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Abstract—Indoor location systems that rely on WiFi signal
strength values from the existing building infrastructure deliver
adequate accuracy with no installation cost at the expense of
time and effort to populate the signal database. To this end,
crowdsourcing has been widely explored to leverage on large
volumes of user-collected data; however, mobile devices that
report signal strength differently, known as device diversity, limit
its applicability in practice. We consider crowdsourced location
systems and present a qualitative (in terms of analytical results)
and a quantitative (with respect to real-life experimental data)
evaluation of several approaches that are robust to diverse devices
while focusing on differential signal strength methods.

I. INTRODUCTION

Location awareness has become an integral part of the

mobile user’s daily life and the wide availability of location

information has triggered the advent of innovative location-

based services, while according to Market Research Future the

global market is estimated to grow up to USD 80 Billion by

2023 [1]. These services will be increasingly targeting indoor

application scenarios as people already spend 80-90% of their

time in indoor environments.

Among the wide range of indoor location technologies,

WiFi signal strength fingerprinting that may be augmented

with other sensor readings is gaining traction. This solution

relies on the collection of location-tagged Received Signal

Strength (RSS) measurements from the surrounding WiFi Ac-

cess Points (AP) inside the building, referred to as fingerprints,

which are stored in a signal database known as radiomap. Even

though this approach has demonstrated comparable or even

better accuracy than expensive solutions that require additional

hardware, it has not been widely adopted. This is due to

the data collection process, which can be tedious and time

consuming especially for multi-floor buildings.

To reduce the data collection effort, crowdsourcing has

emerged as a viable alternative that leverages user-collected

WiFi RSS readings. Even though several crowdsourcing sys-

tems have been presented in the literature (see, for example,

[2] and references therein), the key challenge that hinders

their wider adoption is device diversity [3]. That is, mobile

devices report largely different RSS values from a WiFi
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AP, even if they reside at the same location, due to multi-

vendor WiFi adapters, varying antenna gain, different circuitry

packaging, etc. This fact makes the RSS values collected with

diverse devices incompatible with each other, thus impeding

the combination of all data in a single radiomap.

Some approaches apply data transformations to remove the

device dependency from RSS readings, which enables a user to

start localizing accurately as soon as he/she enters the building

carrying a new device. For instance, the FreeLoc system [4]

uses relative RSS values in a Rank Based Fingerprinting

(RBF) approach, which ranks the WiFi APs from stronger to

weaker RSS. However, the exact RSS values are lost, which

hinders fine-grain localization [3]. The Hyperbolic Location

Fingerprinting (HLF) approach uses normalized logarithm

RSS ratios for all AP pairs in the observed fingerprint [5].

Another data transformation approach uses RSS differences,

rather than absolute RSS values, to homogenize the RSS

data from multiple devices. For instance, the DIFF method

takes the difference between all AP pairs [6]. The Signal

Strength Differences (SSD) method subtracts the RSS value

of an anchor AP from the other RSS values [7]; however, it is

reported that DIFF performs better than SSD for crowdsourced

indoor localization [8]. Recently, the Mean Differential Fin-

gerprint (MDF) method proposed to subtract the mean RSS

value across all APs in the original fingerprint from each

RSS value [9]. It was shown theoretically that MDF delivers

exactly the same location estimates as DIFF, but at signifi-

cantly less computational expense. These differential methods

demonstrated promising location accuracy in simulation and

small-scale experimental setups; however, still their behaviour

has not been fully analyzed and they have not been compared

against competing solutions in real-life conditions.

To this end, the contribution of this work is twofold.

First, we attempt to gain theoretical insights on differential

fingerprinting for crowdsourced indoor localization. We derive

analytical models for their respective probability of correct

location estimation and employ these models to assess and

analyze their performance theoretically for the first time.

Second, we conduct extensive experiments using real-life WiFi

RSS data from two publicly available datasets and compare

differential methods against other approaches. The results

validate our analytical models and offer valuable guidelines

for the design of crowdsourced localization systems.



The rest of the paper is structured as follows. Section II

describes the problem of crowdsourced RSS fingerprinting and

formulates existing differential fingerprinting methods. In Sec-

tion III, analytical expressions are derived for these methods

followed by an analysis of their localization performance with

respect to various system parameters. Experimental results

pertaining to real-life WiFi RSS datasets are discussed in

Section IV. Finally, Section V provides concluding remarks.

II. CROWDSOURCED FINGERPRINTING

A. Problem Formulation

Traditional fingerprint-based systems operate in two stages,

namely the offline phase where the WiFi RSS values are used

to create the location-tagged radiomap of the building and the

online phase where the radiomap is exploited to compute user

location. In crowdsourced systems, data come from multiple

heterogeneous devices that report RSS differently, while the

user-carried device during localization most likely differs from

the crowdsourcing devices.

In this context, the problem of crowdsourced fingerprint

localization is formulated next. In the offline phase, a grid

of reference locations {L : ℓi = (xi, yi), i = 1, . . . , l} are

used to discretize the localization area. A set of crowdsourcing

devices D(m), m = 1, . . . ,M collect RSS values from

n WiFi APs. Device m visits a subset of the reference

locations {L(m) : ℓi = (xi, yi), i = 1, . . . , l(m)}, so that

L(m) ⊆ L and L =
⋃M

m=1 L
(m). A reference fingerprint

r
(m)
i = [r

(m)
i1 , . . . , r

(m)
in ]T associated with location ℓi is a

vector of RSS readings and r
(m)
ij denotes the RSS reading

from the j-th AP recorded by device D(m). The fingerprints

collected by D(m) form the device-specific radiomap R
(m) ∈

Z
−

l(m)×n
that may partially cover the area, while all devices

contribute their respective radiomaps. The naive approach for

building the crowdsourced RSS radiomap R ∈ Z
−
l×n, using all

available radiomaps, is by aggregating the RSS values for each

AP across all contributing devices Mi at location ℓi, where

1 ≤ Mi ≤ M , according to

rij =
1

Mi

Mi∑

m=1

r
(m)
ij . (1)

In the online phase, given a new fingerprint s =
[s1, . . . , sn]

T measured at the unknown location ℓ by the

user-carried device D(m′), the crowdsourced radiomap R is

employed to estimate ℓ̂. For simplicity we use the Nearest

Neighbor (NN) approach that determines location as

ℓ̂(s) = argmin
ℓi

di, d2i =

n∑

j=1

(
rij − sj

)2
, (2)

where d2i is the squared Euclidean distance between the

reference fingerprints ri and the observed fingerprint s.

B. Crowdsourcing with Differential Fingerprints

We assume that the RSS values (in dBm) are given by the

simple log-distance radio propagation model

RSS = A− 10γ log10 d+X, (3)

where d denotes the physical distance between a WiFi AP and

the device, while A provides the RSS value at distance d =
1m and encapsulates device specific characteristics, such as

the antenna gain and transmitter power. The path loss exponent

γ depends on the propagation conditions and X ∼ N (0, σ2)
represents Gaussian noise that disturbs the RSS values.

Using RSS differences removes the constant term A in (3),

which makes the differential fingerprints from diverse devices

compatible with each other and enables the creation of the

crowdsourced radiomap [9]. In the following, we outline the

main differential fingerprint approaches.

1) DIFF Approach: Creates the differential fingerprints by

taking the difference between all pairwise AP combinations

[6]. Therefore, for a single device the DIFF reference finger-

print r̃i at location ℓi and the DIFF fingerprint to be localized

s̃ are defined as

r̃i = [r̃i12, . . . , r̃i(n−1)n]
T and s̃ = [s̃12, . . . , s̃(n−1)n]

T , (4)

where r̃ijk = rij − rik and s̃jk = sj − sk, 1 ≤ j < k ≤ n
denote the RSS difference between the j-th and k-th APs in

the reference and localization fingerprint, respectively.

Assuming Mi devices for crowdsourcing data at location

ℓi, the differential radiomap R̃ ∈ Z
l×

n(n−1)
2

contains the

reference fingerprint r̃i where r̃ijk is computed across all

devices using (1) with r̃
(m)
ijk . Note that this approach increases

the dimension of the original RSS fingerprints as the new fin-

gerprints contain
(
n
2

)
= n(n−1)

2 RSS differences. Localization

with the NN method is performed by replacing d2i in (2) with

d̃2i =

n∑

k=2

k−1∑

j=1

(
r̃ijk − s̃jk

)2
. (5)

2) SSD Approach: Creates the differential fingerprints by

subtracting the RSS value of an anchor AP from the other RSS

values in the original fingerprint [7]. Without loss of generality,

we assume that ρ is the anchor AP and we define for a single

device the SSD reference fingerprint ři at location ℓi and the

SSD fingerprint to be localized š as

ři = [ři1, . . . , ři(n−1)]
T and š = [š1, . . . , šn−1]

T , (6)

where řij = rij − riρ and šj = sj − sρ, j = 1, . . . , n, j 6= ρ
denote the RSS difference between the j-th AP and the anchor

AP ρ in the reference and localization fingerprint, respectively.

Assuming Mi devices for crowdsourcing data at location ℓi,
the differential radiomap Ř ∈ Zl×(n−1) contains the reference

fingerprint ři where řij is computed across all devices using

(1) with ř
(m)
ij . Note that in this case the dimension of the

new fingerprints is decreased as they contain the n − 1 RSS

differences that are independent. Localization with NN is

performed by replacing d2i with

ď2i =

n∑

j=1, j 6=ρ

(
řij − šj

)2
. (7)



3) MDF Approach: Creates the differential fingerprints by

subtracting the mean RSS value pertaining to all APs from

each RSS value in the original fingerprint [9], [10]. Thus, for

a single device the MDF reference fingerprint ¯̄ri at location

ℓi and the MDF fingerprint to be localized ¯̄s are defined as

¯̄ri = [¯̄ri1, . . . , ¯̄rin]
T and ¯̄s = [¯̄s1, . . . , ¯̄sn]

T , (8)

where ¯̄rij = rij − r̄i and ¯̄sj = sj − s̄, j = 1, . . . , n denote

the RSS difference between the j-th AP and the mean RSS

value in the reference and localization fingerprint, respectively.

The mean RSS values in fingerprints ri and s are given by

r̄i =
1
n

∑n

j=1 rij and s̄ = 1
n

∑n

j=1 sj , respectively.

Assuming Mi devices for crowdsourcing data at location

ℓi, the differential radiomap ¯̄
R ∈ Zl×n contains the reference

fingerprint ¯̄ri where ¯̄rij is computed across all devices using

(1) with ¯̄r
(m)
ij . Note that the MDF fingerprints have the same

dimension as the original RSS fingerprints. Localization with

NN is performed by replacing d2i with

¯̄d2i =
n∑

j=1

(
¯̄rij − ¯̄sj

)2
. (9)

III. ANALYSIS OF DIFFERENTIAL FINGERPRINTS

To gain insight in the behaviour of differential fingerprints,

we derive analytically the probability of correct location esti-

mation and then analyze their performance for crowdsourcing.

A. Probability of Correct Location Estimation

Let ℓ1 and ℓ2 be two neighbouring locations in the local-

ization area. We consider two devices, i.e., D(1) and D(2),

that collect RSS values at both ℓ1 and ℓ2 and we assume

that r1j and r2j computed with (1) are deterministic because

each has been averaged over a sufficiently large number of

samples collected with both devices to filter out the noise.

Therefore, the corresponding RSS fingerprints r1 and r2 in

the crowdsourced radiomap are constant vectors. Moreover,

for simplicity, we assume that during localization the user

is located at ℓ1 carrying device D(1) and observes the RSS

fingerprint s(1). The fingerprint s(1) is a normally distributed

random vector, i.e. s(1) ∼ N (r
(1)
1 ,Σ), where Σ = σ2In is the

covariance matrix, while σ2 is the variance of the Gaussian

noise that disturbs the RSS values and In is the identity matrix.

The objective is to analytically derive the probability that

the NN localization method will return the correct location

ℓ1, instead of the incorrect location ℓ2 when RSS, DIFF,

SSD, or MDF fingerprints are used, respectively. Next, we

generalize our results for areas where the radiomap contains

several location fingerprints.

1) Analytical Model for RSS Fingerprints: In the case

of traditional RSS fingerprints, the NN method will return

the correct location ℓ1 only if the condition d21 ≤ d22 is

satisfied. In other words the unknown user location is correctly

identified only if the distance between the observed fingerprint

s and the correct location fingerprint r1 is smaller than the

distance between the observed fingerprint and the incorrect

neighbouring location fingerprint r2.

We follow an approach similar to [11] and starting from the

above condition we can easily show that1

d21 ≤ d22 ⇔ 2

n∑

j=1

βjsj +

n∑

j=1

γj ≤ 0, (10)

where βj = (r2j − r1j) and γj = (r21j − r22j). For

convenience, we use vector notation to rewrite (10) as

βs+ γ ≤ 0, (11)

where β = 2[β1, . . . , βn] and γ =
∑n

j=1 γj .

The random variable C = βs + γ is normally distributed,

as a linear function of the multivariate normal vector s, i.e.

C ∼ N (µC , σ
2
C) with

(µC , σ
2
C) = (βr

(1)
1 + γ, βΣβT ). (12)

Thus, the probability of correct location estimation, when

the NN method compares the observed fingerprint with just

two location fingerprints in the radiomap, is given by

Pr{C ≤ 0} =
1

2
+

1

2
erf

( −µC√
2σ2

C

)
. (13)

In a real system where the radiomap is expected to contain

several location fingerprints, depending on the size of the area

and the density of the reference locations, the probability of

correct location estimation PC can be calculated as

PC = Pr{C2 ≤ 0, . . . , Cl ≤ 0} ≈
l∏

i=2

Pr{Ci ≤ 0}, (14)

where the variable Ci corresponds to the condition d21 ≤
d2i , i = 2, . . . , l. Although this analytical model is based on

the assumption that the random variables Ci are independent,

which is not true, it still provides a good approximation of the

probability of correct location estimation [11].

2) Analytical Model for MDF and DIFF Fingerprints: In

our previous work, it was shown that the distances ¯̄d2i between

the MDF fingerprints ¯̄ri and ¯̄s are proportional to the distances

d̃2i between the DIFF fingerprints r̃i and s̃, i.e., ¯̄d2i = 1
n
d̃2i [9].

Thus, the ordering of the candidate locations ℓi ∈ L is not

affected when either MDF or DIFF fingerprints are considered.

Consequently, the user locations estimated with NN are exactly

the same and we derive the analytical model only for MDF.

Starting from the condition ¯̄d21 ≤ ¯̄d22 and using Theorem 1

in [9], which provides the relation of the distance ¯̄d2i between

MDF fingerprints with respect to the distance d2i between the

corresponding RSS fingerprints, it can be shown that

¯̄d21 ≤ ¯̄d22 ⇔ 2

n∑

j=1

βj(sj − s̄) +

n∑

j=1

δj ≤ 0, (15)

where βj = (r2j − r1j) and δj = (r21j − r̄21 − r22j + r̄22).
Using vector notation, (15) is equivalent to

βJs + δ ≤ 0, (16)

1For brevity we drop the superscript in the localization fingerprint s(1) .



where β = 2[β1, . . . , βn], J = I − 1
n
e
T
e, e = [1, . . . , 1] and

δ =
∑n

j=1 δj . The random variable Q = βJs+ δ is normally

distributed2, i.e. Q ∼ N (µQ, σ
2
Q) with mean and variance

(µQ, σ
2
Q) = (βJr

(1)
1 + δ, βJΣJTβT ). (17)

The probability of correct location estimation, using the NN

localization method with MDF fingerprints, in the two-location

case and the multiple location setup respectively, are given by

Pr{Q ≤ 0} =
1

2
+
1

2
erf

( −µQ√
2σ2

Q

)
and PQ ≈

l∏

i=2

Pr{Qi ≤ 0}.

(18)

3) Analytical Model for SSD Fingerprints: Starting from

the condition ď21 ≤ ď22 and using Theorem 2 in [10], which pro-

vides the relation of the distance ď2i between SSD fingerprints

with respect to the distance d2i between the corresponding RSS

fingerprints, it can be shown that

ď21 ≤ ď22 ⇔ 2

n∑

j=1

(βj − βρ)(sj − sρ) +

n∑

j=1

ǫj ≤ 0, (19)

where βj = (r2j − r1j), βρ = (r2ρ − r1ρ) and ǫj = (r21j +
r21ρ − r22j − r22ρ − 2r1ρr̄1 + 2r2ρr̄2), with ρ being the anchor

AP. Again, using vector notation we may rewrite (19) as

ηMs+ ǫ ≤ 0, (20)

where η = 2[β1 − βρ, . . . , βn − βρ], M = I − e
T
u, e =

[1, . . . , 1], u = [0, . . . , 1, . . . , 0] and ǫ =
∑n

j=1 ǫj .

Following the same process with the MDF approach, we

can show that the random variable R = ηMs+ ǫ is normally

distributed, i.e. R ∼ N (µR, σ
2
R) with mean and variance

(µR, σ
2
R) = (ηMr

(1)
1 + ǫ, ηMΣMTηT ). (21)

Finally, the probabilities that the NN localization method

returns the correct location when it compares the observed

SSD fingerprint with just two SSD location fingerprints and

several SSD location fingerprints respectively are given by

Pr{R ≤ 0} =
1

2
+
1

2
erf

( −µR√
2σ2

R

)
and PR ≈

l∏

i=2

Pr{Ri ≤ 0}.

(22)

B. Performance Evaluation

We adopt the simple localization setup depicted in Fig. 1a

[8], [11]. There are l = 9 reference locations (marked with

circles) that are uniformly spread over a square grid. The WiFi

APs (marked with triangles) are deployed in the perimeter and

we start out with n = 4 APs that are placed at the four corners

of the area, while the maximum number is n = 16 APs.

We assume that D(1) is the first crowdsourcing device

and the RSS values r
(1)
ij at the reference locations are given

by the propagation model of (3). We use typical values

2The detailed derivation of (15) and the proof that Q is a normally
distributed random variable is omitted due to space limitation.

A = −22.7 dBm and γ = 3.3 for the model parameters.

We also assume that r
(1)
ij is deterministic because it has been

averaged over a sufficiently large number of samples to filter

out the noise. These RSS values, generated at all 9 locations,

constitute the device-specific radiomap R
(1). In addition, a

number of crowdsourcing devices D(m), m = 2, . . . ,M
also cover the whole area and we assume a linear relation

between the RSS values reported by any device D(m) and the

corresponding RSS values of device D(1) such that

r
(m)
ij = α1mr

(1)
ij + β1m, m = 2, . . . ,M, (23)

where (α1m, β1m) are the linear fitting parameters between

devices D(m) and D(1) [8]. All M devices contribute their re-

spective radiomaps R(m) and the crowdsourced RSS radiomap

R is created by aggregating the RSS values according to (1).

We now employ the analytical models in (14), (18), and

(22) for RSS, MDF, and SSD to analyse the performance

of crowdsourced localization using differential fingerprints.

We start out with two devices for crowdsourcing, i.e., D(1)

and D(2) with (α12, β12) = (0.95, 10), and we assume that

a user carries device D(1) during localization while he/she

resides at the central location ℓ1 = (2, 2). We generate the

RSS fingerprint s by taking the RSS location fingerprint r
(1)
i

and disturbing it with Gaussian noise. Then, we compute the

probability of returning the correct location ℓ1.

First, we investigate the effect of varying number of APs. In

Fig. 1b we observe that the performance of the traditional RSS

fingerprints is poor when few APs are considered; however,

for more APs (i.e., n > 8) they perform better or equally

well to SSD and MDF, respectively. Moreover, peaks occur for

certain subsets of APs, i.e., n ∈ {4, 8, 12, 16}. In these cases

the uniform distribution of APs creates symmetries that mask

the effect of device diversity3. Similar behaviour was reported

with simulations in [8]. Nevertheless, in large-scale real-life

setups, the APs are neither expected to be densely deployed

nor evenly distributed. In contrast, device diversity does not

have any impact on MDF and its performance improves. SSD

is inferior due to the lower dimension of the SSD fingerprints,

while the error bars indicate the standard deviation around the

mean value when using different APs as anchors.

Fig. 1c plots the probability of correct location estimation

for increasing noise standard deviation σ with n = 6 APs. It is

evident that even under low noise conditions RSS fingerprints

perform poorly. In contrast, the differential approaches are

more robust to noise and their performance degrades smoothly.

Although MDF and SSD achieve similar performance when

σ = 1 dBm, beyond that point the MDF approach outperforms

SSD by around 10%–20% when σ ≤ 6 dBm.

The effect of growing number of crowdsourcing devices

is depicted in Fig. 1d. For M = 1, only device D(1) is

used for building the radiomap, while the same device is

used for localization. Therefore, it is not surprising that RSS

performs best. However, when more devices are considered,

3This can be easily verified numerically using (23) for two heterogeneous
devices and four WiFi APs on the corners of the square area in Fig. 1a.



AP
1

AP
2

AP
3

AP
4

AP
5

AP
6

AP
7

AP
8

AP
9

AP
10

AP
11

AP
12

AP
13

AP
14

AP
15

AP
16

(a)

2 4 6 8 10 12 14 16

Number of Access Points [n]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty
 o

f 
C

o
rr

e
c
t 
L
o
c
a
ti
o
n
 E

s
ti
m

a
ti
o
n

RSS

SSD

MDF/DIFF

(b)

2 4 6 8 10 12 14

Standard Deviation of RSS Noise ( )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty
 o

f 
C

o
rr

e
c
t 
L
o
c
a
ti
o
n
 E

s
ti
m

a
ti
o
n

RSS

SSD

MDF/DIFF

(c)

1 2 3 4 5 6 7 8 9 10

Number of Crowdsourcing Devices [M]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty
 o

f 
C

o
rr

e
c
t 
L
o
c
a
ti
o
n
 E

s
ti
m

a
ti
o
n

RSS

SSD

MDF/DIFF

(d)

Fig. 1. (a) Localization setup for the performance analysis. Probability of correct location estimation for device D(1) for varying: (b) number of APs [M = 2

devices, σ = 3 dBm]; (c) noise standard deviation [M = 2 devices, n = 6 APs]; (d) number of crowdsourcing devices [σ = 3 dBm, n = 6 APs].

the performance of RSS drops rapidly and then starts to

gradually improve when M ≥ 6. Still the performance of RSS

is well below the differential methods. Both MDF and SSD

have a slight linear degradation as more devices contribute to

crowdsourcing, while MDF outperforms SSD by around 20%.

IV. EXPERIMENTAL RESULTS

A. Indoor Localization Datasets

KIOS dataset: This small-scale dataset contains WiFi RSS

values collected with 5 diverse devices, including a PDA, a

laptop, an Android tablet, and two different Android smart-

phones. The size of the office area is 560m2 and is fully

covered by 9 APs. There are 105 reference locations and 20

fingerprints have been collected in every location (i.e., 2.100

training fingerprints in total for each device). There are 96 test

locations that do not coincide with the reference locations and

10 test fingerprints are available in every test location (i.e.,

960 test fingerprints in total for each device).

UJIIndoorLoc dataset: This large-scale dataset contains WiFi

RSS values from tens of APs collected by more than 20

users and 25 Android devices at three buildings of Universitat

Jaume I with 4 or more floors and almost 110.000m2 [12]. We

report the results for those floors in various buildings where

around 100 or more test fingerprints are available.

B. Evaluation Process and Performance Metric

We use both real-life datasets to compare the traditional

RSS fingerprints against the differential fingerprinting methods

SSD [7] and MDF [9], as well as other approaches such as

HLF [5] and RBF that is similar to the rank-based method

used in FreeLoc [4]. For SSD, the AP that exhibits the least

average deviation of RSS values over the whole localization

area is set as anchor. We followed the same approach for

the HLF method to avoid the computational overhead of the

original method that uses all pair-wise AP combinations (e.g.,

in the UJIIndoorLoc dataset the original HLF fingerprints

would contain more than 3.570 values, thus incurring 40x

more computations in NN localization). The DIFF method [6]

is omitted as it provides exactly the same accuracy with MDF

at a considerably higher computational cost.

We compute the localization error defined as the Euclidean

distance between the actual user location and his/her location

estimated with the NN approach. We report statistics for the

cumulative error distribution and the central mark in the box

plots indicates the median error, the box edges correspond to

the 25th and 75th percentiles, and the whiskers extend to the

5th and 95th percentiles, respectively. The bar charts present

the mean localization error together with the 95% confidence

interval given by ±1.96σe/
√
|T |, where σe is the standard

deviation of the error and |T | is the number of test samples.

The 95% confidence interval indicates that the mean error falls

within the interval with a high degree of certainty.

The results for the KIOS dataset are illustrated in Fig. 2.

First, we focus on one device for localization (i.e., HTC Desire

smartphone) and consider all five devices for crowdsourcing

in Fig. 2a. We observe that the MDF and SSD approaches

outperform the HLF and RBF methods. MDF is slightly better

than SSD with the median error being well below 2m. Even

though the performance of RSS fingerprints is improved with

more crowdsourcing devices, still they fail to deliver the same

level of accuracy as MDF. This observation is confirmed in

Fig. 2b where we study the error of localizing the Samsung

Nexus S device for increasing number of crowdsourcing

devices M . When M = 1, only the Nexus S is used to

build the radiomap and the RSS fingerprints achieve the lowest

localization error. However, in case M = 2 their performance

degrades significantly, as the second device reports RSS very

differently from the Nexus S. This effect is gradually smoothed

out as more devices contribute data. The behavior of RSS is

in agreement with our analytical findings in Fig. 1d.

Figure 3 depicts the localization error using data from

Building ‘x’ and Floor ‘y’, denoted BxFy for brevity, of

the UJIIndoorLoc dataset. The MDF method outperforms

significantly all other methods at B1F1 as shown in Fig. 3a.

This is explained by the number of crowdsourcing devices

(i.e., 5 devices) and the difficulty in selecting the anchor AP

in such large setups for the SSD and HLF methods. Regarding

B0F1, where two devices are used for crowdsourcing, the

MDF method still provides lower error than SSD and HLF

by 1m and RBF by 2.5m, as shown in Table I. The RSS

method performs equally well with MDF because the devices

in both cases are Android devices that seem to report RSS

similarly. Figure 3b plots the localization error at B1F2 for
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Fig. 2. KIOS dataset. (a) localizing the HTC Desire smartphone with
crowdsourced data for the radiomap from all five devices; (b) localization
of the Nexus S smartphone for increasing number of crowdsourcing devices.
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Fig. 3. Results with the UJIIndoorLoc dataset in Building ‘x’ and Floor ‘y’.
(a) B1F1; (b) error at B1F2 for varying percentage of APs.

varying number of APs (shown as % of all APs in that floor).

The results are averaged for ten scenarios with randomly

selected subsets of APs. The RSS fingerprints do not have

the oscillations predicted analytically (see Fig. 1b) due to

the irregular deployment of the WiFi APs. Even though the

performance of RSS may seem to be close to MDF, the median

error in Table I suggests that in some cases, e.g., B1F1 or

B1F2, the RSS fingerprints may lead to lower accuracy.

V. CONCLUSIONS

We investigate the effectiveness of WiFi RSS data trans-

formation methods against device diversity for crowdsourced

localization systems. Our key findings are i) RSS values should

be avoided as in most cases they degrade the quality of the

crowdsourced radiomap and lead to higher errors; ii) the use

of RSS values could be justified in areas covered by a large

number of WiFi APs, when the volume of crowdsourcing

TABLE I
MEDIAN LOCALIZATION ERROR [M] IN UJIINDOORLOC DATASET

BxFy∗/ B0F1 B0F2 B1F1 B1F2 B2F1

Method

RSS 5.62 4.83 9.46 8.51 5.57

MDF 5.44 4.87 8.91 7.44 5.53

SSD 6.44 6.27 13.45 9.67 7.38

HLF 6.44 5.55 12.35 9.57 6.40

RBF 8.03 8.63 12.50 18.09 7.86
∗Building ‘x’ and Floor ‘y’.

devices is high, or if the devices are not highly heterogeneous,

e.g., Android devices equipped with similar WiFi adapters; iii)

differential methods deliver higher accuracy compared to other

transformation methods; and iv) the MDF method achieves the

best performance under all crowdsourcing scenarios. These

findings can be viewed as design guidelines for real systems

depending on the size of the area and number of WiFi APs, the

volume and the heterogeneity of the crowdsourcing devices.

Compared to traditional RSS, the MDF method addresses

device diversity with a marginal overhead (i.e., to compute

the mean and subtract from the RSS values in the origi-

nal fingerprint), while preserving the fingerprint dimension.

Importantly, MDF can be applied as a data pre-processing

technique regardless of the localization algorithm, e.g., NN

or more advanced fingerprint matching approaches. As part of

our future work, we plan to integrate the MDF method into our

Anyplace4 crowdsourced service [13] to further assess its value

and measure the power consumption on real mobile devices.
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