
IMCF: The IoT Meta-Control Firewall
for Smart Buildings

Soteris Constantinou
University of Cyprus

2109 Nicosia, Cyprus

constantinou.sotiris@cs.ucy.ac.cy

Antonis Vasileiou
University of Cyprus

2109 Nicosia, Cyprus

avasil06@cs.ucy.ac.cy

Andreas Konstantinidis
Frederick University

1036 Nicosia, Cyprus

com.ca@frederick.ac.cy

Panos K. Chrysanthis
University of Pittsburgh

Pittsburgh, PA 15260, USA

panos@cs.pitt.edu

Demetrios Zeinalipour-Yazti
University of Cyprus

2109 Nicosia, Cyprus

dzeina@cs.ucy.ac.cy

ABSTRACT

In this demonstration paper, we present an innovative IoT Meta-

Control Firewall (IMCF), which allows users to schedule their

IoT devices in smart buildings (e.g., heating, cooling, lights) in or-

der to reach some long-term energy consumption objective (e.g.,

consume less than 400 kWh in December) while, at the same

time, retaining high levels of user convenience (comfort). IMCF

internally deploys an AI-inspired Energy-Planner (EP) algorithm

that exploits domain-specific operators to balance the trade-off

between convenience and energy consumption. Our framework

then filters the rules of users in a way that these do not conflict

with the long-term objectives (i.e., like a network firewall). We

demonstrate IMCF using a prototype system we have developed

in the Laravel PHP web framework using the open Home Au-

tomation Bus (OpenHAB), the Linux crontab daemon and Any-

place for building modeling. In our demonstration scenario, atten-

dees will be able to observe the execution and benefits of IMCF

on a graphical dashboard using pre-configured or custom-made

Meta-Rule-Table profiles.

1 INTRODUCTION

Internet of Things (IoT) refers to a large number of physical de-

vices being connected to the Internet that are able to “see", “hear",

“think", “react", perform tasks, as well as communicate with each

other using open protocols [8]. According to Gartner1, it is ex-

pected that the number of IoT devices per house will increase to

more than 500 smart devices by 2022. Many IoT devices also en-

able the execution of Rule Automation Workflows (RAW), which

span from simple predicate statements to procedural workflows

capturing a smart actuation pipeline in tools like IFTTT [5], con-

trolling Philips Hue lights, BMW i3 EVs or Daikin A/Cs [7][4],

Apilio.io, or Apple Automation.

RAW aim to meet the convenience level of users under spe-

cific conditions (e.g., “warm house to 22°C if cold or preheat

Electric Vehicle when approaching”). In the simplest case, a user

expresses preferences manually through a vendor-specific smart-

phone app / integrated app (e.g., see Fig. 1). This process requires

continuous attention by custodians, making it a cumbersome pro-

cess that generates erroneous executions and that clearly calls for

more automated (i.e., “smarter”) approaches.

1Gartner Inc., URL: https://tinyurl.com/ycrxsmy6

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the

24th International Conference on Extending Database Technology (EDBT), March

23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Figure 1: The openHAB bridge gives the privilege to users to

adapt a Meta-Rule-Table (MRT) profile as necessary

One of the most straightforward approaches to achieve a smarter

RAW is to utilize the so-called trigger-action model. Users con-

trol the behavior of an IoT by specifying triggers (e.g., “if it is

sunny outside”) and their resultant actions (e.g., “turn off the

lights”). Because of its conceptual simplicity, the trigger-action

model (a.k.a. Event-Condition-Action) has attracted significant

attention with ifttt.com (“If This Then That”) becoming one of

the first large-scale deployments. Services like Apilio expanded

the expressiveness of the RAW with Boolean predicates (e.g.,

conjunctions) and Apple Automation [3] even introduced pro-

cedural programming constructs, like variables, while loops, if

statements and functions to advance RAW actuations.

However, none of the above RAW technologies enables indi-

viduals or group of users to express their convenience (comfort)

preferences while achieving some long-term objective. Similarly,

prior research [6] was mainly concerned with improving comfort

levels of HVAC system but not long-term energy planning tar-

gets. In our scenario, the long-term objective relates to energy

consumption (e.g., in kWh), which is motivated by European’s

Commission calls for a climate-neutral Europe by 20502 . Partic-

ularly, we aim to consume energy more intelligently and within

margins we define as persons or group of users.

In this demo we present an innovative system, coined the IoT

Meta-Control Firewall (IMCF) [2], which aims to fill the gap

of manual RAW tuning to reach the energy consumption targets.

The user (or group of users) start out by defining a vector of RAW

rules, dubbed MRT , and an Energy Consumption Profile, dubbed

ECP . The high-level objective is to identify among all MRT rules

2EU 2050 long-term strategy, https://tiny.cc/9wu8iz

https://tinyurl.com/ycrxsmy6

Figure 2: IMCF Graphical User Interface: Integration of the IMCF Software Library in the openHAB Home Automation Stack.

From left to right: a) Interactive and Automated Menu; b) Dashboard for smart space current state linked with Anyplace Viewer;

c) Meta-Rule-Table Configurator; and d) IMCF Results.

the ones that must be dropped so that the user stays within the

desired energy budget according to the ECP history (e.g., con-

sume less than 400 kWh in December). For this purpose, it uti-

lizes an intelligent search algorithm, coined EP (Energy Planner),

which goes over the exponentially large search space of
∑
r ≤n r -

combinations (where n = |MRT |), yielding quickly the rules to be

dropped. Particularly, IMCF is composed of an intelligent energy

amortization process and an AI algorithm for balancing the trade-

off between convenience and energy consumption, and satisfying

the RAW pipelines of users in a way that these do not conflict

with the long-term objectives.

Considering several system implications, IMCF can be imple-

mented in various ways such as the following: (i) a cloud meta-

service, which guides the IFTTT cloud service that in turn con-

trols a local controller (e.g., Linux, as in the case of OpenHab),

which controls the sensors/actuators (e.g., A/C unit); or (ii) a lo-

cal controller (filtering rules out at the network level on the local

controller).

2 THE IOT META-CONTROL FIREWALL

(IMCF) OVERVIEW

In this section, we describe a prototype system we have devel-

oped for IMCF using the open Home Automation Bus (Open-

HAB)3, the Linux crontab daemon, Anyplace for building mod-

eling [1], as well as the Laravel PHP web framework following

the model–view–controller architectural pattern.

We start out with a discussion of the system architecture, fol-

lowed by the IMCF algorithm, and then describe the Graphical

User Interface (GUI) we have developed. The GUI integrates di-

rectly into OpenHAB’s mobile and web Panel view for both inter-

active management of IoT and automated management of Energy-

aware MRT pipelines using the EP described below.

3OpenHAB, https://openhab.org

2.1 System Architecture

Our system architecture comprises of the following components:

(i) a full-fledge local controller implemented inside the openHAB

stack, which is a smart home management software; and (ii) IMCF,

which is the software system that encapsulates the complete ap-

plication logic of the energy management stack we propose along

with the respective user interfaces.

Local Controller (LC): is a java-based system that can be in-

stalled on a micro device, like a Linux Raspberry PI, running on

the local network of a user. The LC will be in direct communi-

cation with the IoT devices (i.e., Things (TG)) to instruct them

based on the preferences registered by a user. A user will typi-

cally download the openHAB smartphone application (APP), for

iOS or Android, and interact with TG through LC. For the im-

plementation of LC we decided to extend the openHAB stack,

which is a vendor and technology-agnostic open source automa-

tion software for smart home that provides a rich ecosystem of

bridges through which a user can interact directly with IoT de-

vices (e.g., Daikin Smart A/C, Phillips HUE lights) both locally

and remotely. This gives us the benefit to achieve maximum IoT

market compatibility as the integration of IoT is always an im-

mense challenge.

To realize the operation of LC consider, for example, a user

inside his smart space that uses an APP to increase the tempera-

ture of an A/C from 21 to 25 degrees Celsius (see Figure 2a-b).

This manual interaction goes directly to LC that eventually com-

municates with TG (on older units this is typically refers to unen-

crypted http communication channels, either http querystring or

in some cases JSON web 2.0 interactions). When a user’s APP

is outside a smart space, the network firewall and Network Ad-

dress Translation (NAT) will obviously not let this user interact

with LC. As such, the user’s APP connects to the Cloud Con-

troller (CC), which is a server on the public Internet that com-

municates and controls LC remotely. The complete picture can

tentatively be complemented by a Cloud Meta-Controller (CMC),

like IFTTT, which can enable the user to configure and run vari-

ous custom rules. CMC would in this case interact with CC that

Table 1: Evaluating our system prototype with respect to En-

ergy Consumption (FE) and Convenience Error (FCE)

Time Duration Energy Consumption (FE) Convenience Error (FCE)

Week 130.64 kWh 2.35%

Table 2: Individual Resident Convenience Error (FCE)

Users Convenience Error (FCE)

Father 0.8006%

Mother 0.7899%

Daughter 0.7595%

would in turn interact with LC that would eventually interact with

TG, all under the manual control of the user APP.

The IMCF Component: is a software extension to LC we have

implemented to enable the adaptation of convenience preferences

to meet the long-term energy planning targets of individuals or

group of individuals. It has been developed in a way that encap-

sulates the implementation of the EP algorithm but also the GUI

and storage necessary to allow the user to interact with the system.

EP is implemented as a JAVA library, which takes the user con-

figurations from a local MariaDB persistency layer. The storage

layer is populated by the user using the APP, which has been con-

figured in a way to integrate seamlessly the MRT rule definition

process through a web-based GUI (see Figure 2c,d). The GUI

code is written in the Laravel PHP web framework, as well as

JavaScript and HTML. The GUI code execution relies on a web-

server supporting PHP while for the IMCF EP library a cron job

daemon is assumed (available on Linux) that reliably invokes the

Energy Planning in fixed time intervals (e.g., every few minutes).

In case devices have to be turned on or off, the IMCF system has

the following options in our system:

• Binding-mode, where IMCF exploits the rich ecosystem of

bridges available on the openHAB open source project to

interact with local devices. We use this as the default mode,

as it allows our platform to scale up to a wide spectrum of

IoT devices.

• Extended mode, where IMCF implements locally the cus-

tom instructions for enabling and disabling the various TG

devices in the smart space of a user.

Given that many of the IoT communications are unencrypted,

this can be easily captured by deep packet analyzers like

Wireshark. Moreover, to avoid any additional CMC, CC

or LC interactions with TG, we also configure the LC net-

work firewall with the iptables command to disable

TCP flows to designated TG devices on the local network.

In this case, IMCF works actually as a real network fire-

wall by blocking all outgoing traffic from LC to TG.

Case scenario: We have deployed an instance of our real pro-

totype system for a family of three persons for one week. Partic-

ularly, we allowed each person to configure their personal pref-

erences using the Mobile APP that interacts with an IMCF-LC

node on a Linux VM on our datacenter described earlier. Partic-

ularly, each individual resident entered approximately three dif-

ferent meta-rules according to their personal preferences. One

of them have set the weekly energy consumption (kWh) limit

to 165kWh. This results in configuration data of approximately

65 bytes / user stored in the MariaDB persistency layer. In or-

der to measure the environmental parameters (i.e., temperature,

light) we use data from the open weather forecast API. We mea-

sure the performance of the proposed EP framework in regards

to Energy Consumption (FE) and Convenience Error (FCE). The

FE and FCE results for our evaluation are summarized in Table 1.

In respect to FCE our observation is that EP is indeed an efficient

approach for retrieving great user satisfaction, as it performs in 4

seconds on average with FCE ≈ 2.35%. Table 2 demonstrates for

each individual resident their own Average Convenience Error

values in respect with their configured meta-rules, showing both

a consistent and high satisfaction close to 99.2% for all residents.

Another observation is that FE ≈ 130.64 kWh is within the pre-

ferred budget limit as pre-configured by the user, and the system

behaves correspondingly to what we observed in the simulations.

Please note, this particular framework can be equally utilized in

various cases such as CO2 emission deduction, or any other sce-

nario type that requires a planning to conserve some kind of re-

sources.

2.2 The IMCF algorithm

The IMCF algorithm is composed of two subroutines: (i) the

Amortization Plan (AP); and the (ii) the Energy Plan (EP). The

amortization plan is responsible for calculating the maximum en-

ergy budget constraint (coined Ep) through a pre-selected amor-

tization formula. Then an artificial intelligence approach is exe-

cuted every t seconds (e.g., hourly, daily, monthly, yearly pref-

erence) over a time period p (i.e., the complete duration of the

execution) for generating an energy plan solution s∗ for optimiz-

ing the Convenience Error

min FCE =

t∑

k=1

(
1

N

N∑

i=1

D∑

j=1

cej (MRi)), (1)

where cej is the difference between the desired output value Ω
j
i ∈

ℜ of a rule set by a user (temperature or light intensity level)

and the actual value O
j
i ∈ ℜ set by the controller, given by:

ce = |Ω
j
i | − |O

j
i |.

Subject to satisfying the Energy Consumption FE (s
∗) ≤ Ep , where:

FE =

t∑

k=1

(
1

N

N∑

i=1

D∑

j=1

ej (MRi)), (2)

Ep is total available energy budget for the complete period p dur-

ing which the execution of our algorithm takes place, N is the

total number of meta-rules, D the set of all IoT devices and ej is

the energy consumption of device j given the action defined by

output O
j
i of meta-rule MRi , given by:

E =

ej , if O
j
i is executed

0, otherwise
,

where ej is the energy cost of device j for MRi .

Amortization Plan (AP) Algorithm. The AP () subroutine is

initially executed for calculating the energy budget constraint Ep ,

subject to a monthly residence Energy Consumption Profile ECP .

There are several amortization strategies that can be used, such

as Linear Amortization Formula, Balloon Linear Amortization

Formula, and ECP-based Amortization Formula. Given that our

approach requires no training data and only a primitive MRT pref-

erence profile, this can be easily integrated in smart actuations

platforms.

Energy Plan (EP) Algorithm. An energy plan solution is a

vector s =< s1, . . . , sN >. A vector component si represents a

meta-rule in the meta-rule-table MRT , where si = 0 means ignor-

ing meta-rule at position i of table MRT and si = 1 means adopt-

ing meta-rule at position i. We have adopted a hill-climbing al-

gorithm, an iterative local search heuristic, which doesn’t require

a learning history (like respective Machine Learning techniques),

doesn’t require a target function (e.g., like A*) and is straightfor-

ward to be implemented in a resource-constraint setting like local

smart controllers (e.g., Raspberry). At the beginning of the local

search heuristic an initial solution s∗ is developed that will spec-

ify the initial state of the algorithm either randomly or determin-

istically. For the optimization step, a hill-climbing local search

heuristic is utilized for local optimization with neighborhoods

that involve changing up to k components of the solution, which

is often referred to as k-opt. Each solution s is evaluated using

the performance metrics FE and FCE . A solution s is considered

better and replaces the current best solution s∗ if (FE (s) ≤ Ep)

&& (FCE (s) < FCE (s
∗)). The energy planner stops when τmax

iterations are completed. Alternatively, the algorithm can iterate

until ∄s |FCE (s) < FCE (s
∗).

2.3 Graphical User Interface (GUI)

Our prototype GUI provides all the functionalities for a user par-

ticipating in IMCF. The GUI is divided into a Meta-Rule-Table

interface and the OpenHAB Rules Table, respectively as shown

in Figure 2b-c. The Meta-Rules interface prompts users to define

kWh preferred limit, temperature and light values for any config-

ured time slots. The OpenHAB Rules Table records are retrieved

through the OpenHAB Rest API system consisted of smart device

sensor measurements installed and pre-configured in a building.

These rule combinations are used by the AI Energy Planner algo-

rithm to satisfy the user needs, while keeping the balance between

convenience and energy consumption.

At a high level, our GUI enables the following functions: (i)

record OpenHAB item measurements/values on local storage and

present those on a table; (ii) configure various meta-rules in re-

gards of kWh limit, temperature and light values; (iii) operate

IMCF framework and get an efficient execution considering user

satisfaction along with balanced FCE and FE .

3 DEMONSTRATION SCENARIO

During the demonstration, the attendees will be able to appreciate

the key components in IMCF, as well as the adaptability and the

performance of our propositions (see Figure 2).

3.1 Demo Artifact

We have implemented a prototype of IMCF as a standalone pro-

gram that is loaded on a Linux-based local controller. Particularly,

we implemented a graphical user interface in the Laravel PHP

web framework, following the MVC architectural pattern where a

user has the privilege to upload a MRT profile that is stored on the

filesystem of the Linux device. A cron job has been programmed

in order to initiate our energy planner every few seconds. Every

time our program runs, it decides whether certain local IPs have

to be banned to satisfy user’s profile by interacting with the Linux

firewall using the iptables commands.

3.2 Demo Plan

The conference attendees will have the opportunity to interac-

tively engage with the OpenHAB and MRT user profile website

by setting up configurations through a smartphone. We will pre-

load a variety of synthetic and web-accessible rules to the MRT

user profile website back-end. The loaded rules will capture the

structure and needs of real residential data and will be very use-

ful to visually demonstrate how the IMCF algorithm works in

real time through the OpenHAB application.

The main objective of our intelligent algorithm is to identify

among an exponentially large search space of MRT rule combi-

nations the ones that must be dropped so that the user stays within

the desired energy budget. In order to present the benefits of our

propositions to the attendees, we will provide visual cues that will

enable the audience to understand the performance benefits (i.e.,

CPU time) and the negligible reduction in energy consumption

and convenience error we have observed during the experiments.

We will also provide conference attendees the opportunity to

create custom MRT profiles through the website. Our hypothesis

is that many data engineering researchers and practitioners would

feel more comfortable to formulate MRT profile predicates, as op-

posed to be limited within the boundaries of well-defined MRT

templates provided. We will provide participants the possibility

to upload an actual building plot through Anyplace. The Open-

HAB interface will allow the attendees to rapidly visualize the

result-sets on a smartphone, using fancy charts (pie, bar, etc.)

when the rules get enabled or disabled by the proposed firewall,

respectively. Our particular aim here will be to describe how the

IMCF structure, residing on the OpenHAB, will be accessible to

enable/disable rule services.

4 FUTURE WORK

In the future, we plan to further investigate multiple energy plan-

ners with conflicting interests but also to investigate the so-called

IMCF-Cloud extensions that will enable IMCF to operate as a

CMC controller in the cloud. We also aim to look at CO2 re-

ductions methods with algorithms geared towards the environ-

ment. Finally, we aim to investigate power workload identifica-

tion methods for power-hungry devices (e.g., white devices, elec-

tric vehicles, heating) and how to reschedule those workloads in

a environmental friendly manner.

REFERENCES
[1] Marileni Angelidou, Constantinos Costa, Artyom Nikitin, and Demetrios

Zeinalipour-Yazti. 2018. FMS: Managing Crowdsourced Indoor

Signals with the Fingerprint Management Studio. In 19th IEEE In-

ternational Conference on Mobile Data Management. pp. 288–289.

https://doi.org/10.1109/MDM.2018.00054

[2] Soteris Constantinou, Andreas Konstantinidis, Demetrios Zeinalipour-Yazti,

and Panos K. Chrysanthis. 2021. The IoT Meta-Control Firewall. In 37th IEEE

International Conference on Data Engineering. IEEE Computer Society, April

19 - April 22, Chania, Crete, Greece, 12 pages (accepted).

[3] X. Meng, W. Cong, H. Liang, and J. Li. 2018. Design and implementation

of Apple Orchard Monitoring System based on wireless sensor network. In

IEEE International Conference on Mechatronics and Automation. 200–204.

https://doi.org/10.1109/ICMA.2018.8484350

[4] Xianghang Mi, Feng Qian, Ying Zhang, and XiaoFeng Wang. 2017. An Empiri-

cal Characterization of IFTTT: Ecosystem, Usage, and Performance. In Internet

Measurement Conference. pp. 398–404.

[5] Steven Ovadia. 2014. Automate the Internet With “If This Then

That” (IFTTT). Behavioral & Social Sciences Librarian 33, 4

(2014), 208–211. https://doi.org/10.1080/01639269.2014.964593

arXiv:https://doi.org/10.1080/01639269.2014.964593

[6] Daniel Petrov, Rakan Alseghayer, Panos K. Chrysanthis, and Daniel Mosse.

2019. Smart Room-by-Room HVAC Scheduling for Residential Savings and

Comfort. In The 10th Intl. Green and Sustainable Computing Conf. pp. 1–7.

[7] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Men-

nicken, Noah Picard, Diane Schulze, and Michael L. Littman. 2016. Trigger-

Action Programming in the Wild: An Analysis of 200,000 IFTTT Recipes.

In ACM CHI Conference on Human Factors in Computing Systems (2016),

3227–3231.

[8] Lina Yao, Quan Z. Sheng, and Schahram Dustdar. 2015. Web-Based Manage-

ment of the Internet of Things. IEEE Internet Computing 19, 4 (2015), pp.

60–67.

https://doi.org/10.1109/MDM.2018.00054
https://doi.org/10.1109/ICMA.2018.8484350
https://doi.org/10.1080/01639269.2014.964593
http://arxiv.org/abs/https://doi.org/10.1080/01639269.2014.964593

	Abstract
	1 Introduction
	2 The IoT Meta-Control Firewall (IMCF) Overview
	2.1 System Architecture
	2.2 The IMCF algorithm
	2.3 Graphical User Interface (GUI)

	3 Demonstration Scenario
	3.1 Demo Artifact
	3.2 Demo Plan

	4 Future Work
	References

