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Abstract
The Internet of Things (IoT) revolution has introduced sensor-rich devices to an
ever growing landscape of smart environments. A key component in the IoT sce-
narios of the future is the requirement to utilize a shared database that allows
all participants to operate collaboratively, transparently, immutably, correctly
and with performance guarantees. Blockchain databases have been proposed
by the community to alleviate these challenges, however existing blockchain
architectures suffer from performance issues. In this paper we introduce Tri-
abase, a novel permissioned blockchain system architecture that applies data
decaying concepts to cope with scalability issues in regards to blockchain con-
sensus and storage efficiency. For blockchain consensus, we propose the Proof
of Federated Learning (PoFL) algorithm which exploits data decaying models
as Proof-of-Work. For storage efficiency, we exploit federated learning to con-
struct data postdiction machine learning models to minimize the storage of bulky
data on the blockchain. We present a detailed explanation of our system archi-
tecture as well as the implementation in the Hyperledger fabric framework. We
use our implementation to carry out an experimental evaluation with telco big
data at scale showing that our framework exposes desirable qualities, namely
efficient consensus at the blockchain layer while optimizing storage efficiency.
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1 Introduction
Internet of Things (IoT) refers to a large number of physical devices being connected
to the Internet that are able to see, hear, think, perform tasks as well as communi-
cate with each other using open protocols [1–4]. IoT devices are connected to Cloud
and Edge computing appliances through massively parallel I/O channels (e.g., 5G,
Wi-Fi 6) with millisecond latency offering new opportunities in industrial optimiza-
tion, human health, and well-being as well as safety. This will procreate tremendous
opportunities for IoT applications between multiple parties, such as collaborative
multitasking techniques [5], machine learning [6], cooperative benchmarking [7], and
augmented reality technology [8].

A key component in the IoT scenarios of the future is the requirement to utilize a
shared database that allows all participants to operate collaboratively with more func-
tionality. The shared database can bridge the actual gap between the data generated
from the IoT applications [9] and the rate that these are processed and analyzed in
real-time. The objective is to enable users execute updates and queries on the collab-
orative database while preserving a consistent view among all users maintaining the
system consistency and transparency. Moreover, it is essentially common to be com-
promised by malicious outsources. To mitigate the problem described, an innovative
design of a shared database with high performance is required for all the partic-
ipants, in order to collaborate among each other with trust. Blockchain databases
have been proposed by the community to alleviate these challenges, however exist-
ing blockchain architectures suffer from performance issues measured in terms of
throughput and latency. In this situation, the transactions are basically executed in a
sequential manner and this, in conjunction with confidentiality issues, does not leave
much space for scaling.

It is imperative to devise a database architecture that can withstand billions of
transactions per second, as opposed to thousands transactions per second that is cur-
rently the case for typical blockchains due to the expensive verification cost. For
example, the popular Bitcoin network typically supports transaction ingestion rates of
7 sec/ TX, Hyperledger Fabric: 3000 TX/sec and Bitcoin Satoshi Vision (SV): 9000
TX/sec. In an IoT environment however, the ingestion rate is usually much higher
and even more distributed, which calls for new architecture types we discuss in this
work.

In order to motivate our description, we now explain a Web 3.0 scenario in the
scope of Telco Big Data (TBD) [10]. A telecommunication company (telco) is tra-
ditionally only perceived as the entity that provides telecommunication services,
such as telephony and data communication access to users. However, the radio and
backbone infrastructure of such entities spanning densely most urban spaces and
widely most rural areas, provides nowadays a unique opportunity to collect immense
amounts of data that capture a variety of natural phenomena on an ongoing basis,
e.g., traffic, commerce, mobility patterns and user service experience [10], [11], [12].
The ability to perform analytics on the generated big data within tolerable elapsed
time and share it with key TBD enablers (e.g., municipalities, public services, star-
tups, authorities, and companies), elevates the role of telcos in the realm of future
smart cities from pure network access providers to information providers. Consider
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Fig. 1 The Triabase Architecture Layers.

a TBD scenario in which telcos aim to share network health data from cell towers
(e.g., signal strength, call drops, bandwidth measurements) with public authorities for
monitoring and compliance (e.g., EMF-compliance). Huawei alone reports 5TBs/day
for 10M clients (i.e., 2PB/year) for Shenzhen, China, for a respective telco big data
scenario. From an architectural perspective the challenge is how to transparently and
immutably store the collected massive velocity data at the edge of each telecommu-
nication network in order to facilitate efficient and scalable data sharing and access.
Storing big data in a centralized way is not a preferable choice, because it doesn’t
fulfill any of these requirements.

In this paper we propose Triabase 1 (inspired from Greek “Tria”, meaning
“three”), being a database architecture designed for the Web 3.0 era. This new era
envisions a more decentralized and open Web with greater utility for its users, beyond
the original Semantic Web vision being trust-less and permission-less and entailing
Machine Learning, IoT and Artificial Intelligence. Triabase is a blockchain datas-
tore system that carries out machine learning on IoT feeds at the edge, abstracts
machine learning in primitive blocks that are subsequently stored and retrieved from

1Triabase. https://triabase.cs.ucy.ac.cy/
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the blockchain. In a permissioned blockchain the distributed ledger is not publicly
accessible and we use this formulation for to ease the uptake without hindering the
uptake of permission-less counterpart trust solutions in the future. In Triabase, we
have two types of nodes those that store the entire shared database, and the others that
use the database for their own operations, such as sending query and update requests
to the blockchain shared ledger. We expect the blockchain nodes to be synchronized
under the decentralized blockchain network. The clients that use the blockchain only
for database operations store only the appropriate block header in contrast with the
full nodes that store the entire blockchain ledger. Triabase is organized in a tiered
architecture (see Figure 1) that comprises of: (i) a Storage layer, which includes a
local document store and blockchain node used for distributed data retrieval; (ii) a
Data Postdiction layer, which abstracts locally-ingested data into machine learning
models using federated learning; and (iii) an Application layer that includes APIs and
access methods to initiate the search and retrieval functions at the application layer.

Our proposed Triabase architecture, has a number of provisionings to cope with
the network bottleneck for the bulk of conventional machine learning models avail-
able in different sectors. Typical models found on Vertex.ai might be up to several
GB capturing a range of applications from Computer Vision, Generative AI, MLOps
and general Data Science. Our proposed Triabase system, is agnostic of the model
type and size, as it essentially abstracts raw data into data postdiction models. This
provides generality as it is not bound to specific types of ML models. To cope with
large scale models, we utilize a combination of techniques enumerated below:

(i) we provide the possibility to transcode ML models down to lighter versions
using fp16 (floating point 16) editions, which are typically also deployed in sce-
narios of tinyML and tensorflow lite on mobile devices. In this case, an original
model size of 20 GB can be reduced in half or more down to 4-5 GB;

(ii) we optimize SQL queries by implementing batching principles that allow to
minimize the communication cost in the execution of continuous queries on
velocity data emerging from IoT scenarios. By minimizing the number of feder-
ated learning parameters that are communicated during the execution of a query,
we can dramatically reduce the network load;

(iii) we implement sharding, which is a popular on-chain scalability method that
focuses on scattering the blockchain network into more controllable, smaller
units known as shards. The shards would then be executed concurrently by the
network and process a fraction of the group’s transaction load; and

(iv) We use a scalable consensus algorithm that provides greater scalability and
transaction throughput. Byzantine Fault Tolerance (BFT) consensus techniques
have been one of the most reliable tools for dealing with the Byzantine Gen-
erals Problem. BFT generally refers to a distributed system characteristic that
suggests the necessity for continual consensus, despite multiple antagonistic
participants in the network.

For extremely large models, like proprietary GPT-4 (OpenAI) or BART (Google),
designated data centers with high performance HPC with NVLink, SmartNIC and
RDMA might be necessary, but these remain outside the scope of this work.
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This paper builds on our previous work in [13] [14], in which we presented the
preliminary design and results of our Triabase architecture. In this paper we propose
several new improvements, particularly a structured and tiered architecture along
with an extensive description of implementing the architecture in the Hyperledger
Fabric framework (including relevant algorithms and techniques). Additionally, all
our propositions are evaluated using real telco data in a prototype architecture we
have developed. The overall contributions of our work are summarized as follows:

– We introduce Triabase, a platform for a permissioned blockchain datastore that
employs data decaying principles to ingest massive amounts of IoT data swiftly;

– We propose a new consensus empowering collaborative mechanism namely
Proof of Federated Learning (PoFL) to share parameters over distributed multi-
ple parties to reduce the risk of data leakage and to protect federated nodes from
being tampered;

– Triabase integrates the fabric open-source platform to provide a more realistic
blockchain assessment using Telco Big Data.

The remainder of this paper is structured as follows. Background and related
work is included in Section 2. An overview of the Triabase architecture is presented
in Section 3, where we discuss the specific internal techniques of each layer in our
architecture. Section 4 presents our prototype architecture and its user interfaces. In
Section 5, we describe our experimental methodology, the datasets, and evaluation
metrics while Section 6 presents our experimental results. Finally, we summarize our
conclusions and future work in Section 7.

2 Background and Related Work
In this section we overview the background and related work with a focus on: (i)
federated learning; (ii) blockchain data management; and (iii) data decaying, both of
which are instrumental in the design of our architecture.

2.1 Federated learning
Federated learning [15] is a machine learning approach that protects privacy by train-
ing models on several devices using local data samples without needing to send the
whole model to the aggregators but instead only an updated version. Federated learn-
ing presents a number of difficult challenges, including coordinating member actions,
adjudicating participant rewards, and aggregating models. The majority of systems
now in use have a centralized approach, requiring coordination from a reliable central
authority. Such a strategy has a number of drawbacks, such as assault susceptibility,
lack of trust, and challenges in estimating incentives [16].

To properly protect the privacy of companies and customers, several federated
learning issues must be addressed. The authors of [17] categorize existing system
models into three classes: decoupled, coupled, and overlapped, according to how the
federated learning and blockchain functions are integrated. Then, they compare the
advantages and disadvantages of these three system models, especially focusing on
the challenges issues on BlockFed, and investigate corresponding solutions. Finally,
they identify and discuss the future directions, including open problems in BlockFed.
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In another survey, authors of [18] explained the rationale behind MEC (Mobile Edge
Computing) and discussed how Federated Learning may be used as an enabling tech-
nology for group model training at mobile edge networks. The foundations of DNN
model training, Federated Learning, and system architecture for Federated Learning
at scale are then discussed. They also provide thorough assessments, analyses, and
comparisons of various implementation strategies for new implementation difficulties
in Federated Learning. Costs associated with communication, resource allocation,
data privacy, and data security are among the problems. Additionally, the authors
talk about how Federated Learning may be used for privacy-preserving mobile edge
network optimization. Finally, they talk about problems and potential future study
areas. In addition in article [19] the authors of this article build FedIoT platform that
includes the FedDetect algorithm for detecting anomalous data on-device and a sys-
tem architecture for federated learning on IoT devices. Furthermore, the authors are
building FedDetect learning framework, which boosts performance by employing a
cross-round learning rate scheduler and a local adaptive optimizer (such as Adam).
They analyze the model and system performance of the FedIoT platform and the Fed-
Detect algorithm. The results show that federated learning is effective in identifying
a greater variety of attack types that happened at numerous devices. According to the
system efficiency study, end-to-end training time and memory costs are reasonable
and show promise for IoT devices with limited resources.

The authors of [20], remediate this problem by introducing the concept of
proof-of-learning in ML. Inspired by research on both proof-of-work and verified
computations, they observe how a seminal training algorithm, stochastic gradient
descent, accumulates secret information due to its stochasticity. This produces a natu-
ral construction for a proof-of-learning which demonstrates that a party has expended
the compute require to obtain a set of model parameters correctly. In particular, their
analyses and experiments show that an adversary seeking to illegitimately manufac-
ture a proof-of-learning needs to perform at least as much work as is needed for
gradient descent itself. They also instantiate a concrete proof-of-learning mechanism
in both of the scenarios described above. In model ownership resolution, it protects
the intellectual property of models released publicly. However, the authors lack the
novelty of how the distributed process happens and how the nodes reach agreement
or decide to commit blocks and how we can protect the privacy of the data. Further-
more, they are not targeting IoT devices and finally, there is a condition to adjust a
lot of parameters.

Since federated learning is advocated as a solution to the issue of privacy data
protection in machine learning, we must make sure that the training model in feder-
ated learning does not divulge users’ personal data [21]. In a dispersed context, the
quantity of data on each mobile device is insufficient, while a big amount of data is
needed to train a model with high performance in classical machine learning [22].
On the other side, centralizing data collection might result in significant costs. For
that reason, federated learning mandates that each device utilize local data to train
the local model, which is subsequently aggregated into a global model on the server.
In the federal environment, there are many edge devices, and the data stored on these
devices may not be independent and identically distributed (Non-IID).
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2.2 Blockchain Data Management
The main usage of the blockchain architecture is to keep records on an immutable
chain of blocks, so later on, nodes agree on the shared state across a network of
untrusted participants. Thus, it forms the blockchain platform that can be viewed
as a distributed (transaction-log or) database system. The blocks are agreed by the
majority of validators according to the consensus protocols that tolerate Byzan-
tine faults. The most well-known platforms include Capera [23], Hyperledger [24],
Monoxide [25]. This design does not require a centralized server and operates in
untrusted environments of arbitrary nodes. The state of the art and technical empha-
sis on the most recent developments in the underpinnings of blockchain systems are
first presented in this book [26]. It addresses hot topics in blockchains from a the-
oretical perspective, including cryptographic primitives, consensus, formalization of
blockchain properties, game theory applied to blockchains, and economic issues. It
is a collaborative work between experts in cryptography, distributed systems, formal
languages, and economics.

The authors of [23] introduce a system named Caper, a permission blockchain
architecture based on an acyclic graph and on three consensus protocols to sup-
port internal and all cross-application transactions. Moreover, [27] introduces a novel
framework, called vChain, which is able to improve the storage and computing
costs of the user and employs verifiable queries to ensure the system integrity. The
design of a privacy-preserving contact tracing framework to ensure the integrity of
the tracing procedure has not been sufficiently studied and remains a challenge. In
paper [28], the authors propose P2B-Trace, a privacy-preserving contact tracing ini-
tiative based on blockchain and privacy-preserving principles are a future direction
of our proposed architecture.

Artificial intelligence along with the integration of blockchain technology is a
great promise to solve various resource optimization problems. For instance, the
merit of the two technologies is proposed in [29] providing a secure resource sharing
scheme by developing a caching mechanism with the usage of DRL (Deep Rein-
forcement Learning). Reyna et al. [30] introduced how blockchain may potentially
improve the IoT environments and how blockchain can protect from IoT security
problems. However, AI algorithms, which are vulnerable to security threats depend
much on centralization approaches, a fact that has a negative impact on improving
efficiency, because it consumes a large number of communication resources.

Moreover, a considerable interest in the blockchain field is the scalability and per-
formance characteristics of blockchain networks. Algorand [31] and RandHound [32]
achieve high scalability by randomly selecting a subset of validators to partici-
pate in the consensus, while they maintain and guarantee the same security level
with other blockchain infrastructure. Other works [33] use directed acyclic graphs
instead of a blockchain structure and they ensure that the average amount of time
for each transaction is reduced. Blockbench [34] was the first to look for permis-
sioned blockchain in the context of benchmarking. They present an approach for
comparing the performance of different platforms including Ethereum Parity, and
Hyperledger Fabric by using a set of micro and macro benchmarks. Furthermore,
[24] introduces the architecture of fabcoin which presents the performance of bitcoin
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in Fabric. The research [35] [36] presents Adrestus which describes what techniques
cryptocurrencies should adopt to build a scalable cryptocurrency with enhanced
security.

Ghost protocol [37] is a well-prominent work paper that leverages existing prob-
lems on PoW algorithms, in order to prevent malicious attackers to create forks in the
network by following selfish mining attacks. Moreover, some other recommendations
come next to improve the scalability of blockchain. Bitcoin-NG [38] is a distributed
fault tolerant protocol designed to scale the blockchain architecture, which claimed
the same trust model as Bitcoin. Although Bitcoin-NG increases the overall through-
put, it is still vulnerable to these kinds of attacks [39], [40]. However, it goes beyond
the state of the art and can be seen as an enhancement of the existing models, improv-
ing the performance and focusing on the achievement of better security, scalability,
and robustness.

2.3 Compacting Data
There are a variety of techniques to compact data, ranging from compression
algorithms [11] to data synopsis and data decaying ideas, described in this section.

Data Decaying: This refers to the progressive loss of detail in information as data
ages with time until it has completely disappeared. Kersten refers to the existence
of data fungus in [41] with a decaying operator coined “Evict Grouped Individu-
als (EGI)”. The given EGI operator performs biased random decaying, resembling
the rotting process in nature (e.g., in fruits with fungus). In our previous work [12],
we used the First-In-First-Out (FIFO) data fungus, i.e., “Evict Oldest Individuals”,
which retains full resolution for recent data but abstracts older data into compact
aggregation models. Both EGI and FIFO do not retain full resolution for impor-
tant instances that occurred in the past. Consequently, data would have been rotted
and purged either randomly or based on its timestamp. We call this the long-term
dependency problem. In [12], we chose a radically new decaying technique that
could be termed as LSTM data fungus, which is explicitly designed to avoid the
long-term dependency problem. Particularly, the TBD-DP operator replaces the data
with abstract LSTM models, which capture the essence of the past, i.e., both recent
data and important old data is retained at the highest possible resolution. There are
a variety of amnesia functions, namely FIFO amnesia, UNIFORM amnesia, SPA-
TIAL amnesia and query-based amnesia that differ in the predicate used for amnesia
function.

Compressing Incremental Archives: Scientific simulation floating point data [42–
45], spatiotemporal climate data [43], text document collections [42], and data
streams, are all frequently use domain-specific compression algorithms. The trade-
off between compression ratio and decompression times for incremental archive
data has also been studied using differential compression algorithms in a number of
research investigations [46, 47]. However, none of these earlier studies have ever sug-
gested a method for addressing data decay in distributed systems that are special to
telecommunications companies.
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Data Synopsis: This is the procedure of picking a subset of data pieces at random
from a sizable dataset. Using probabilities and statistics, sophisticated approaches
like Bernoulli and Poisson sampling select data items. Stratified sampling was sug-
gested by Chaudhuri et al. [48] when the likelihood of the selection was biased.
Zeng et al. [49] implemented G-OLA, a model that generalizes online aggregation in
order to accommodate general OLAP queries using delta maintenance techniques, in
order to deal with the huge data sampling problem. In particular, BlinkDB [50] uses
dynamic sampling methods to let users select the error bounds and query response
times. A system called SciBORQ [51] enables users to select the level of the query
result’s quality based on a variety of intriguing data samples known as impressions.

3 The Triabase Architecture
In this section, we present the tiered architecture of Triabase, which comprises of a
Storage Layer, Processing/Indexing Layer and the Application Layer.

3.1 Storage Layer
We introduce the proposed Storage Layer of Triabase, and discuss its two internal
routines, namely: (i) Proof of Federated Learning (PoFL) routine, which trains in a
distributed manner a global model for the ingested data; and (ii) Blockchain Consen-
sus routine, which commits this generated model data on permissioned blockchain
datastore. The core functionality of our proposition is illustrated at a high level in
Algorithm 1. The first routine of Triabase is the PoFL, which utilizes a convolution
network loss function to train the local models across multiple decentralized edge
nodes holding local data samples, without exchanging them. The final goal is to com-
pute an average model and to converge fast with high learning accuracy. The second
routine of Triabase is the blockchain process that is triggered after a respective leader
election process takes place. The blockchain process is responsible to collaboratively
maintain the blockchain structure, endorse new transactions from blockchain nodes,
and is partially responsible for the 2-step consensus protocol.

A) Triabase Storage: The Bitcoin protocol uses a PoW (Proof-of-Work) consensus
mechanism to validate users’ transactions in the blockchain. This is associated with
an extremely high energy consumption bill, which is unnecessary in a private (per-
missioned) blockchain where contributing nodes are of higher trust. Yet, provisioning
a consensus mechanism is still necessary in order to provide an incentive to partici-
pating nodes to contribute to the transaction verification process. To this end, in this
work we propose such a consensus mechanism that relies on Federating Learning, as
such, is coined Proof of Federated Learning (PoFL).

Particularly, our system ingests model weights (constructed from raw data D
which will be described in the next section), and generates a global model M every
t epochs with weights Wt in a distributed manner through federated learning. This
procedure has two usages: (i) it contributes to the transaction verification process at
the blockchain layer; and (ii) it helps in the reduction of space at the storage layer, as
our framework stores now onlyWt on disk as opposed to the raw dataD. The storage
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Algorithm 1 Triabase: Proof of Federated Learning (PoFL) Blockchain Consensus
Input: Blockchain nodes N , Time Epoch t, Model Weights (from Raw Data) Wt

Output: Blockchain TX identifier Bid

1: determine l = leader(N, t) . Leader / Orderer Election
2: determine u = view number(N, t) . Consensus Round
3: Trx ← init tx(t, u,Wt); . Initialize transaction
4: while (!Trx) do . Fabric Consensus Phase
5: if Trx.PRE-PREPARE then . Fabric stage PRE-PREPARE
6: calculate f = l.difficulty(Wt,alpha) . alpha = bcdepth(t-1)
7: construct Bid = l.build(Trx,Wt, u, f ) . Triabase Block
8: for all ni ∈ N do
9: send(PREPARE,t,l,f,Bid) . lead by l

10: ni.receive(PREPARE,t,l,f,Bid) . 2-step consensus initiated
11: end for
12: end if
13: if Trx.LEDGER-UPDATE then . Fabric stage LEDGER-UPDATE
14: for all ni ∈ N do
15: l.send(COMMIT,t,l,f,Bid); . lead by l
16: ni.receive(COMMIT,t,l,f,Bid); . Commit block in Triabase
17: end for
18: end if
19: end while
20: return Bid

layer is complemented with a local datastore for caching and handling of intermit-
tent network connectivity, which however does not affect the overall philosophy of
the system architecture where all data blocks have to eventually be committed to
the blockchain layer. To improve performance in Triabase, we minimize the amount
of data committed to the blockchain layer through data decaying principles, namely
through the storage of a data postdiction model that allows for the retrieval of stored
data through abstract models trained through federated learning.

In this section, we focus on the Triabase Storage Consensus algorithm (i.e., Proof
of Federated Learning (PoFL)), which entails the first contribution of this work. Par-
ticularly, in Algorithm 1, we show the overall execution of the blockchain consensus
routine. The process starts in lines 1-2 with a leader election routine followed by a
view number routine, both of which take as input the blockchain network N and the
epoch t. The former yields the leader l while the later infers the fabric consensus
round, which helps in the convergence of the consensus process and guarantees the
liveness of the consensus protocol. Subsequently, in line 3 the transaction is boos-
trapped and passes through two stages: the PRE-PREPARE stage (lines 5-12) and
the LEDGER-UPDATE stage (lines 13-18). The PRE-PREPARE stage starts out by
having the leader l computing the blockchain difficulty, which is derived based on
the length of the blockchain (alpha = bcdepth(t-1)). Particularly, longer chains are
expected to be more difficult compared to shorter chains. Based on the above a Tri-
abase data block is constructed and broadcasted in the network for storage (i.e.,
lines 8-11). The LEDGER-UPDATE stage basically wraps up the communication by
carrying out a final commit broadcast (lines 13-18).

Blockchains require to be versatile to different type of storage technologies. For
this reason, our system architecture deploys pluggable local document stores. We
have assessed two different types of NoSQL stores in our design, namely a CouchDB
(default for Hyperledger Fabric) and LevelDB and provide experimental evidence for
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the utility of each of these storage layers and the impact they have on our overall
system architecture.

B) Triabase Consensus Workflow: The overall scheme of Triabase is shown in
Figure 2. The process starts with the local training of the model on user’s data. After
that, the communication process takes place where all users broadcast and upload
the appropriately trained models to the blockchain nodes and store them as trans-
actions to the distributed ledger. The blockchain node that was the winner from the
previous round (depends on the blockchain difficulty) is responsible for initiating a
2-step consensus protocol and construct the blocks with all the cached transactions
that are not validated yet. In addition, the winner node is in charge of aggregating the
local model of clients and producing a shared model by putting it as the first trans-
action in the block, so later on, the federated learning nodes can access it in the next
round r + 1. Our PoFL consensus protocol contemplates that users who participate
in the blockchain process get rewarded with training coins for their contribution in
the whole algorithm (e.g, system usage coins contributed by participating parties).
The coins of each user are awarded according to the performance in the training pro-
cess. Particularly, federated nodes converging faster and achieving more accuracy are
rewarded higher. The node that receives highest accuracy considering the difficulty
of the block is recognized as the winner of round r. Furthermore, in every training
round the coins will be adjusted to the users depending on their work.

Nevertheless, to secure our protocol and ensure that every user will obey the
protocol, we introduce a new hierarchy of nodes that we called peacemaker entity.
This entity is responsible to observe the correctness of the protocol followed by all
the federating nodes. For example, users that refuse to cooperate with the protocol
will get no payment for their work. Moreover, users that will try to get more rewards
and try to counterfeit the correctness of the whole process will not be rewarded by
the peacemaker entity. The peacemaker will then claim the adjusted coins as it’s own
reward for it’s effort in the protocol correctness. Initial coins will be delivered to all
participants as rewards after every epoch, it will also be available to claim after each
block creation to those who prove correctness with the digital signatures. We set a
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minimum of 30 coins as the default setting, like Bitcoin used to have at the early
stages generated for every block and spread it to validators.

C) Consensus Protocol: The two steps of the consensus protocol, summarized in
Algorithm 1, include the execution of the PBFT [52] [53] algorithm and the notation
of the detector. The orderer collects all the received transactions along with some
endorsement proposals, constructs a new block, and initiates the 2-step phase by
sending the proposal block to all blockchain nodes for verification.

In particular, the orderer broadcasts a pre-specified message to all fabric nodes
to initiate the protocol. The message contains the proposed block Bid, the current
epoch t, the current leader l based on the view number u (used for the PBFT [52]
participation) and the block difficulty f that relies on the height of the blockchain.
Then all fabric nodes n ∈ N echo the same message until the majority of them
receive at least a quorum of 3f + 1 valid messages. Each blockchain node checks the
validity of all transactions that exist in a block, by analyzing the endorsement policy
from the assigned peers.

The detector is responsible for supervising that all the appropriate nodes comply
with the endorsement policy and only the applicable peers join the process. The latter
ensures that the client is not compromised and does not incorporate invalid results
that may cause erroneous behavior to the Triabase blockchain.

D) Ledger Update: After the fulfilment of the consensus protocol, the invoking pro-
cess is called in which: (i) each client updates its copy of the ledger; and (ii) each
client is notified about the ledger updates. In the proposed Triabase algorithm, the
learning process is executed locally, i.e., trains machine learning models locally. Fur-
thermore at the edge division, all local models are aggregated iteratively (in multiple
rounds) to construct the final models, which are then stored in the blockchain (during
the invoking process). We assume that all edge server nodes have enough comput-
ing and caching resources for completing complex calculations and maintaining the
blockchain, in order to store the federated learning parameters collected from the
users.

3.2 Data Postdiction Layer
The major objective of this layer is to reduce the query response time and keeping
the storage capacity low by using data decaying concept.

The core idea of the layer is to deploy Data Postdiction (DP), which is a tech-
nique that attempts to restore historical data from tuples that have been deleted in
order to free up disk space [11, 12, 54]. Unlike data prediction, which aims to make
a statement about the future value of some tuple, data postdiction aims to make a
statement about the past value of some tuple, which does not exist anymore as it had
to be deleted to free up disk space. Application send a query to compact models that
can be stored and queried when necessary and with the notation of DP we recreate
the past value of some tuple, which has been deleted to reduce the storage require-
ments, using a ML model from the compacted model. The DP operator has been
modified to employ federated learning to transform IoT and telecommunications data



Distributed and Parallel Databases (Springer)

13

D Dtrain Α

Dtest

Τ

Γ

Valβ βor⊥

Fig. 3 Triabase converts raw data coming from TBD into dataset to be passed on federated nodes. If the
parameters are approved, they could either be made public or used in a prediction service.

into machine learning models that can be saved and retrieved on a blockchain net-
work as needed. The DP operator utilizes an index to obtain the transactions found
in the Blockchain after the successful completion of the federated learning and stores
them to the temporal base index for quick retrieval.

In Figure 3 we describe an ordinary ML training pipeline. Training setDtrain and
test set Dtest are created from the data D that is streaming to Triabase. Cache values
received then batch and shuffle data and prepare for processing. A training algorithm
A that makes use of a regularizer Γ may be used to enhance the training data T after
which parameters are generated. The test set is used to validate the output param-
eters, which are then approved or refused (in which case an error is output). If the
parameters β are approved, they could either be made public or used in a prediction
service that the federated node has input/output access to (black-box model). The
pipeline segments pass trained data with test data to keras model wrapper. Tensor-
Flow Federated (TFF) is an open-source framework for machine learning and other
computations on decentralized data. TFF can properly instantiate the model for the
data that will actually be present on client devices are indicated by the dashed box
defines the sequence for better performance. Federated nodes initialize the mode and
pass the state to the federated process builder and send the results to federated server.
Server collects results from all clients aggregates them and send the result back to
federated nodes to process on next round. Federated nodes also remove the values
that are not needed anymore to free up disk space. Server then sends the aggregated
model to the Blockhain nodes in an asynchronous manner.

Additionally, we keep a global model M for a period p and its pointers, which
lead to a list of transactions kept on the blockchain under the Triabase of the algo-
rithm. With nodes that are the same size as disk blocks, the index is a B+ tree that
minimizes the number of disk visits. The overall number of disk accesses for the
majority of the activities are greatly decreased because the B+ tree’s height is low.
According to this, leaf nodes replicate all values related to non-leaf nodes. The B+
tree data structure is more difficult to use for Blockchain indexing since it contains
both a key and a value attached to it. A pointer to the underlying data record is con-
tained in this value. The payload is the result of the union of the key and the value.
Each node’s data in the B+ tree structure is stored in ascending order. Each of these
keys contains two pointers that go to two further child nodes. There are fewer keys on
the left side of the child node than there are now, whereas there are more keys on the
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Fig. 4 Triabase Reverse process indexing layer that show how the datasets given as input to the LSTM
and produce the output layer to generate the model. The reverse operation is also happening to transform
machine-learning models back to past values.

Algorithm 2 Retrieve Data algorithm
. Step 1: Loading

1: Input:Di = Pi share of database (size O(NP )
2: Input:Qi = Pi share of (mp ) queries

. Step 2: Blockchain Query processsing
3: for all s← 0 to p− 1 do . Retrieval Iteration
4: j = (i+ s)mod p
5: if s ≥ 0 then . wait until Dj is received in Drecv:
6: wt,k ← wt−1
7: Dcomp ← copy Drecv . Compute ∀ q ∈ Qi against Dcomp

8: jnext = (j + 1)mod p
9: Drecv = Place non blocking request for Djnext

10: end if
11: for all qi ∈ Q do . For each local query
12: res← Update(q) . Find τ hits seen so far and update in every iteration
13: end for
14: end for

. Output: Reporting
15: Output the final top τ hits for every local query

right side. The maximum number of child nodes is n+ 1 if a single node contains k
keys. The DP operator works in two conceptual phases:(i) offline phase, where it uses
LSTM-based federated learning to build a tree of models M over time and space;
and (ii) online phase, when it applies the tree M to retrieve data with a specific level
of accuracy.

Algorithm 2 shows the pseudocode for the Retrieve Data algorithm. The loading
phase, in summary, loads the database sequence file in parallel such that federated
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node Pi gets approximately the ith N
p byte chunk of the file. It’s important to read

sequences near the edges thoroughly, in order to improve the accuracy of future pre-
dictions. This phase guarantees that the database sequences are distributed evenly
among the federated nodes. The query file is read in the same way, so each Pi gets
around m

p queries. The queries are then processed across p iterations in the follow-
ing phase. Processor Pi checks all of its queries against Dj at any step s, where j =
(i+ s) mod p. A non-blocking request to obtain the database part for the next itera-
tion is sent before the queries are executed. The communication is accomplished via
the Triabase Get() one-sided communication primitive, which ensures that the distant
CPU is not disturbed. Pi also maintains a separate running list of the highest results
for each query in Qi at each iteration phase. This list is printed after the program
ends.

3.3 Application Layer
An application that controls how a network system functions is part of the application
layer. Users interact with the network, download data, and send data to other users
of the network. They also utilize tools to access and share information at each other.
Additionally, this layer is the highest level of our system, providing services directly
to the underlying processes. The application layer contains the querying module and
the user interface. In our example, the Triabase query module receives a data explo-
ration question Q(a, b, w) and uses the index to recover the data and respond to
the query based on a, b, and w parameters. Finally, Triabase includes an RestFull
API that hides the system’s complexity while yet allowing access to all Triabase
functionality.

It further allows smart devices coming from the TBD infrastructure to connect
with one or more remote peers in the other layers and query information and get
their results back as the whole data is saved in the blockchain and can be queried and
verified very fast. In addition, users can query machine learning models and with the
notation of DP model they can convert this model to raw data and take the result past
for further processing.

At the application layer, the transfer of all operational data from mobile devices
to edge servers required to create distributed models leads to a massive amount of
communication burden and making the system susceptible to user privacy issues. In
our proposed architecture, the learning process is carried out locally, allowing for
the training of machine learning models on data from a range of users. The per-
missioned blockchain is maintained and the federated learning parameters collected
from IoT devices are stored by the base station, which are computational and caching
nodes. The base station aggregate the parameters in order to update the distributed
model. Each BS implements the permissioned blockchain consensus process in order
to maintain the consistency of the distributed model.

Due to the sensitive nature of the majority of the data and the amount of data to
be processed, storing it on the Triabase limited storage space is a time-consuming
and potentially dangerous operation. As a consequence, we use blockchain to get
access to data, while the original data remains in the consumers’ hands. When a
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new data provider joins, the blockchain records the data provider’s unique identifica-
tion (ID) together with other data attributes stored as a transaction. Each user’s data
account will be recorded in the form of transactions, which will be confirmed using
the Merkle tree [55]. Each material distribution event is also logged as a transaction
on the Triabase.

4 The Triabase Prototype System
In this section, we describe our prototype system developed in the Hyperledger Fabric
framework. We particularly overview the GUI and protocol of the framework as well
as its evaluation and setup. Our prototype realizes the Triabase architecture using the
DP, Blockchain and federated learning subsystems we described earlier.

4.1 Overview
Our server-side code2 is written in Golang 13.8 node.js 10.23.0 and consists of
around 8500 lines of code. In particular our server-code uses 5000 LOC its open
source and you can fully retrieved from GitHub and runs over docker containers
and Ubuntu Linux. The server side also includes CouchDB database and utilizes the
Triabase package for drawing the docker images. A cross-platform, open-source run-
time environment called NodeJS is used to create server-side web applications. The
event-driven design of NodeJS also supports asynchronous I/O. NodeJS implements
an event-driven, non-blocking I/O mechanism, which contributes to its efficiency and
portability. NPM is a package module that aids in efficiently loading dependencies
for javascript developers.

Our client-side code uses has around 2000 lines of code its written in python and
can easily be integrated and handled with PyPi. It has a size of 2GB excel elements
with datasets from Telco Big data. In order to run successfully run the code, you
need to have Python 3.7–3.10, pip version 19.0 or higher for Linux and Windows.
pip version 20.3 or higher for macOS. Because we use NVIDIA cuda cores in our
testbed, the following NVIDIA software is required for GPU support: NVIDIA®
GPU drivers version 450.80.02 or higher. CUDA® Toolkit 11.2. cuDNN SDK 8.1.0.
(Optional) TensorRT to improve latency and throughput for inference.

4.2 Setup
The below commands bring up the REST server and execute the following from the
project’s app directory:

nvm use 12.19.0
npm install
rm -rf credstore
node cred-store.js org1 Admin
node --max-old-space-size=4096 server.js /

none 10 false true 15

2Triabase. https://triabase.cs.ucy.ac.cy/
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The last command can be adapted to suit the user’s requirements as follows: max-
old-space-size sets the server’s max heap size (in bytes). The server (optionally) uses
data compression to reduce the volume of the data sent to Layer 2. The options are
none, compress-json, compressed-json, jsonpack, and zipson. The server uses paging
in order to be able to handle big data volumes more efficiently. The page size is by
default set to 10 MB. The value false deactivates console prints that can be used
for debugging. Set to true to activate the debugging prints, which prints the average
model submission latency of the N first model submission requests received.

4.3 Graphical User Interface
Our system’s Graphical User Interface gives users a basic interface via which they
may inquire about the community’s active users (the details of the protocol are pre-
sented in the next paragraph). Triabase provides the following distributed algorithms
for storage and retrieval: (i) Storage Algorithm of the Triabase Architecture, and (ii)
the Retrieve Data algorithm.

4.4 Query Evaluation and Processing
The Application Layer performs the basic functions of the interface between the Pro-
cessing Layer and the Storage Layer. The usage of an intermediate level, inspired by
the Hourglass Architecture internet-based is mainly intended to increase the inter-
operability of the Edge and Storage levels, sharing at least one function. Therefore,
we have the maximization of the number of Federated Learning and Blockchain
platforms/technologies that can be used in our Triabase architecture.

When scaling data across numerous nodes and dividing databases into sepa-
rate partitions, CouchDB’s architectural design allows for great flexibility. In order
to establish an easily managed method for balancing read and write loads during
a database deployment, CouchDB enables both horizontal partitioning and replica-
tion. The Application Layer acts as an intermediate layer that hides the complexity
of the communication with the database blockchain network. This layer includes a
REST server that communicates with the blockchain in behalf of its clients (the smart
devices from the Edge Layer), who just use its simple endpoints instead. As of now,
the supported endpoints offer model submission, updates and retrieval services, as
well as basic metadata querying options, while the aspiration is to expand on a full-
fledge datastore over the years. The ability to hide the complexity of communication
with the storage level is another benefit of employing the intermediate level of appli-
cation. This enables the option of manual data management of the Storage Layer to
the authorized users of the system.

In the current version of the Triabase system at the application level there is a
REST server, which implements two main functions. The first is the reception (from
the Edge Layer) of the models data to be stored and their (conversion and) transmis-
sion in the form of transactions to the underlying Blockchain (in the Storage Layer).
The second major function is to retrieve a model data from Blockchain. Specifically,
after the successful execution of the relevant queries for their collection, the data (of
the requested model) are returned to their original state and sent to the applicant.
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Fig. 5 Triabase provides an API through which ML models can be inserted to the blockchain in Base64.

At this point, we note that the server offers exactly the same interface to both smart
devices and authorized system users (the users don’t provide a split/authentication
mechanism), hence the introduction of the term: “applicant”.

Finally, an interesting point to consider is the choice of utilizing the technique of
tokens in the system. This is done to protect the security of the data of the storage
level, by confirming the authorization to use the services of the Application Layer
by the applicant. In particular, further to the information identification data of the
model for storage/retrieval purposes, requests for services must include the appli-
cant’s token. The validity of this token is checked, and the execution of the request
takes place only if it is confirmed (validity). Figure 5 shows the functionality of the
model that stored and retrieved from the Triabase system.

In the current version of Triabase, we assume that authorized applicants have
the ability to communicate directly with the permissioned blockchain of the Stor-
age Layer, and store in the system ledger a string claimed to be the (valid) token.
Although not an optimal solution, the system security is not compromised by
the aforementioned approach, as in any case, only authorized users can contact
Blockchain directly and successfully secure the token they want.

4.5 Query Exploration Interfaces
This subsection analyzes the various techniques and schemes selected during the
interface component design phase, taking into consideration the requirements and
limitations mentioned above.

First of all, like any interface that can be used by any programmer, the interface
component must be easy to understand and use. It must also hide the complex com-
munication with the system Blockchain, providing already implemented easy-to-use
methods of interacting with it. Moving on to more technical requirements, the inter-
face component must be able to handle the (possibly large and) different types of
files of the serialized learning models that the Triabase system deals with. Moreover,
it should be compatible with a wide range of other technologies that can be used by
smart devices and IoT network systems. Finally, the interface component is called
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Fig. 6 The Triabase API Definition is a file that describes all the provided functionality along with the
necessary documentation.

upon to ensure the integrity of the data as it is transferred from the application layer
to the storage layer.

Triabase implements a full-fledge REST 2.0 API using Node.js and documented
with Swagger. REST(Representational State Transfer) is the client-server archi-
tecture standard used in modern web applications. Figure 6 defines the available
requests, as well as the response of each request. Among others, an important fea-
ture of a RESTful API is the provision of services through URL-based endpoints
by a dedicated server. In the case of the interface component, the REST architecture
was chosen for ease of use (simple, well-known concepts), moreover to increasing
the number of smart devices capable of interacting with the application-level com-
patibility API (most devices support HTTP messaging). Additionally, regarding the
implementation technology of the REST-full API of the component, given the lim-
ited options (SDKs) mentioned in the previous subsection, the Node.js ecosystem
was selected. This selection was made for performance purposes only.

Let us mention the ways in which the interface component utilizes the techniques
of digests and data compression. Regarding the use of digests, when receiving data in
the endpoint model, the server of the interface component creates the corresponding
pages (data) that are forwarded for storage in the system blockchain. For each page,
the server calculates a digest, stored it in its database, and attaches it before sending
it for storage. When, at a later stage, a request for retrieval of this data is received
(endpoint model), the server retrieves the pages of the request model, ensures the
integrity of the data of each and, restores the data. After that, it sends them to the
user. Specifically, for the existing version of the interface component, the use of the
MD5 fragmentation function was chosen, mainly for saving space (MD5 digest size
= 128 bits). The purpose of the application of compression mechanisms is to reduce
the volume of data circulating in the network of the Blockchain system and at the
same time to increase the speed of completion of storage and recovery operations of
models. Noting that the data files of the machine learning models may already be in
fairly compact/compressed form.
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4.6 Compression
This technique is mainly responsible for reducing the amount of storage space needed
while exerting as little pressure as possible on query response times. It makes sense to
adopt compression methods that result in high compression ratios while also ensur-
ing quick decompression duration. In this paper, the GZIP compression is adopted
because it provides fast compression and decompression times, a high compression
ratio, and optimal compatibility with I/O stream libraries. Additionally, in order to
supply the decay mechanisms for the following layer, we employ the DP. The Tri-
abase indexes’ (B+ trees) leaf pages are essentially the only thing the storage layer
is in charge of; this is covered in the following layer.

With each new data snapshot received, the multi-resolution spatio-temporal index
used by the Indexing Layer is increased on the rightmost path (i.e., every 30 minutes).
Additionally, the component creates highlights—interesting event summaries—from
the data kept in the child nodes and keeps them at the parent node. The internal
node that covers the query’s temporal window is accessible for each data exploration
query, and its highlights are used to provide an answer. The querying module and the
data exploration interfaces are implemented in the application layer. These interfaces
accept visual or declarative data exploration questions and use the index to compile
the necessary highlights and snapshots to respond to the query.

5 EXPERIMENTAL TESTBED AND
METHODOLOGY

In this section, we describe our experimental methodology, which involves both a set
of real micro-benchmarks for the Triabase system, utilized with real datasets from
the Telco dataset, Smarty dataset and Marta dataset.

5.1 Datasets
We make use of the following three realistic datasets in our trace-driven experiments
to simulate regular-scale, medium-scale, and large-scale distributed machine learning
models:

– Telco Dataset: We [54] [12] utilize anonymized data from a real telecommu-
nications company with 1192 genuine cell towers (i.e., 3660 cells from 2G,
3G, and LTE networks) spread across a 5,896 km2 area. The cells are linked
to a cluster of computers through a gigabit network. For the performance of
the tower, each cell tower keeps numerous UMTS/GSM network logs and
passes the information to the base station controller (BSC) or the radio net-
work controller (RNC) to be kept. In the enterprise, a CDR server generates
call detail records (CDRs) for incoming and outgoing calls. The management
server and third-party application can use SFTP to get a CDR from the CDR
server after it has been generated. The Telco can then query the CDRs for
call/data details and check the carrier’s outbound call/data fees. We utilize an
anonymized dataset of telco traces comprising of 100M network measurements
records (NMS) and 3660 cells (CELL) coming from 2G, 3G and LTE antennas.
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The data traffic is created from about 300K objects and has a total size of 10GB.
Our dataset includes 200 snapshots from the 5GB anonymized and uncom-
pressed telco dataset that comprises of 1.7M CDR and 21M NMS records. Our
microbenchmark is performed atop an HDFS v2.5.2 filesystem.

– Marta Dataset: This [56] is an anonymized dataset of IoT network data com-
prising of 93.1MB network measurements records and 102 columns from 13
different files coming from sensors of an intelligent city. This dataset will show-
case data collected via sensors within the system, specifically real-time data of
trains buses and parking. It contributes to the development of practical solutions
to issues that help improve the riding experience and boost ridership.

– Smarty Dataset: Sma-Rty [57] is an Italian-French startup specializing in AI
and Machine Vision. Sma-Rty produces solutions for the integration of mod-
ern artificial intelligence technologies in real life through close collaboration
with research institutes. In this context, the 5G Automotive Digital Twin (ADT)
project intends to test and validate an innovative system for driving assistance
and support based on 5G technology and Artificial Intelligence. The ADT sys-
tem creates a digital depiction of the setting called a Digital Twin using traffic
cameras and 5G infrastructure. This representation is used to replicate road user
behavior in a virtual environment in order to predict potential risk situations
in the real world and improve road safety. The behavioral prototypes of the
identified entities and their visual features (for example, type, color, form, and
speed) will be reconstructed beginning with the acquisition of video flows. After
that, the ADT model gathers data from local and simulation units to deliver
a proactive, non-invasive service for increasing road safety. The Torino City
Lab experiments will thus focus on the validation of the digital twin model’s
functions as well as the accuracy of the rebuilt model.

We also considered other types of datasets/benchmarking efforts for our exper-
imental methodology as follows: TPC and YCSB focus on data management
workloads in conventional SQL and NoSQL environments and have little provi-
sionings for both IoT scenaria and Blockchain scenaria. Also our effort was not to
investigate these systems from a clearly data management standpoint, but rather from
the standpoint of IoT data ingestion over a distributed blockchain layer that made the
selection of benchmarking datasets a challenge. For this reason we carefully chose
to feed our architecture with custom datasets from Telco (TBD), IoT (Marta) and
AI/ML (Smarty). The TPC council only recently issued the TPCx-IoT bechmark,
which is an iot-specific benchmark but has no specific provisionings for blockchain
operation. On the other hand, there are also some Blockchain-specific benchmarking
efforts underway (such as BlockBench [34]), but unfortunately these efforts have not
ripened to allow generalizability for the types of IoT blockchains we consider in this
work.

5.2 Metrics
The experimental evaluation described in this section focuses on the following
metrics that aim to assess the performance qualities of the Triabase framework. We
break the evaluation into two sections: (i) data ingestion, storage capacity, accuracy
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in NRMSE, and data retrieval experiments; and (ii) blockchain storage layer experi-
ments, which respectively feature separate performance metrics.

For data ingestion and data retrieval experiments, as part of the decaying layer, we
employ the following metrics:

– Ingestion Time: This measures the wall clock time to ingest each new snapshot
and is measured in seconds (s).

– Storage Capacity: This measures the total space that machine learning data
occupy together, as a percentage of storage required by the RAW method (no
decaying, no compression).

– Accuracy: This measures the error of the machine learning data using the Nor-
malized Root Mean Square Error (NRMSE). A lower NRMSE value indicates
a higher accuracy in the recovered data.

NRMSE =

√
1
n

∑n
t=1(x1, t− x2, t)2

ymax − ymin
(1)

which is the normalized difference between the actual data (x1, t) and the pre-
dicted data (x2, t), where t is a discrete time point and ymax, ymin are the
maximum and minimum observed differences.

– Retrieval Time: This measures the wall clock time to recover a data block from
the blockchain and is measured in seconds (s).

Fabric’s major performance indicators are throughput and latency, which we inves-
tigate thoroughly in the subsection 6.2. In Triabase we say that the cost where
transactions are passed the consensus and stored to the ledger is known as through-
put. Latency is defined as the time it takes for an application to deliver a transaction
proposal to a transaction commit. For blockchain latency, as part of the storage layer,
we employ the following metrics:

– Blockchain Duration and Throughput: This measures the duration of the
individual blockchain latency to finalize a Triabase transaction, measured in ms
(millisecond) and tps (transactions per second).

Algorithms: The proposed Triabase framework is compared with the following
approaches:

– RAW: does not apply any decaying on the whole dataset.
– COMPRESSION: the decayed dataset is compressed with the GZIP library,

which has been shown in [11] to offer the best balance between compres-
sion/decompression speeds, compression ratios and compatibility with I/O
stream libraries.

– SAMPLING: a sampling method that picks every second item in the input
stream, yielding a 50% sample size.

– RANDOM: uniformly randomly select one record from the decayed dataset.
Note that RAW and RANDOM are the baseline approaches used to demonstrate

the trade-off between the storage capacity and the NRMSE objectives. This project’s
primary objective is to identify performance bottlenecks, thus we built a system
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called Triabase that spans several clients and stresses the system by constantly mak-
ing transactions. In addition, each client sends out proposal requests at the same time
and collects endorsements. The transactions are sent asynchronously in order to meet
the deadline without having to wait for commitments. The benchmark framework, on
the other hand, calculates performance and latency. All organizations and their col-
leagues participate in multi-channel trials. While various combinations are feasible,
we believe our strategy will put the system through its paces.

5.3 Testbed and Workloads
Testbed: The DMSL VCenter IaaS cluster of computers, a private cloud, houses 5
IBM System x3550 M3 and HP Proliant DL 360 G7 rackables, each with a single
socket (8 cores) or twin socket (16 cores) Intel(R) Xeon(R) CPU E5620 @ 2.40GHz
Intel(R) Xeon(R) CPU E5620 @ 2.40GHz Intel(R) Xeon(R) CPU E5620 @ 2. On
an IBM 3512, these hosts contain a total of 300GB of main RAM, 16TB of RAID-
5 storage, and are connected through a Gigabit network. The cluster of computers
is controlled by a VMWare vCenter Server 5.1, which is connected to the VMWare
ESXi 5.0.0 hosts. Nodes for computing: The compute cluster, which is running on
our VCenter IaaS, is made up of four Ubuntu 16.04 server images, each with 8GB of
RAM and two virtual CPUs (both running at 2.40GHz). Fast local 10K RPM RAID-
5 LSI- Logic SCSI drives formatted with VMFS 5.54 are used in the images (1MB
block size).

Workloads: Our experimental evaluation has been conducted based on an a diverse
mix of federated learning, Tensorflow, blockchain, data mining, and Machine Learn-
ing (ML) workloads. All aforementioned workloads are driven by a telco-specific
domain task. We particularly formulated the following five tasks (T1-T5). More
specifically the query types supported by Triabase include standard queries, where
only the newest database version is queried, full historical queries on a particular
predicate, range historical queries on all updates in a specific time range, delta query
and equality.

– T1. Standard queries: The main objective is to query the Triabase blockchain
as a traditional database, where the clients send a query result and they only
care about the result in the newest version. We require to guarantee that only the
records that are not expired could be selected.

– T2. Full historical queries: Another type of supported query in the Triabase
blockchain is called a historical query. This type of query provides transparent
history to database federated clients and grants them access to all of the data
records. In a full historical query, the client wants to see all historical records
that satisfy a specific predictor.

– T3. Range historical queries: Historical queries can also be executed with
desired time ranges in mind. This can be achieved by applying additional con-
ditions to the blockchain attributes (To be more specific, all records are paired
with two extra attributes: VF (stands for ‘valid from’) and VT (stands for ‘valid
to’). For example, let’s assume that we want to get a snapshot of the database
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for a random block b at the height h, we are able to collect the records with
V F ≤ h and V T ≥ h. , e.g.,

SELECT upflux,downflux
FROM CDR
WHERE ts>=2015 AND ts<=2016;

– T4. Delta query: Triabase further guarantees transparency by supporting delta
queries. Delta query gives the opportunity to clients to make more flexible
queries and always be informed from the previous updates. More specifically,
we plan to provide an interface for clients to query the changes made by the
transactions committed at any particular block. For example, we assume a user
u, then if we make a delta query for this user we will get as a result the records
of his transactions that involved before and after the height of the block which
we give as input.

– T5. Equality: This task aims to retrieve the download and upload bytes for a
requested snapshot, e.g.,

SELECT upflux, downflux
FROM CDR
WHERE ts=201601221530;

6 Experimental Evaluation Results
This section presents the experimental evaluation of our proposed Triabase system.
We start out with data decaying evaluation, followed by four sets of benchmarks.
Then, we continue with blockchain control experiments with respect to the through-
put and latency of our blockchain system, as well as, benchmarks on different
databases. This is followed by processing learning experiments to measure the learn-
ing time, NRMSE, and percentage of raw for three different ML modes. In addition,
we measure machine learning models that have been pre-trained from different
Machine Learning hubs. Typical examples of such hubs are the TensorFlow Hub and
the Hugging Face.

6.1 Data Decaying Evaluation
In the first experiment, we evaluate the performance of the proposed Triabase sys-
tem against all algorithms and over all datasets (Telco, Marta, SmaRty) introduced
in Section 5.1, with respect to performance (as ingestion time of the model), space
capacity (as a percentage to the RAW data), accuracy (in terms of NRMSE on
the federated set of data) and retrieval time with the given datasets. We configure
the Triabase framework according to the best configuration of blockchain network
parameters and machine learning parameters that have been inferred through the
control experiments of Section 6.2 and 6.3.

Figure 7 (top-left) demonstrates the data ingestion time for the three datasets in
our evaluation. We observe that the highest ingestion time for all five methods is by
the RAW method, which ingest the data in its raw representation. In contrast, the
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Fig. 7 Triabase Performance Evaluation: Triabase data ingestion, evaluation in terms of storage capac-
ity S as a percentage to the RAW data (left) and accuracy in terms of NRMSE on the decayed set of data
(right) in all datasets and retrieval evaluation for four evaluation metrics.

random method achieves the lowest time as it takes only a portion of the models.
Sampling and compression are semi-equal with only a difference of 10-20%. This
is also reasonable, because first the decayed dataset is compressed with the GZIP
library, to offer the best balance between compression-decompression speeds, thus
we expect less data travel through the network and hence less retrieval time. Triabase
demonstrates that the system has optimal ingestion time near random or sometimes
semi-equal to it due to the learning time required by the federated process and the
time required by the sequel for the commitment of the models as transactions on the
Fabric blockchain store.

Figure 7 (top-right) demonstrates that the RAW occupies the most disk space
because it stores all raw data. The sampling approach is following as the second
worst case in terms of disk space. This happens because the sampling method picks
every second item in the input stream, yielding a 50% sample size so we expect the
disk space to be fair and not optimal. Random and Triabase are placed together with
a difference of 2-5%. We expect Triabase to occupy this disk space because there is
an extra overhead from the LSTM method that we can’t avoid. The COMPRESSION
approach, however, cannot be customized to achieve an even lower disk space occu-
pancy. In comparison, the Triabase system can be configured, through its neurons,
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block size, endorser, and channels to accomplish a space occupancy that will fit the
space budget of the application. This particular parameter will be investigated next in
Section 6.2 and 6.3.

Figure 7 (bottom-left) demonstrates the trade-off between the space capacity S
and the accuracy (NRMSE) objectives. The figure shows that the RAW approach
obtained the worst possible S = 100% of the three datasets, and the lowest error
NRMSE = 0%. In contrast, the RANDOM (almost all data model in Triabase)
approach obtained the best possible S = 60% disk space of the whole dataset because
it takes a batch size of the whole dataset, and an error rate of NRMSE = 30% on
the decayed dataset. The proposed Triabase system, however, provides around 5%
and 10% worst space capacity S compared to COMPRESSION and SAMPLING
approaches, respectively. This is due to the fact that an additional space required by
the set of LSTM models is much more than the sample set of SAMPLING and the
compressed decayed dataset of COMPRESSION. The SAMPLING outperforms the
Triabase approach by 10-30%, on average. The COMPRESSION approach provides
an optimal NRMSE = 0%, since it does not apply any further prediction on the
Blockchain model data but recovers it via decompression when requested.

Figure 7 (bottom-right) investigates ingestion time and we can observe that the
RANDOM approach outperforms all the other approaches in all datasets. This hap-
pens because the RANDOM does not take all the dataset but instead takes a random
batch size that is determined by the user. Hence, the retrieval time is less than all other
approaches. After that, sampling and compression take place because compressed
data can be retrieved more efficiently. Finally, the Triabase system takes the second
lowest time because it needs not much time to calculate the LSTM models due to the
extra optimization that we make.

6.2 Blockchain Control Experiments
The storage layer of Triabase comprises of: (i) local data store used for caching and
disconnected operation; and (ii) a fabric blockchain network. In this experiment we
aim to evaluate the blockchain layer of the Triabase architecture, through a series
of control experiments where various configuration parameters (blockchain block
size, channels and endorsers) are assessed in isolation. In the next experiment of this
section, we also present a microbenchmark where we assess the following incurred
latency in the scope of two data store systems, namely CouchDB and LevelDB.
Below is a breakdown of latencies incurred at the Blockchain layer:

– Endorsement Latency: The time it takes the client to collect all proposal
answers as well as endorsements.

– Broadcast Latency: The time between when a client submits a request to an
orderer and when the orderer acknowledges the request.

– VSCC Latency: The time it takes to check all of a block’s endorsement
signatures against the endorsement policy.

– Ledger Update Latency: The time it takes to check all of a block’s endorse-
ment signatures against the endorsement policy.

– Commit Latency: The time it takes for a node to prove that a transaction is
valid and save it on the blockchain.
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Fig. 8 Blockchain Control Experiments: The effect of various number of channels and endorsers on
throughput.

– Ordering Latency: The time needed for a transaction to complete its final
ordering.

Finally, performance metrics for the response, ingestion time, and percentage of the
total time are also included to present detail about how Triabase behaved both on the
machine learning process and blockchain query time.

Figure 8 shows the impact of Block size, Channels, and Endorsement latency and
throughput.

Block Size Evaluation: Figure 8 (top-left) demonstrates a liner improvement in
latency while the transaction arrival rate increases until the congestion point of
around 250tps (depends on block size). In addition, it shows that close to the conges-
tion point there is a significant increase of latency, which is mainly due to the fact that
the transactions are waiting in a queue to pass the validation phase and consequently
delay the process. Moreover, the results show that latency is also affected by the block
size, since when the block size is high, the latency is also high for low arrival rates.
For example, when the arrival rate is 100 tps and the block size is increased from 30
to 50, the latency of the transactions is also increased from 4000 ms to 7000 ms. This
happened because large block sizes increase the forging time of a block at the leader
node, on average. For high arrival rates, however, and greater than the congestion
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Parameters Values
Number of Channels 8
Number of Endorsers 3
Transaction Complexity 1 KV write (1-w) of size 20 bytes
SatateDB Database GoLeve1DB
Peer Resources 32 vCPUs, 3 Gbps link
Endorsement Policy
AND/OR

OR [AND(a, b, c), AND(a, b, c),
AND(b, c, d), AND(a, c, d)]

Block Size 30 transactions per block
neurons 16x16
model LSTM

point, the latency decreases. This is due to the fact that the time required to verify
and store a block m is always less than the amount of time needed to verify and store
b blocks. The major conclusion drawn from this experiment is that: (i) if the arrival
rate of a request that represents a transaction is lesser than the congestion pivot, it is
preferable for the application to use in most cases a lower block size to achieve low
transaction latency. The throughput in those cases will be the same with the arrival
rate. (ii) in cases where the arrival rate of a request is high and greater than the con-
gestion point, it is preferable to use a large block size to achieve higher throughput
and lower transaction latency.

Channel Evaluation: Figure 8 (top-right) demonstrates the Triabase throughput
along with CPU metrics. Table 6.2 shows the number of channels and transaction
arrival rate that were employed in this study. As indicated, all peers join all of the
channels. Throughput increased as the number of channels increased. This is rea-
sonable because more transactions happened parallel via the new channels as the
throughput scales linearly. The negative fact of that is that as per channel increased
the time to sync between nodes and channels increased dramatically because the net-
work needs more hops to reach all endorsers and come to a consensus thus having
all synced blocks on the network consumes enough time. Figure 8 (top-right) shows
how resource use, such as CPU, increases.

Endorser Evaluation: Endorsers are nodes that exhibit leadership behavior and are
in charge of starting the consensus process. As we can see in Figure 8 (bottom-left)
with 4 endorsers, which is the default setting and most ideal, we are able to obtain 700
tps. Figure 8 (bottom-right) also shows that as the number of endorsers grows, the
number of throughput scales linearly. It is also important to note that if the number of
endorsers is increased excessively, throughput will not increase but rather eventually
be destroyed because more time will be required to sync blocks across channels. As a
result, we can anticipate an increase in latency and additional overhead, but this also
depends on the block size. For instance, when the number of zones was increased
from 2 to 15 we observe, the performance increased from 250 tps to 750 tps and
1200 tps (i.e., by 9.5 in the overloaded situation). This is due to the fact that each
channel is self-contained and maintains its own blockchain. As a result, the validation
process and the phase of updating the ledger of multiple blocks (one per channel) are
executed with a parallel way, resulting in better CPU utilization and throughput.
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Observation 1: It is preferable to dedicate at least one vCPU per channel in order
to obtain good performance and reduced latency. To distribute vCPUs optimally, we
must first evaluate the projected demand at each zone and then allocate sufficient
vCPUs.

Observation 2: To maximize throughput and minimize delay, it is better to avoid
heterogeneous peers, since their performance will be dominated by less powerful
peers.

Microbenchmark: In this subsection we start out with a microbenchmark that eval-
uates the latencies incurred at the lower layers of the architecture measured in ms
(milliseconds) as well as the generated throughput measures in tps (transactions per
second) for two types of local key-value store systems: GoLevelDB and CouchDB 3.
LevelDB is a fast key-value storage library written at Google that provides an ordered
mapping from string keys to string values. CouchDB is an open-source document-
oriented NoSQL database, implemented in Erlang that uses JSON to store its data
and MapReduce, and HTTP for an API. CouchDB is the default data store layer
in the IBM Fabric blockchain network architecture we use to cope with temporary
persistency and local caching.

Figure 9 demonstrates the total duration and throughput that each of the follow-
ing latencies incurs on the system for three granularities of writes (i.e., 1, 3 and 5
Input/Output writes). The impact of different ledger databases (i.e., LevelDB and
CouchDB) is also investigated, in terms of average throughput and latency for dif-
ferent transaction arrival rates. The results of Figure 9 show that the transaction
throughput with the LevelDB is greater than with the CouchDB. The maximum
throughput measured with LevelDB was 450 tps while the couch database achieves
around 400 tps. The primary reason for this is because LevelDB is a database that
is contained in another database that processes transactions, while CouchDB relies
on REST API calls, which pass over a secure HTTP tunnel and additionally has a
delay of ledger updates and consequently result is in a lower throughput than the
throughput of LevelDB.

The results of Figure 9 also show that as the CouchDB amount of writes per
transaction rises, the latency of ledger updates increases. This is because CouchDB
locking schemes cost more than those of LevelDB. Particularly, during the time of
endorsement, the transaction acquires an exclusive lock to provide consistency of the
chain code, which negatively affects the performance, as it performs three responsi-
bilities for each transaction write set. That is, it firstly needs to retrieve the key with
the use of a receive request and search if it finds it on the database. Secondly, it con-
structs an appropriate JSON scheme and lastly updates the DB by registering the put
request. This results in an extra delay to the methods of the blockchain ledger phase.

In summary, the conclusion of this experiment has suggested that in order to
achieve better performance in the fabric open-source network, GoLevelDB should
be the best option for the blockchain operations. CouchDB, on the other hand, is a
better choice when the design principles for the application require fewer read/write

3CouchDB. https://couchdb.apache.org/
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Fig. 9 Microbenchmark - Key Value Store Comparison: Breakdown of Latencies for two local data
stores.

numbers of keys to validate a transaction. Moreover, CouchDB with a special opera-
tion described in [58], will restrict the locking scheme latency and will empower the
overall performance.

Experiment 10 was conducted to determine the size data page to be used in the
system. More specifically, the performance of application and storage levels was
examined using different page sizes. The results of the experiment are summarized
in Figure 10, which shows the throughput (MB/sec) of the system during the submis-
sion/storage and retrieval of the models, respectively. We observe that, as expected,
larger models have a smaller (submission) throughput. This is because they require
longer process time, as they have larger number of pages (than smaller models) and
therefore, require more transactions to be stored. In addition, we observe smaller
page sizes resulting in higher throughput, which is due to the reduction in the amount
of data exchanged between network peers.

However, the use of very small pages is also not recommended, as the transac-
tion processing time (and not payload) - overhead - increases, and also reducing the
throughput. Similarly in the case of data entry, we observe that the larger models have
a lower (retrieval) throughput than the smaller ones. This is again due to the large
number of transactions required to retrieve their multiple pages. Moreover, the results
show that larger sizes (pages) have the best performance, unlike above (insertion),
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Fig. 10 Control Experiment: The effect of various block sizes on latency, response and ingestion time.

since the number of pages recovered is significantly smaller, thus reducing the over-
head of data processing (and increasing the throughput). This is mainly due to the
fact that during the execution of retrieval transactions no data exchange takes place
between the peers of the network (the consensus algorithm is not executed when read-
ing data), which is emphasized by the fact that the submission throughput retrieval is
higher than the retrieval throughput.

In addition, the experiment 10 aims to study the system’s performance during
the management (insertion and retrieval) of large models. Test models and 10 MB
as the data page size were used for this evaluation. The data entry and retrieval were
done through the client simulator, while throughput (MB/sec) was used again as the
evaluation of metric. The results in Figure 10, are quite positive, since they saw that
Triabase can be used for larger models without problems. Also, we observe that when
the size of the model exceeds 400 MB the throughput of the system reduced in both,
the submission and the retrieval of data. In both cases, however, the submission and
retrieval throughput is fixed at approximately 3.5 and 9.4 MB, respectively.

6.3 Machine Learning Control Experiment
Figure 11 examines the performance of the Triabase in terms of training time,
NRMSE, and percentage of raw when combined with three different ML models by
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Fig. 11 Control Experiment - Learning Models: examining the storage capacity S and NRMSE of the
proposed Triabase approach while combined with various ML models

performing the federated process, namely, the traditional Recurrent Neural Network
(RNN), the Gated Recurrent Unit (GRU), and the Long Short Term Memory (LSTM)
which is finally adopted by our proposed approach.

The results show that Triabase maintains a similar training time for different
models for both Telco Marta and smarty datasets, with a slight decrease (about 5%)
when the LSTM model is used. More specifically we observe that the worst-case
scenario is when we use the Recurrent Neural Network (RNN) and this is happened
due to gradient exploding and vanishing problems. Training RNN is a completely
difficult task because it requires slow and complex training procedures. It finds dif-
ficulties in processing very lengthy sequences if the usage of Tanh or Relu as an
activation feature. In terms of NRMSE, however, the Triabase and LSTM combi-
nation clearly outperforms the other two combinations providing around 1-2% less
error, on average.

Furthermore, Figure 12 examines how the number of neurons of the LSTM model
influences the Triabase performance. The results support our previous observations
on the scalability and efficiency of the proposed Triabase approach. The increase
in numbers of neurons, slightly increases the required storage space of the Triabase
system. This because the increase in the number of neurons results in bigger models
that require more disk space to be stored. The additional required space, however,
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Fig. 12 Control Experiments: Training time, NRMSE and disk space for varying neurons and learning
network configurations

is almost negligible in comparison with the disk space needed to store the raw data
before the federated process. In terms of NRMSE, the increase in the number of
neurons does not influence the performance of the Triabase system, since NRMSE
remains almost the same while in almost all datasets.

Figure 13 illustrates, we compare the proposed approach with respect to the
state-of-the-art federated learning algorithm FedAvg [59]. This technique is also
applied from Google in the keyboard app for better improving the user query
suggestions [60].

Federated Setup: We use the CNN convolution layer and two dense layers. The
first two convolutional layers have 32 and 64 filters respectively and they are respon-
sible for setting the communication channels dynamically based on the width and the
height of the image. The pool size is set dynamically (2,2) and the kernel size is 5.
Moreover, convolution layers followed by a dropout [61] with a probability of 0.7.
The second convolution layer has also a flatten operation. The last two dense layers
are fully connected layers with 512 units activated by ReLu and a softmax output
layer.

Algorithmic settings: In all experiments the algorithmic parameters were con-
figured as follows: local mini-batch B = 20, the trained local epochs E = 10, the
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Fig. 13 Control Experiments: Fedarated training time, and loss for varying learning network configura-
tions and different iterations

total number of clients K = 500 and the fraction of clients that performs computa-
tion at each round C = 0.05. The local training process for each client proceeds with
the SGD optimizer with a learning rate η = 0.001 and no weight decay.

Figure 13 illustrates the performance of the proposed approach in terms of learn-
ing accuracy and learning loss, respectively, for various epochs over two different
metrics. The results show that the proposed federated learning approach achieves
high accuracy (> 95%) and low learning loss (< 10%) with a small set of iterations
for both CPU and GPU metrics. Moreover, the federated learning is performed faster
when the GPU version is used and increases while the number of epochs increase. In
particular, in the first 10 rounds, the training of the model converges faster and the
accuracy of the model increases with the increase of the epoch. After 35 rounds, the
accuracy is slightly reduced (by 2-4%) or remains the same, especially for the models
trained with larger epoch values. This is due to the overfitting of the CNN model.

In addition from Figure 13, we can observe that the learning loss is generally high
at the beginning and it highly depends on the epoch value. For example, at round 5,
the learning loss is around 0.5, which is relatively high when the epoch value is low.
In contrast, when the epoch value is high (> 8) then the learning loss is reduced,
which shows that the model converges. Moreover, the results show that when the
epoch value is 32, the learning loss is reduced to almost zero, after round 10. There
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are also cases where the learning loss is high due to the overfitting but then it is
reduced again to a close to zero value after some iterations (e.g., in round 38).

Regarding Figure 14, the data used in this experimental evaluation are machine
learning models, which are pre-trained on various Machine Learning hubs such as
the TensorFlow Hub and the Hugging Face. The dataset also includes models used
in Computer Vision. In particular, due to the valuable contribution of the sector in
the field of IoT and given the most extensive use of machine learning techniques in
the field of Computational Vision, this area is a typical example of the applicability
of the Triabase system that we thoroughly discussed in previous Sections. Further-
more, the dataset models have been trained in object detection, using the well-known
COCO dataset. In addition, it should be mentioned that the models implement dif-
ferent algorithms and/or architectures to achieve their task (object detection), such as
YOLO, SSD Mobilenet v2.

6.3.1 Further optimization

To further improve the performance of the proposed system and to achieve a lower
retrieval rate and ingestion time we also propose the following configurations:

– Number of units in dense layer: The dense layer is a layer where every neu-
ron gets input from every other neuron in the layer below, making it “densely
linked.” Dense layers increase overall accuracy, and a reasonable starting point
is 5–10 units or nodes per layer. Therefore, the number of neuron/units given
will have an impact on the output form of the final dense layer.

– Dropout: A dropout layer should be included between each LSTM layer. By
excluding randomly chosen neurons, such a layer lessens the sensitivity to par-
ticular weights of the individual neurons, preventing overfitting in training. 20%
is a decent place to start, but the dropout rate should be maintained low (up to
50%). The ideal balance between avoiding model overfitting and maintaining
model accuracy is generally agreed to be 20%.

– Decay rate: If no further weight update is planned, the weight decay may be
added to the weight update rule that causes the weights to decline exponen-
tially to zero. The weights are multiplied after each update by a value slightly
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below 1, preventing them from becoming too large. This describes network
regularization.

– Activation function: Technically, activation functions could be included into
dense layers, but doing so would make it impossible to recover the density
layer’s decreased output.

– Momentum: Research has been done to combine the momentum hyperparam-
eter with RNN and LSTM. Momentum is a special hyperparameter that enables
the search to be guided by the accumulation of the gradients from previous steps
rather than just the current step’s gradient alone.

– Parameters setup: An effective strategy is to use the early stopping approach,
define a high number of training epochs, and terminate training as soon as the
model’s performance on the validation dataset stops increasing by a predeter-
mined threshold. 32 is generally recognized as a fair batch size default. We
also experiment by using multiples of 32 like 64, 128 and 256 to find the most
optimal use case.

– Adaptive Setup: Adaptive optimizer like Adam are advised to manage the
complicated training dynamics of recurrent neural networks (which a simple
gradient descent may not solve). by multiplying the total length of the sequence
by the loss terms added along the way. In turn, it will be simpler to reuse the
hyperparameters across tests since this will average out the loss throughout the
batch. Gradient spikes have the potential to screw up training parameters. To
avoid this, plot the gradient norm first (to determine its typical range) and then
scale down any gradients that are outside of this range.

7 Conclusions and Future Work
In this paper, we introduce Triabase, a novel permissioned blockchain system archi-
tecture that applies data decaying concepts to cope with scalability issues in regards
to blockchain consensus and storage efficiency. For blockchain consensus, we pro-
pose the Proof of Federated Learning (PoFL) algorithm which exploits data decaying
models as Proof-of-Work. For storage efficiency, we exploit federated learning to
construct data postdiction machine learning models to minimize the storage of bulky
data on the blockchain. We have prototyped Triabase in Hyperledger Fabric and
assess its performance using a variety of datasets from the IoT spectrum and Telco
Big Data Spectrum showing that the proposition can achieve superior storage capac-
ity and high throughput (i.e., ingestion and retrieval of data using the proposed data
postdiction ideas.

In the future, we aim to expand the experimental evaluation with additional
and more diverse machine learning models from platforms like Vertex AI4, which
integrates processes for data engineering, data science, and machine learning engi-
neering, allowing teams to work together using a single set of tools. We also aim to
assess Triabase in a realistic TBD edge computing scenario and expand the experi-
mental evaluation with additional and standardized benchmarking frameworks when
these become available. Finally, we aim to devise practical application scenarios of

4Vertex AI. https://cloud.google.com/vertex-ai
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federated learning and sort out the current challenges and future research directions
of data postdiction.
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