as the number of 
fingerprints increases. The remote study had around 0.5K 
object fingerprints mapped to 81 individual locations. In 
this experiment we uniformly and randomly generate 7 
different object fingerprint datasets at much larger scales 
and observe the response time of the localization 
algorithm. We chose the SL algorithm with a random prior 
point and randomly chosen objects, as this exposes the 
more complex case for our algorithm (i.e., in case SL does 
not yield any result, the SG algorithm is executed.) 
 
In Figure 11 we visualize the query response time in 
milliseconds (ms) for the 7 datasets. As shown, Surface 
scales linearly with the dataset size. For the real dataset 
(1k points), we required less than 10ms. For 10k points we 
required about 50ms, which is sub-linear. Between 10k 
and 50k the increase is linear, as we observe ~250ms. This 
is within the latency of the CV object detection system, so 
we’ve verified that the localization algorithm will not be 
on the critical path of the evaluation even for very large 
Fingerprint Database scenarios capturing complete vessel 
spaces. For reference we mention that the CV object 
detection system requires on the S61 around 400-500ms 
and 200-300ms on the S62. For more powerful 
smartphones this can be less than 100ms [9], but 
localization is not anticipated to run so frequently.  
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Figure 11: The Surface localization algorithm scales linearly 
with the increase in the size of the Fingerprint Database (FDB).   
 
6. CONCLUSIONS 
 
In this paper we present a ground-breaking localization 
technology that requires zero infrastructure using 
computer vision on commodity smartphone devices 
attached to the gear of first responders. Our solution 
deploys a data-driven localization algorithm, coined 
Surface, which operates with global and local 
optimizations. Surface has been found to be 80% and 90% 
accurate for localization and tracking scenarios, 
respectively, in a study we carried out with data from a 
real ro-ro vessel. The developed Smart Alert System 
(SMAS) streamlines the lengthy fire verification, 
coordination, and reaction process in the early stages of a 
fire, improving fire safety. Our developments are expected 
to have a long-lasting impact on the problem of zero-
infrastructure localization on ro-ro vessels, which 
effectively will have an impact in the complete 
identification-tracking-positioning spectrum, namely live 
fire detection and localization, live monitoring, and 
tactical support, monitoring of cargo, quality control and 
optimization of cargo load and distribution. 
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