
Intelligent Search in Social Communities of
Smartphone Users

Andreas Konstantinidis1, Demetrios Zeinalipour-Yazti1, Panayiotis Andreou1,
George Samaras1, and Panos Chrysanthis2

1 Department of Computer Science, University of Cyprus, Cyprus
2 Department of Computer Science, University of Pittsburgh, USA

Abstract. Social communities of smartphone users have recently gained signifi-
cant interest due to their wide social penetration. The applications in this domain,
however, currently rely on centralized or cloud-like architectures for data sharing
and searching tasks, introducing both data-disclosure and performance concerns.
In this paper, we present a distributed search architecture for intelligent search
of objects in a mobile social community. Our framework, coined SmartOpt, is
founded on an in-situ data storage model, where captured objects remain local
on smartphones and searches then take place over an intelligent multi-objective
lookup structure we compute dynamically. Our MO-QRT structure optimizes sev-
eral conflicting objectives, using a multi-objective evolutionary algorithm that
calculates a diverse set of high quality non-dominated solutions in a single run.
Then a decision-making subsystem is utilized to tune the retrieval preferences of
the query user. We assess our ideas both using trace-driven experiments with mo-
bility and social patterns derived by Microsoft’s GeoLife project, DBLP and Pics
‘n’ Trails but also using our real Android SmartP2P3 system deployed over our
SmartLab4 testbed of 40+ smartphones. Our study reveals that SmartOpt yields
high query recall rates of 95%, with one order of magnitude less time and two
orders of magnitude less energy than its competitors.

1 Introduction

The widespread deployment of smartphone devices and the advent of social networks
have brought a revolution in social-oriented applications and services for mobile phones.
A Smartphone Social Network is a structure made up of individuals carrying smart-
phones, which is used for sharing and collaboration [1] (i.e., content, interests, com-
ments and places.) Sites such as Google Latitude, Gowalla, Foursquare, Facebook Places
and Loopt enable users to report on Who-What-When-Where events, check-in to fa-
vorite places, provide their location history, etc. For instance, users of Facebook can
upload geo-located photos on-the-go and tag (i.e., comment-on) photos with the given
service exceeding over 50 billion photos as of 07/2010. ABI Research 5 projects that

3 Available at: http://smartp2p.cs.ucy.ac.cy/
4 Available at: http://smartlab.cs.ucy.ac.cy/
5 “Location-Based Mobile Social Networking”, Market Development, Revenue Opportunities,

Applications, and Key Industry Players, ABI Research3Q

2

Fig. 1. A visual illustration of the Multi-Objective Query Routing Tree (MO-QRT) structure pro-
posed in this work. Our SmartOpt Framework constructs MO-QRT structures optimized on sev-
eral conflicting objectives (i.e., energy, time and recall). Our structure can be utilized for finding
objects (e.g., images, videos, etc.) in a social neighborhood, without the necessity of having the
objects disclosed to the social network provider.

Smartphone Social Network applications will reach almost 150 million users in 2013
while academic efforts in this direction are also underway [40].

Additionally, there is already a proliferation of innovative applications founded on
crowd-sourcing (e.g., gigwalk.com) and opportunistic/participatory sensing [7, 11, 5],
where applications can task mobile nodes in a given region to provide information about
their vicinity using their sensing capabilities (e.g., noise-maps [38], etc.). Another ex-
ample is road traffic delay estimation [44] using WiFi beams collected by smartphone
devices rather than invoking expensive GPS acquisition and road condition (e.g., Pot-
Hole [16].)

Currently, the bulk of social networking services, designed for smartphone commu-
nities, rely on centralized or cloud-like architectures. In particular, in order to enable
content sharing and community search, the smartphone clients upload their captured
objects (e.g., images uploaded to Twitter, video traces uploaded to Youtube, etc.) to
a central entity that subsequently takes care of the content organization and dissem-
ination tasks. Although certain types of objects, such as text-based micro-blogs, will
behave reasonably well under this model, significant challenges arise for captured mul-
timedia and sensor data (e.g., data captured by the camera, microphone, accelerometer,
WiFi RSS readings, etc.) We claim that the centralization of these object types will be
severely hampered in the future due to the following constraints:

i. Data-Disclosure Constraints: Continuously disclosing user-captured objects to a
central entity might compromise user privacy in very serious ways 6. Even Google’s
CEO Eric Schmidt mentioned recently7 that “... every young person one day will

6 “Google Apologizes for Buzz Privacy”, David Coursey, PC World Business Center (online),
Feb. 15th, 2010.

7 “Google and the Search for the Future”, Holman W. Jenkins Jr., The Wall Street Journal (on-
line), Aug. 14th, 2010.

3

0 10 20 30 40 50 60
0

20

40

60
0

5

10

15

20

25

30

35

40

Energy

Time

R
ec

al
l

Fig. 2. A Pareto Front example of the MO-QRT problem. Solid circles represent non-dominated
QRTs.

be entitled automatically to change his or her name on reaching adulthood in order
to disown youthful hijinks stored on their friends’ social media sites.”

ii. Energy Constraints: Smartphones have expensive communication mediums with
a slow up-link, thus by continuously transferring massive amounts of data to a query
processor, through WiFi/3G/4G connections, can both deplete the precious smart-
phone battery faster, increase query response times, but can also quickly degrade
the network health8.

In this paper, we present techniques to enable smartphone users keep their data
in-situ, for data-disclosure and performance reasons, offering at the same time high
performance search capabilities over other user’s data in the social community. When
a user invokes a search to find an object of interest, e.g., “Pictures of street artists per-
forming in Manhattan” (see Figure 1), the user first downloads a Query Routing Tree
(QRT) X from a SmartOpt server. The X structure resembles spanning tree structures
constructed during searches in unstructured (Mobile) Peer-to-Peer (P2P) systems [18,
46, 52, 53] or aggregation trees used in sensor networks [2], but X is tuned to opti-
mize several objectives concurrently during searches in a smartphone network. The tree
structure X provides better scalability than having the query node contact all nodes that
might contain an answer. This intrinsic characteristic differentiates P2P architectures
from respective centralized architectures.

In particular, the MO-QRTs proposed in this work are optimized to (i) minimize en-
ergy consumption during search; (ii) minimize the query response time in conducting
the search; and (iii) maximize the recall rate of the user query. 9 Most existing works

8 “Customers Angered as iPhones Overload AT&T”, Jenna Wortham, The New York Times
(online), Sept. 2nd, 2009.

9 We did not focus on the precision due to the lack of expert judgements in our datasets.

4

optimize the objectives (i-iii) individually, or optimize one and constrain the comple-
mentation. This often results in “poor” solutions since the objectives are conflicting
and a decision maker needs an optimal trade-off set, commonly known as the Pareto
Front (PF) in the context of Multi-Objective Optimization (MOO). Figure 2, shows an
example where each point represents a QRT solution. The x-coordinate of a point is
the QRT’s overall energy consumption, the y-coordinate is the QRT’s overall response
time in conducting the search and the z-coordinate is the QRT’s overall recall to the
query (i.e., percentage of relevant answers returned, shall be defined more rigorously
later.) A QRT X dominates a QRT Y , if X has lower energy consumption, requires
less response time and provides higher recall rate than Y at the same time. The Pareto
Front is composed of all QRTs that are not dominated by others, that is, the black dots
in Figure 2. A major issue in MOO is that there is no single point (called solution
thereafter) that can optimize all objectives simultaneously. The literature hosts several
approaches that can efficiently deal with multiple conflicting objectives and provide a
set of non-dominated solutions in a single run, such as the Multi-Objective Evolutionary
Algorithms (MOEAs) [13] that have been shown very effective in the past. An opera-
tor that has the same characteristics as those of MOO, but mainly received attention in
the database community for disk-resident data and applied to data mining problems, is
the skyline operator [6, 9, 19, 34, 57]. Skyline operators are mainly classified as central-
ized [9, 19, 30, 34, 43] or distributed [6, 20, 47, 48, 50, 57]. The former aims to collect
all the data from multiple resources to a centralized server, which in turn retrieves the
skyline (i.e., the global set of non-dominated solutions). In the distributed case, each
source initially retrieves a local skyline and then attempts to obtain the global skyline.
However, in most cases the skyline operators are based on systematic approaches (i.e.,
deterministic or exact) for dealing with disk-resident data giving in most cases exact
skyline solutions. Using a systematic approach in our case is not efficient due to the
high complexity and high dimensionality of the proposed problem, as discussed later in
Section 3.

This paper builds on our previous work in [29], in which we presented the pre-
liminary design of the SmartOpt framework. In this paper, we introduce several new
improvements and extensions that are summarized as follows:

– We extend the SmartOpt framework with new features including Decision Making,
during which a non-dominated QRT X can be selected from the Pareto Front based
on some user-preference; and Searching, during which the QRT solutionX is prop-
agated to the network using a text-based Peer-to-Peer tree propagation protocol.

– We present a detailed description of the SmartOpt architecture, including insight in-
formation on all its components and internal procedures, its protocol, its SmartP2P [25]
prototype system and our SmartLab [26] platform of 40+ real smartphones that has
been utilized in our evaluation.

– We introduce an elaborate experimental study and solid experimental evidence for
the motivation and efficiency of our propositions using both a trace-driven experi-
mental methodology with mobility and social patterns derived by Microsoft’s Ge-
oLife project, DBLP and Pics ‘n’ Trails, but also using our SmartP2P real system
developed in Android and deployed over our SmartLab testbed of 40+ smartphone
devices. We also assess the optimality of our multi-objective optimizer (MOEA/D

5

and NSGA-II) and different peer-to-peer search techniques (breadth-first-search,
random walkers and SmartOpt trees.)

– We provide background and related work on the following four areas related to
the scope of this paper: Mobile P2P Search, Query Routing Trees (QRTs), sky-
line queries (centralized, distributed) and Multi-Objective Optimization. We also
qualitatively explain the differences and similarities of the referenced techniques
compared to the SmartOpt framework.

The overall contributions of this paper to the state-of-the-art are the following:

– We propose the Multi-Objective Query Routing Tree (MO-QRT) problem for Smart-
phone Social Networks and formulate it as a Multi-objective Optimization Prob-
lem (MOP), which minimizes the energy consumption and time overhead during
searches but also concurrently maximizes the recall rate of answers.

– We propose a principled framework, coined SmartOpt, for designing an efficient
algorithm for the MO-QRT problem composed of an optimizer, which is based
on a specialized Multi-Objective Evolutionary Algorithm based on Decomposition
(MOEA/D) combined with a posterior decision maker and a Peer-to-Peer search
approach. We propose several complementary techniques for designing an efficient
and effective approach as introduced in Section 4. We have also developed a real
prototype system, named SmartP2P, for the ubiquitous Android Operating System
that shows how the proposed framework can be utilized in real conditions.

– We evaluate our SmartOpt Framework using mobility and social behavior patterns
derived from GeoLife [56], DBLP [12] and Pics ‘n’ Trails [42, 41] using both a
trace-driven experimental methodology and a real execution of our SmartP2P pro-
totype over our SmartLab testbed.

The remainder of the paper is organized as follows: Section 2, provides our system
model and defines the problem in a rigorous manner. Section 3 provides the background
and overviews the related work. Section 4 introduces the SmartOpt framework and its
internal modules composed of various operators. Section 5 details our SmartP2P pro-
totype system and protocol as well as introduces SmartLab, our programming cloud
of 40+ Smartphones. Our experimental methodology and results are presented in Sec-
tion 6, while Section 7 concludes the paper.

2 System Model and Problem Formulation

In this section, we outline our system model and formulate the problem SmartOpt aims
to solve. A table of respective symbols is shown in Table 1.

2.1 System Model

Overview: Let C, denote a social networking service that maintains centrally the pro-
filesP = {p1, p2, ..., pM}, for each of itsM subscribed users (i.e.,U = {u1, u2, ..., uM}).
The profiles record basic user details, authentication credentials, the user interests (e.g.,

6

traveling, sports, music, etc.) and friendship relations that define the conceptual social
network graph G among the M users. In our setting, a user u i (i ≤ M) uses a smart-
phone (or tablet) device to both perform its day-to-day activities but also to capture
objects of interest at arbitrary moments (e.g., “take a picture of the Liberty Statue”).
Each object oik might be tentatively “tagged” with GPS information and other user
tags (e.g., “lat: 40.689201355, long: -74.0447998047, tags: “Statue Liberty Ellis Is-
land”).

Connection Modalities: Each ui features different Internet connection modalities that
provide intermittent connectivity to C (e.g., WiFi, 2G/3G/4G). Each u i also features
peer-to-peer connection modalities that provide connectivity to nodes in spatial prox-
imity (e.g., Bluetooth, Portable WiFi or upcoming NFC available in Android). We as-
sume that when ui is connected to C, then C is aware of ui’s absolute location (e.g.,
GPS) or ui’s relative location (e.g., the cell-ids within ui’s range, WiFi RSSI indicators
within ui’s range or other means utilized for geo-location). Notice that each of the con-
nection modalities comes at different energy and data transfer rate characteristics. For
example, we’ve profiled an Android-based HTC Hero and found that WiFi consumes
39mW/byte, 3G consumes 24mW/byte and Bluetooth consumes 14mW/byte. Addition-
ally, Bluetooth had a symmetric data rate of 864kbps, while WiFi an asymmetric data
rate of 123Kbps (up) and 2Mbps (down) and 3G an asymmetric data rate of 2.7Mbps
(up) and 7.2Mbps (down). The nominal data rates for the aforementioned modalities
might differ significantly, as this is also validated in [21], mainly due to the deployment
environment. Moreover, while the power consumption on the different kinds of radios
can be comparable, the energy usage for transmitting a fixed amount of data can differ
an order of magnitude because the achievable data rates on these interfaces differ sig-
nificantly [35]. Finally, the availability characteristics of these kinds of modalities can
vary significantly. The penetration of some form of cellular availability (e.g., WiFi or
3G) is significantly higher than Bluetooth, on average. Thus, uploading or download-
ing large data items using Bluetooth can be more energy-efficient than using a radio
network, but Bluetooth may not always be available and it is often slower.

Search Techniques: Let an arbitrary user uj (j ≤ M), be interested in answering
a query10 Q over its social neighborhood (i.e., nodes connected to u j either directly
or through intermediate nodes) G ′ (G′ ⊆ G). For instance, let Q be a depth-bounded
breadth first search query over uj’s neighbors in the G graph (i.e., in G ′). This kind of
conceptual query can be realized in the following manners:

1. Centralized Search (CS): This algorithm assumes that the multimedia objects and
tags are all uploaded to C prior query execution. Once Q is posted, C can locally
derive the answers (using its local tag database) and return the answers to u j . This
model, which is currently utilized by all social networking sites (such as Twitter,
Youtube, Loopt, etc.), performs well in terms of query response time but performs
poor both in terms of data disclosure (i.e., o ik objects and tags need to be continu-
ously disclosed to C) and performance (i.e., data transmission of large objects over
radio links is both energy demanding and time consuming.)

10 Without loss of generality we assume simple Boolean keyword queries over tags.

7

Table 1. Table of Symbols

Symbol Description

C (Centralized) Social Networking Service
U Users of the Social Network (i.e., {u1, u2, ..., uM})
P User Profiles stored by C for Us (i.e., {p1, p2, ..., pM})
oik Object k (images, videos, etc.) recorded by user i.
G Conceptual Graph connecting the users in U .
G′ Social Neighborhood of some arbitrary user.
Q Query conducted in social neighborhood G′ (G′ ⊆ G).
X Query Routing Tree constructed to answer Q.
U ′ Users that are connected to C during the execution of Q.

2. Distributed Breadth-First-Search (BFS): This algorithm assumes that the objects
and tags are all stored in-situ (on their owner’s smartphones.) In order to realize the
search task, a querying node uj downloads from the query processor the addresses
(e.g., IP:PORT address) of its first line neighboring nodes (i.e., G ′′ ⊆ G′). uj then
contacts the nodes in G ′′ in order to conduct a depth-bounded breadth first-search
in a P2P fashion (i.e., using a pre-specified QTTL > 0). Once some arbitrary node
ux ∈ G′ receives Q, it both looks at its local tags, in order to identify an answer
and also forwards the request further until QTTL becomes zero.

Although the BFS approach improves the data-disclosure drawback of the CS al-
gorithm, it is quite inefficient during search. In particular, Q has to go over a random
neighborhood rather than a neighborhood that is contextually related to the query. For
instance, in our Liberty Statue query example, we would have preferred querying a
friend living in lower Manhattan rather than a person living in California (as the former
would have a higher probability of capturing the statue). Also, if u j had two friends, ux

and uy , both living in lower Manhattan, with ux being in spatial proximity to uj during
the query (i.e., within a few meters), while uy being far away, would have made ux a
better choice for posting the query (as ux could have been queried through a local link
such as Bluetooth).

2.2 Optimization Problem Formulation

The Multi-Objective Query Routing Tree (MO-QRT) structure, proposed in this paper,
improves the search operation of the BFS algorithm by optimizing the neighbor se-
lection process. In particular, a node downloads from C a QRT X that is optimized
according to the following formulation: Given a social network of users U , a list of ac-
tive users U ′ and their coordinates, the profiles P of these users and a query Q, posted
by an arbitrary user uj , the query processor aims to optimize an X structure using the
following objectives:

8

Objective 1: Minimize the total Energy consumption of X

Energy(X) = min
∑

∀(ua,ub)∈X (X⊆U ′)

e(ua, ub) (1)

where, e(ua, ub) denotes the energy consumption for transmitting one bit of data over
the respective edge (WiFi, Bluetooth and 3G).

Objective 2: Minimize the Time overhead of X

T ime(X) = min(max(ua,ub)∈X t(ua, ub)) (2)

where, t(ua, ub) denotes the delay in transmitting one bit of data over the respective
edge.

Objective 3: Maximize the Recall rate of X

Recall(X ,Q) = max(
Relevant(Q) ∩Retrieved(X ,Q)

Relevant(Q)
) (3)

where Relevant(Q) denotes the set of all objects in U ′ that are relevant to Q, formally

as:
Relevant(Q) =

⋃

∀ua∀k(ua∈U ′)

(oak)),

given that ua’s profile (denoted as pa) contains terms found in Q. On the other hand,
Retrieved(X ,Q) denotes the set of objects that have been retrieved in response to Q
over structure X , formally as:

Retrieved(X ,Q) =
⋃

∀ua∀k(ua∈X)

(oak)),

again given that pa contains terms found in Q.
In a MOP, there is no single solution X that optimizes all objectives simultaneously,

but a set of trade-off candidates. The set of trade-off solutions, commonly known as the
Pareto Front (PF), is often defined in terms of Pareto Optimality. That is, considering
a maximization MOP with n objectives: a solution X ∗ is considered non-dominated or
Pareto optimal with respect to another solution Y , iff ∀i ∈ {1, ..., n},X i ≥ Yi ∧ ∃i ∈
{1, ..., n} : Xi > Yi, this is denoted as X 	 Y .

In our previous works [3, 4, 52], we have studied each of the individual objec-
tive functions in isolation. For example, in [3] and [4] we have computed the en-
ergy consumption based on the energy model of the TelosB sensor device and the
CC2420 RF Transceiver including all its power modes (i.e., receive, transmit, idle,
etc.) More specifically, the energy formula used was the following: Energy(Joules) =
Volts x Amperes x Seconds (e.g., the energy required to transmit 30 bytes at 1.8V is
: 1.8V × 23 × 10−3A × 30bytes×8bits/250kbps= 39J). The experimental results of
these works were validated using PowerTossim, which is a well known tool for realis-
tically measuring energy in various embedded devices. Furthermore, in [4] the critical

9

path objective, which is similar to the time objective of this work, was calculated using
an in-network recursive algorithm that took into account a number of real properties
such as the link activity and the number of collisions at the MAC layer of each node.
In the same manner, these works utilized a number of other objectives (e.g., network
lifetime, query response time, quality of data (accuracy, recall)) calculated in a realistic
manner and validated through well-established simulators. In [52], we have tackled the
recall objective in P2P systems by developing a real system, coined PeerWare.

3 Background and Related Work

In this section, we provide related research work that lies at the foundation of the Smar-
tOpt Framework.

Mobile Peer-to-Peer/MANET search can be roughly classified into: i) Blind Search [18,
31, 51], where mobile peers propagate the query using an unsophisticated (e.g., random,
ttl property) approach to as many nodes in the network as possible, and ii) Informed
Search [8, 23, 24, 33, 39, 46], where mobile peers use semantic or location information
to forward queries to specific nodes in the network. The proposed search approach
presented in this paper belongs to the latter class with the difference that we utilize
a centralized approach where mobile peers (i.e., smartphone devices) subscribe to a
centralized registry. Similar to [39], we utilize a content summary mechanism (i.e., pro-
file) for discovering mobile peers that will participate in a query Q by the centralized
node. However, in our setting, the content summary of each mobile peer is stored at the
centralized node upon its registration thus allowing multiple query users to use this in-
formation without requiring the retransmission of the content summary to each mobile
peer. In PeerDB [33], the authors propose an agent-assisted query processing approach
that has the ability to reconfigure the network based on optimization criteria (e.g., chan-
nel bandwidth). Although, this can increase the performance of the system (e.g., mini-
mize energy cost, increase time performance), it imposes a high cost for maintaining the
agents at each mobile node. In Location-Aided Routing (LAR) [24], the authors take into
account the physical location of a destination mobile node, reaching in this way only a
set of nodes close to the query user, which maximizes the performance of a query (i.e.,
time, energy). In SmartOpt, we additionally augment each mobile node with a profile,
which further decreases the number of participating nodes as only nodes that support a
given query will contribute to the results.

Query Routing Trees (QRTs) in smartphone networks have recently received attention
in the context of people-centric applications [7]. Such applications feature continuous
sharing of data that can be utilized to create a number of collaborative scenarios (e.g.,
BikeNet [15]). A central component to realize such scenarios is the availability of some
high-level communication structure, such as QRTs. In [45], the authors present a tech-
nique that profiles the activities of the user in order to minimize the number of commu-
nication packets transmitted in the smartphone network. In contrast to [45], which fo-
cuses on a single objective of energy, our proposed technique focuses on two additional
objectives: time overhead and recall. In [17], the authors form QRTs using flooding in
order to continuously track mobile events and relay data to the query user. Similarly

10

to the BFS algorithm, presented earlier, this approach suffers from significant energy
waste as all nodes continuously and actively participate in the smartphone network.
QRTs have also been extensively studied in the context of unstructured P2P system
(e.g., IS, >RES, RBFS, Random Walkers, APS, etc. [52]), yet none of these was taking
into account the resource-constrained nature of smartphone networks. Similarly query
routing structures proposed for Sensor Networks, such as TAG, ETC and MHS [2], fo-
cus on building routing trees that are near-optimal (in respect to a single objective) but
expose good aggregation and data synchronization properties during continuous data
percolation to a centralized sink. On the other hand, our setting deals with snapshot
query cases and multi-objective query optimization for smartphone social networks.

Skyline operators are mainly used by the database community [34] to retrieve a global
set of non-dominated solutions, i.e., the skyline similar to the Pareto Front of MOO, of a
skyline (or Pareto) query in a centralized or a distributed manner. The literature, which
focuses on centralized databases, aims at collecting all information from all resources
to a centralized node, which in turn retrieves the global skyline using systematic ap-
proaches. For example, Tan et al. [43] adopted a Bitmap-based approach to retrieve the
skyline using binary operations in a bit-string representation, as well as a B-tree based
algorithm that further improves its predecessor response speed. Block Nested Loop and
Sort-filter skyline (SFS) [9] approaches search the points in the data set exhaustively
and retrieve the skyline points based on their domination ranking, having as a main
difference that the latter initially sorts the points of the data set in an ascending order
before the BNL approach is applied. Similarly, Godfrey et al. [19] extended the work
in [9], by proposing the Linear-estimation-sort (LESS) algorithm that reduces the cost
of SFS by eliminating a portion of the database during sorting. Papadias et al. [34] and
Kossman et al. [30] have tackled the centralized skyline retrieval challenge considering
R-tree nodes, using a branch-and-boundand a NN progressive approaches, respectively.

Moreover, several attempts have been made in distributed skyline retrieval, often
using approaches for locally partitioning the data sets either vertically or horizontally
and then retrieving the global skyline after collecting all local skylines in a central node.
For example, Balke et al. [6] have proposed a vertically partitioned distributed skyline
algorithm, that performs a round-robin based sorting until finding all non-dominated
points for each particular database. Examples of distributed algorithms that are based
on horizontally partitioning a database include [47, 48, 50] and [57]. Particularly, Wu
et al. [50] separates the database region into rectangular spaces and maps each server
to a region. Each server is therefore responsible for finding the skyline of their local
data region and then by considering some precedence relations the global skyline is
obtained. Similarly, Wang et al. [48] and Vlachou et al. [47] proposed an algorithm for
skyline retrieval in P2P networks by organizing the peers in an overlay network and sub-
spaces, respectively. Zhu et al. [57] has recently proposed a feedback-based distributed
skyline (FDS) algorithm that supports horizontal partitions of the data sets of geograph-
ically distant servers. All aforementioned studies, however, process the local skylines
in servers having no issues in memory and energy consumption, a crucial resource in
mobile smartphone devices that considered in our case.

More closer to our work is [20], in which the authors study skyline retrievals on
mobile devices of Mobile Ad-hoc NETworks (MANETs). The authors propose an al-

11

gorithm that iteratively probes the mobile devices to construct a local subtree skyline,
i.e., points that are in the skyline, rooted at each individual device. The global sky-
line is retrieved after probing all mobile devices. Generally, the dimensionality of the
problems tackled in all aforementioned cases is low. For example, finding properties to
optimize the distance from the beach and the price of a property is a common problem
tackled in several skyline cases [30, 34, 57]. One solution in these kinds of problems
in the decision space (e.g., the location (2-D) of a property) has a one-to-one mapping
with one solution in the objective space (e.g., distance from the beach and price). In
these cases, one can easily adopt systematic approaches, search all solutions and find
the real skyline. However, in our case, obtaining a QRT by selecting some or all N
active smartphones, increases the dimensionality (e.g., can be up to 2×N , considering
only the x, y coordinates of the smartphones) of the search space for obtaining a single
QRT and thereinafter a solution in the objective space (e.g., the energy, time overhead
and recall of that particular QRT.) This increases the complexity of these kinds of prob-
lems, including the fact that in most cases there is not even any knowledge about the
real Pareto Front that should be obtained. Therefore, it is nearly impossible to use a
systematic approach and search all QRTs (i.e., all combinations of smartphones) for
dealing with the proposed problem. This is the major reason why a stochastic approach,
such as an Evolutionary Computation approach, might be more appropriate.

Multi-Objective Optimization (MOO) (a.k.a. multi-criteria or multi-attribute opti-
mization) is the process of simultaneously optimizing two or more conflicting objec-
tives subject to certain constraints. MOO has numerous applications in virtually all
domains of sciences, engineering and economics. MOO is a relatively new area in mo-
bile/wireless networks, in general, and in Smartphone Networks in particular. In MOO,
it is difficult to apply an existing linear/single objective or systematic method to ef-
fectively tackle a Multi-objective Optimization Problem (MOP), giving a set of non-
dominated solutions. This is mainly due to the increased complexity and high dimen-
sionality of the search (or decision) space. Our optimizer borrows ideas from Multi-
Objective Evolutionary Algorithms (MOEAs), which have been shown effective in ob-
taining a set of non-dominated solutions in a single run. In the literature, several MOPs
were proposed in the content of Wireless Sensor Networks and Mobile Networks [22,
27, 28, 37], tackled in most cases by Pareto-dominance based MOEAs (e.g., the state-
of-the-art Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) [14], Evolutionary
Multi-objective Crowding-based Algorithm (EMOCA) [36], etc.) and in few cases by
decompositional MOEAs (e.g., Multi-Objective Evolutionary Algorithms based on De-
composition (MOEA/D) [55]).

4 The SmartOpt Framework

In this section, we present the SmartOpt framework (see Figure 3) that proceeds in
three phases: i) the Optimization phase, during which a set of non-dominated QRTs
(i.e., Pareto Front) is identified; ii) the Decision Making Phase, during which a non-
dominated QRT X is selected based on some user-preference criteria from the Pareto
Front; and iii) the Search Phase, during which the QRT solution X is propagated to u j

and the search process is initiated.

12

Fig. 3. The SmartOpt framework with our SmartP2P prototype system. (a) A user posts a query
to the optimizer. (b) The optimizer obtains a set of non-dominated solutions (PF) and send it back
to the user. (c) The user (decision maker) chooses a Pareto-optimal solution based on instant
requirements and preferences. (d) The optimizer forwards the selected Pareto-optimal QRT to
the user. (e) The user searches the P2P social network for objects of interest.

Our framework is founded on a MOEA, during which a population of candidate
solutions (a.k.a. chromosomes), evolve into better solutions (w.r.t. the objective func-
tions), by utilizing a set of operators (e.g., selection, crossover and mutation) that are
inspired by natural evolution. The given application of operators is inherently stochas-
tic, but applications to numerous domains such as bioinformatics, computational sci-
ence, engineering, economics and other fields, have shown that MOEAs can be more
effective to difficult multi-objective optimization problems when domain knowledge is
incorporated to the operators [27]. In the context of SmartOpt, we introduce both do-
main expertise into our operators as well as utilize well-known operators that have been
proven accurate over the years.

Specifically in the Optimization Phase, we have implemented and specialized the
MOEA/D framework, which is the state-of-the-art of the decompositional MOEAs
and the winner of the Unconstrained Multi-Objective Evolutionary Algorithm com-
petition in the Congress of Evolutionary Computation, 2009. We initially proposed
a tree-based encoding representation suitable for the MO-QRT problem and we then

13

designed a MOEA/D composed of our M-tournament selection approach and the two-
point crossover and random mutation genetic operators as originally proposed by Zhang
and Li in [55]. Furthermore, we hybridized MOEA/D with a problem-specific repair
heuristic for identifying infeasible solutions generated by the genetic operators and
converting them to feasible. In the Decision Making Phase, we proposed a posterior
approach for giving the opportunity to the user to visually choose a QRT, from the set
of Pareto-optimal QRTs obtained by the MOEA/D, based on instant requirements and
preferences; instead of choosing a QRT a priori, without any knowledge on the ob-
tained Pareto Front, or interactively that consumes additional time and energy from the
Smartphone users. Finally in the Search Phase, our framework uses a fast text-based
Peer-to-Peer tree propagation protocol to retrieve objects of interest from the social
network.

1 -1 1 3 1 -1 -15511 -1 1 3 1 -1 -1551X:

8

5 73

4

1

9

X in Smartphone Network

u1

u5

u6

u8 u9 u10

u3

u2

u4

u7

1 2 3 4 5 6 109871 2 3 4 5 6 10987

Fig. 4. The query routing tree X representation (left) and conceptual structure (right).

4.1 Pre-Processing Steps of SmartOpt Optimizer

The pre-processing steps consists of representing a QRT and decomposing the problem
into a set of scalar sub-problems.

Representation: In our approach, a solution11 X is a QRT with |G′| active smartphone
users that can participate in the resolution of Q. Without loss of generality, let X be
represented as a vector in which each index i corresponds to a user u i and the value
of that position corresponds to ui’s parent. The root of the tree is the query user (for
simplicity noted as u1). A negative value −1 in any position indicates that the given
user is not currently selected in the query routing tree X . Figure 4 illustrates a query
routing tree X representation as well as X in a smartphone network.

Decomposition: Initially, the MOP should be decomposed into m subproblems by
adopting any technique for aggregating functions, e.g., the Tchebycheff approach used

11 The terms “solution”, “vector” and “QRT” are utilized interchangeably.

14

Algorithm 1 The SmartOpt Optimizer
Input:
• network parameters (e.g., Q, P , U , G);
•m : population size and number of subproblems;
• T : neighborhood size;
• weight vectors (w1

j , ..., w
m
j), j = 1, 2, 3;

• the maximum number of generations, genmax;
Output: set of non-dominated QRTs, known as the Pareto Front (PF).
Step 0-Setup: Set PF := ∅; gen := 0; IPgen := ∅;
Step 1-Initialization: Uniformly randomly generate an initial set of QRTs IP0 =
{X 1, · · · ,Xm}, known as the initial internal population;
Step 2:For i = 1, . . . m do

Step 2.1-Genetic Operators: Generate a new solution (i.e., QRT) Y using the genetic
operators.
Step 2.2-Local heuristic: Apply a problem-specific repair heuristic on Y to produce Z.
Step 2.3-Update Populations: Use Z to update IPgen, PF and the T closest neighbor
solutions of Z.

Step 3-Stopping criterion: If stopping criterion is satisfied, i.e., gen = genmax, then stop
and output PF , otherwise gen = gen+ 1, go to Step 2.

here. In this paper, the ith subproblem is in the form

maximize gi(X|wi
j , z

∗) = max{wi
j |fj(X) − z∗j |} (4)

where fj , j = 1, 2, 3, are the objectives of our MOP formulated earlier in Subsec-
tion 2.2, z∗ = (z∗1 , z

∗
2 , z

∗
3) is the reference point, i.e., the maximum objective value

z∗j = max{fj(X) ∈ Ω} of each objective fj , j = 1, 2, 3 and Ω is the decision space.
For each Pareto-optimal solution X ∗ there exists a weight vector w such that X ∗ is
the optimal solution of (4) and each solution is a Pareto-optimal solution of the MOP
in Subsection 2.2. For the remainder of this paper, we consider a uniform spread of
the weights wi

j , which remain fixed for each subproblem i for the whole evolution and∑3
j=1 w

i
j = 1.

4.2 Optimization Phase

In this phase, SmartOpt optimizes in an online manner the solution space using a set of
genetic operators. An outline of this phase is provided in Algorithm 1.

Initialization Step 1: In Step 1 of Algorithm 1, we adopt a random method to generate
m QRT solutions for the initial Internal Population (i.e., IP0). Namely, a QRT solution
X is initiated by setting each smartphone user ui, i = 1 . . .M as a parent. Then, mobile
users uj , j = 1 . . .M are uniformly randomly selected, and u i is set as uj’s parent iff
i
= j and ui is either the root or has already a parent. If u j has already a parent then
we stop and we set as parent the user ui+1. This continues until all users ui are set as
parents once. Thereinafter, the IPgen is used to store the best QRT solution X i found
for each subproblem g i during the search, i.e., in each generation gen.

15

1 -1 1 3 1 -1 -15511 -1 1 3 1 -1 -1551

1 1 2 3 1 3 110-1-11 1 2 3 1 3 110-1-1

Pr1:

Pr2:

x1

1 1 2 3 1 -1 110-1-11 1 2 3 1 -1 110-1-1

1 -1 1 3 1 3 -15511 -1 1 3 1 3 -1551O1:

O2:

x2

Pr1:

8

5 73

4

1

9

5 102

3

1

9

Pr2:

O1:

8

5 73

4

1

9

4

5 102

3

1

9

O2:

6

4 6

1 2 3 4 5 6 7 8 9 10Index:

Fig. 5. The Crossover operator of SmartOpt optimizer.

Genetic Operator Step 2.1: The genetic operators (i.e., selection, crossover and mu-
tation) are then invoked on IP for offspring reproduction, i.e., generate a new QRT
solution Y i for each subproblem g i, i = 1 . . .m. The following steps summarize the
details of each operator:

– Selection: We utilize our M-Tournament tree selection [28] for selecting the M
closest individual QRTs from the neighborhood of each subproblem g i, which are
then added in a tournament and the two QRTs with the best fitness are selected
as parents for crossover. The given selection operator allows to easily adjust the
selection pressure, is simple to implement and works in constant time.

– Crossover (a.k.a. reproduction or recombination): allows our algorithm to gen-
erate new solutions that share many of the characteristics found in parents, yet are
different QRTs. In particular, the 2x-point tree crossover operator takes as an in-
put two parent QRT solutions, Pr1 and Pr2, and subsequently generates two new
QRTs O1, O2, the offspring. The best offspring O is finally selected as follows:
• Two crossover points x1 and x2 are uniformly randomly selected from numbers

1 to M-1, where x1 < x2.
• The pieces of the parents Pr1 and Pr2 falling within x1 and x2 are exchanged

to produce two offspring, e.g., O1, O2.
• The best offspringO is then forwarded to the mutation operator, whereO = O 1

if gi(O1, w
i
j) < gi(O2, w

i
j) and O = O2 otherwise.

The procedure of the 2x-point crossover is illustrated in Figure 5 for M = 10.

– Swap Mutation: modifies an offspring O to a solution Y with a probability rm by
uniformly randomly swapping the values (i.e., parents in the tree) of two indexes
j, z of the QRT Y . Figure 6 shows an example where a solution X of size M = 10

16

is processed by the mutation operator and based on the probability parameter rm

the indexesX2 = −1 andX9 = 5 are modified by swapping their values with those
of indexes X7 = 1 and X4 = 3, respectively, creating solution Y . This results in
assigning a parent to Y2, i.e., the root 1, and changing the parent of X 9 to 3. Note
that, X2 had no parent, and therefore was not included in the tree, before mutation.
Mutation operator is often used for improving exploration and consequently the
diversity of the obtained solutions.The modified QRT solution Y is then forwarded
to the repair heuristic.

1 -1 1 3 1 -1 -15511 -1 1 3 1 -1 -1551X: 1 1 1 5 1 -1 -135-11 1 1 5 1 -1 -135-1Y:

8

5 73

4

1

9 8

3 52

9

1

4

Mutated Solution

Fig. 6. The swap mutation operator of the SmartOpt optimizer.

Repair Step 2.2: In Step 2.2 of Algorithm 1, a problem-specific local heuristic checks
a QRT solution Y and calculates a QRT Z iff:

– Case #1: there is a disconnected user ui in QRT Y (i.e., ui with or without children
that does not have a parent);

– Case #2: two or more user ids i of user u i are the same in QRT Y;
– Case #3: there is an infinite loop in QRT Y;

In all cases (illustrated in Figure 7), the solution Y is considered infeasible. An
infeasible solution can be generated during reproduction (i.e., genetic operation). A
local heuristic repairs the QRT solution Y to Z by: uniformly randomly generating a
parent for the disconnected user u i in Case #1, replacing the duplicate user ui with
another user uj in Case #2, breaking the loop by connecting a random user of the loop
with another user out of the loop in Case #3. All repair techniques are shown with dotted
lines in Figure 7. The repair heuristic continuously repairs solution Y until it does not
fall in any of the Cases #1, #2 or #3. Solution Z is then used to update the populations
of MOEA/D.

Population Update Step 2.3: In Step 2.3, the update phase of Algorithm 1 is pro-
cessed in three steps. (1) Update IP , IP/{X i} and IP ∪ {Z i} if gi(Zi|wi, z∗) <
gi(X i|wi, z∗), otherwise X i remains in IP . (2) Update the neighborhood of Z i, i.e.,
the solutions of the T closest subproblems of i in terms of their weights {w 1, · · · , wm}

17

8

5 73

4

1

9

Case #1: Disconnected user

repair

8

5 75

4

1

9

Case #2: Users with same ids

repair

5?

3

8

5 73

4

1

9

Case #3: Infinite Loop

repair

loop

Fig. 7. The repair operator of SmartOpt optimizer.

are updated. If gj(Zi|wj , z∗) < gj(X j |wj , z∗), then IP/{X j} and IP ∪ {Z i}, other-
wise X j remains in IP , where j ∈ {1, ..., T }. (3) Update the Pareto Front (PF), which
stores all the non-dominated solutions found so far during the search.PF = PF∪{Z i}
if Z i is not dominated by any solution X j ∈ PF and PF = PF/{X j}, for all X j

dominated by Z i. The search stops after a per-defined number of generations, genmax.

4.3 Decision Making Phase

In the posterior decision making phase used in this paper, the query user u j is prompt
to decide its preference in terms of T ime (i.e., Objective 2 calculated by Equation 2)
and Recall (i.e., Objective 3 calculated by Equation 3) of the query response to receive
from the Smartphone Network. The decision maker module of SmartOpt then finds the
QRT solution X of the PF that best satisfies the user’s decision and it is also the most
Energy efficient (i.e., Objective 1 calculated by Equation 1) at the same time. By this
way, uj is responsible to decide the user-oriented objective values (i.e., time and recall)
and the decision maker module the system oriented objective value (i.e., energy), since
it is assumed that Smartphone users will not be interested in conserving the overall
system energy of the network.

For example, consider that the SmartOpt optimizer has obtained the PF of Figure 8
in Phase 1. The slidebar at the bottom of the figure is the query user’s decision, where
w1 = 0.3 and w2 = 0.7, s.t. w1 +w2 = 1, correspond to the user’s preference in terms
of time and recall, respectively. Then, the decision maker module calculates and obtains
the solutionX that is closer (in terms of Euclidean distance) to the user’s decision in the
objective space and provides Pareto optimal energy consumption (i.e., E ′ in Figure 8)
at the same time. In cases where there are more than one solution that equally satisfy
the user’s decision then the most energy efficient is selected to be searched. Figure 8
also shows solutions A, B and C that represent the extreme solutions of the PF. That
is, solution A represents the best Pareto optimal solution in terms of time, in case that
the query user is only interested in receiving the results fast, fully ignoring recall, i.e.,

18

Fig. 8. Decision Making example.

w1 = 1, w2 = 0. Solution B represents the best Pareto optimal solution in terms of
recall, in case that the query user is only interested in the amount of information (recall),
fully ignoring the time, i.e., w1 = 0, w2 = 1. Finally, solution C represents the best
Pareto optimal solution in terms of energy that the decision maker module automatically
selects, in case that the query user does not have a preference with respect to the other
two objectives. The Pareto optimal QRT X is then propagated to u j and the search
process is initiated in the following phase.

4.4 Search Phase

In the final phase, the query user u1 receives the Pareto-optimal treeX from the decision
maker module of SmartOpt and proceeds with a recursive execution of Algorithm 2 on
all smartphone devices participating in the tree X . Recall that X is a vector in which
each index i corresponds to a user u i (IP address and Port) and the value of that position
corresponds to ui’s parent (IP address and Port).

As soon as a smartphone device uj receives Q it creates a set Oj of all objects oji
that satisfy Q (line 4). Immediately then, uj transmits these objects to the query user
u1 (line 6) using the most efficient communication technology (i.e., bluetooth, 3G). In
the final step, the smartphone device uj forwards Q to all its child nodes (lines 8-14).
This is done by checking each parent entry in X with its own (line 11). If a match u i is
found, uj transmits Q and X to ui (line 12). This process executes recursively until all
smartphone devices in X receive the query.

19

Algorithm 2 : Search Phase
Input: The Query User u1, A Pareto-optimal Query Routing Tree X , A Query Q
Output: A set of objects Oj = {oj1 . . . ojk}.

1: procedure SEARCH(u1,X ,Q)
2: if (j �= 1) then
3: //Step 1: Find a set of local objects Oj that satisfy Q
4: Oj =

⋃
∀i oji, satisfy(oji,Q)

5: //Step 2: Send local objects Oj to query user u1

6: Send(Oj , u1);

7: end if

8: //Step 3: Forward query u1 to all children smartphone devices
9: for i = 1 to |X | do

10: //if j is the parent of i
11: if (X [i] == j) then
12: Search(u1,X ,Q);
13: end if
14: end for
15: end procedure

4.5 Summary of SmartOpt Architecture

The proposed SmartOpt framework aims at obtaining a diverse and high quality set of
non-dominated QRT solutions (PF) by using a MOEA in the Optimization Phase (de-
tailed in Subsection 4.2). Then it opts for the best suited Pareto-optimal QRT X ∗ ∈ PF
based on instant requirements and preferences of the query user u j (decision maker) in
the Decision Making Phase (Subsection 4.3). The query user u j then downloads and
utilizes QRT X ∗ to search the mobile social network and find objects of interest o ik

recorded by users ui ∈ X ∗ and related to query Q in the Search Phase (detailed in
Subsection 4.4).

5 The SmartP2P Prototype System

In this section, we describe our prototype system, coined SmartP2P 12, developed for the
ubiquitous Android Operating System to demonstrate the applicability of the SmartOpt
framework. We particularly overview the GUI and protocol of the framework as well as
its evaluation on our programming cloud of Smartphones, coined SmartLab testbed.

5.1 Overview

Our client-side software is developed around the SDK Tools r12 of Android 2.2 and its
installation package (i.e., APK) has a size of 327KB. Our code is written in JAVA and
consists of around 7500 lines of code. In particular our server-code (i.e., optimizer)

12 Available at: http://smartp2p.cs.ucy.ac.cy/

20

uses 5000LOC and runs over JDK 6 and Ubuntu Linux, our smartphone code uses
1600 LOC plus 250 lines of XML elements. The server side also includes a Microsoft
SQL server R2 and utilizes the JMATH-PLOT package for drawing the Pareto Front
images.

Fig. 9. The SmartP2P Android GUI. (a) The intro screen. (b) The keyword search optimization
with four algorithmic choices screen and (c) the resulted Pareto Front screen for decision making.
(d) The results retrieved after initiating a P2P search on the smartphone network. (e) The QRT
selected by the query user and utilized to retrieve the objects of interest.

5.2 Graphical User Interface

The Graphical User Interface of our system provides a primitive interface for a user to
query the active users in the community (the details of the protocol are presented in
the next paragraph.) Figure 9 (b) shows the GUI through which a query is formulated
in order to find objects of interest. The group of algorithmic choices provided by the
SmartP2P framework is shown below the search box. SmartP2P provides (i) two sim-
ple distributed choices, i.e., Random Search and Breadth-First Search, as well as (ii)
two MOO choices, i.e., the MOEA based on Decomposition (MOEA/D) and the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II). The user selects an algorithm and
presses the “Go” button. Then the SmartP2P optimizer calculates a QRT in case (i) or
a Pareto Front in case (ii). In both cases, the result is returned to the query user. The
decision maker is only enabled when the query user selects an algorithm from case (ii)
to perform the search. In this case, the Pareto Front is forwarded and displayed to the
query user as shown in Figure 9 (c) (note that the image can zoom in/out for better
visualization). Then the query user makes use of the slide bar below the Pareto Front
image to set a desired level of time and recall of the search to be initiated. Note that if
the user does not choose a desired level of those two objectives, the solution with the
minimum energy consumption is automatically chosen. By pressing the “Go” button,

21

the decision maker finds the QRT that is closer to the user’s choice and downloads it
from the optimizer to the user’s smartphone. Finally, the query user initiates the search.
The results of the search as well as the selected QRT are both displayed on the user’s
smartphone as shown in Figure 9 (d) and (e), respectively.

5.3 Protocol

We shall next provide an abstraction of the peer-to-peer protocol that lies at the founda-
tion of our prototype system. We chose to implement a text-based protocol, as opposed
to a binary protocol, for portability (i.e., endianness) reasons. We also did not chose an
XML-based protocol implementation for performance reasons (i.e., minimize annota-
tions.) At a high level, a smartphone user, denoted as QP, starts out in Step 1 by register-
ing its obfuscated location (e.g., vector of intercepted cell tower IDs or MAC addresses
of WiFi access points) to a well-known host-cache (i.e., the SmartOpt SERVER in our
case.) The above function is carried out using the following message exchange:

-- STEP 1: REGISTRATION
SERVER: +OK READY -- welcoming message
QP CLIENT: REGISTER APPROX_LOCATION
SERVER: +OK 8734e604-0f79-45ee-9126-f71eaee540f5
<close connection to SERVER>

After this exchange, the client is considered to be ”connected” to the service for a
pre-specified amount of time (i.e., k seconds in our setting, after which the lease can be
renewed). The Globally Unique Identifier (i.e., GUID or UUID) returned by the server
provides an easy mechanism to enforce registration with the host-cache prior to any
other function as explained next and requires only minimal state on the server.

Now assume that a ”connected” client QP wants to query the active nodes in the
network. QP first issues a GET command to the SERVER, in step 2, in order to ob-
tain a tree that captures its optimization criterions (with respect to time, energy and
recall.) Notice that the SERVER is already aware of the social graph and other statis-
tics used in the optimization process. The issued command is supplemented by a GUID
token returned during the registration step 1. The returned tree is serialized in the fol-
lowing format ‘‘NodeIP:NodePort(ParentIP:ParentPort)’’, with -1 de-
noting no-parent but is shorten below for ease of exposition. The message exchange
proceeds as follows13:

-- STEP 2: TREE RETRIEVAL
SERVER: +OK READY
QP CLIENT: GET T 8734e604-0f79-45ee-9126-f71eaee540f5
SERVER: P0(-1), P10(P0), P15(P0), P30(P10), NULL
<close connection to SERVER>

Once T is obtained by QP, QP connects to P0=root(T) in step 3 and submits its
queryQ (i.e., {k1,k2,...,kn}), its HOME ADDR address (i.e., IP:PORT) as well as a hop

13 Our system also supports command pipelining as opposed to utilizing separate connections for
each step.

22

count parameter. P0 then forwards these parameters to its own children (i.e., P10 and
P15), in a recursive manner for N levels (using a predetermined Time-To-Live (TTL)
value enforced by the hop count.) The messaging for the first three hops (assuming
Depth-First-Search propagation), is as follows:

-- STEP 3: P2P SEARCH
P0 CLIENT: +OK READY
QP CLIENT: SEARCH 0 | HOME_ADDR | k1,k2,...,kn |

P10(-1)|P30(P10)|NULL
-- next hop
P10 CLIENT: +OK READY
P0 CLIENT: SEARCH 1 | HOME_ADDR | k1,k2,...,kn |

P30(-1)|NULL
-- next hop
P30 CLIENT: +OK READY
P10 CLIENT: SEARCH 2 | HOME_ADDR | k1,k2,...,kn |NULL

Any peer receiving Q, conducts a local search and informs QP directly on HOME ADDR
about possible answers. If a peer in T is not responding for whatever reason the given
branch of the tree is disregarded. The fact that the query tree is optimized for minimum
delay, minimum energy and maximum recall provides an advantage of our approach
compared to other approaches for unstructured P2P search, like Breadth-First-Search,
Random Walks [32], as this is presented in our experimental evaluation. In particular,
we found that the MO-QRT structure can greatly reduce the number of search nodes, by
exploiting meta-relations captured in the social networking graph and the user interests
matrix.

5.4 SmartLab: A Programming Cloud of Smartphones

Experimenting with a large number of devices can be a tedious process as each device
needs to be connected to the programming station, the application needs to be installed
separately and the operator needs to manually launch the instances on each device and
collect the results. In order to overcome the inherent problems of this setup we have
implemented SmartLab, an innovative programming cloud 14 of approximately 40+ An-
droid smartphones and tablets, which is deployed at the University of Cyprus (see Fig-
ure 10). SmartLab is inspired by both PlanetLab [10] and MoteLab [49]. Its intuitive
web-based interface is easy to use and provides the ability to reserve and use Android
devices for a desired amount of time. Users are able to reboot, list, transfer and re-
move files, change Android device settings by using the interactive Android Debugging
(ADB) shell session. Additionally, registered users can upload and install executable
APK files on their reserved Android devices simultaneously. The SmartLab users are
also able to extract application data, output and results automatically from all reserved
devices, take screenshots as well as watch the display of all reserved devices during
runtime. Users are also granted access to log files for error and exception handling.

SmartLab supports four (4) modes of user interaction: i) Remote Control Terminals
(RCT), which support our in-house implementation of an ajax-based web-based remote

14 Available at: http://smartlab.cs.ucy.ac.cy/

23

Fig. 10. The SmartLab programming cloud of smartphone devices.

screen terminal for Android that can mimic user clicks and gestures such as sliding in
order to unlock devices and conduct other functionalities, ii) Remote Shells (RS), which
supports our in-house implementation of an ajax-based web-based shell that can be uti-
lized to issue a wide variety of known UNIX commands (e.g., ls, ps, df, pwd,
date, etc.) to the Linux kernels that are found at the core of each Android device;
iii) Remote Scripting Environment (RSE), which allows users to author Android Mon-
keyRunner automation scripts (written in python) in order to quickly perform repetitive
tasks on selected devices; and iv) Remote Debug Tools (RDT), which provides web-
based debugging extensions to the Android Debug Bridge (ADB) that are used during
development. In this work, we have used SmartLab to evaluate our SmartOpt framework
under real conditions. A more detailed description of SmartLab can be found in [26].

6 Experimental Evaluation

In this section we present the experimental methodology and results of our evaluation.

24

6.1 Evaluation Methodology

Our experimental methodology consists of two distinct scenarios: i) Trace-driven Sim-
ulation, during which we assess the quality of the SmartOpt optimization process and
also assess the quality of the SmartOpt search algorithm; and ii) Trace-driven Real De-
ployment, during which we deploy our SmartP2P real prototype system implemented
in Android over up to 138 users using SmartLab and the traces described next.

Datasets and Queries: In our experimental studies, we have constructed two mobile
social scenarios from the following three real datasets:

GeoLife [56] (mobility): This real dataset by Microsoft Research Asia includes 1,100
trajectories of a human moving in the city of Beijing over a life span of two years (2007-
2009). The average length of each trajectory is 190, 110 ± 126, 590 points, while the
maximum trajectory length is 699,600 points. Notice that 95% of the GeoLife dataset
refers to a granularity of 1 sample every 2-5 seconds or every 5-10 meters.

DBLP [12] (social): This real dataset by the DBLP Computer Science Bibliography
website, includes over 1.4 million publications in XML format. In particular, the dataset
records the paper titles, paper urls, co-authors, links between papers and authors and
other useful semantics. In order to map this dataset to our problem, we assume that
each object is an author’s paper. We also assume that each object is “tagged” by the
keywords found in the paper title.

Pics ‘n’ Trails [42, 41] (mobility and social): This is a real dataset composed of around
75 GPS traces of a user moving in Tokyo, Japan during 2007 and a collection of geo-
tagged photos taken along with a short description. In particular, the dataset is com-
prised of 4179 photos in Japan as well as trajectories with a granularity of 1 sample
every 10-15 seconds.

In order to link the above datasets we have constructed two mobile social scenarios:

Mobile-Social Scenario 1 (MSS-1): uses the DBLP social dataset and GeoLife mobility
dataset. The DBLP dataset is used to construct a social graph G of authors that are
related based on their research interests (i.e., keywords of their articles’ titles) as well
as their co-authorships that are attributes of the DBLP dataset. Then we have mapped
each DBLP author to a trajectory of the Geolife dataset. Particularly, we have extracted
1,100 authors from the DBLP dataset and we have mapped them to the 1,100 trajectories
of the Geolife dataset using a 1:1 correspondence. This resulted in a social graph with
1,100 mobile DBLP authors moving in the city of Beijing, China.

Mobile-Social Scenario 2 (MSS-2): uses the Pics ‘n’ Trails social and mobility dataset.
The Pics ‘n’ Trails dataset is initially used to construct a social graph G of 75 users
that are connected based on their interest in taking photos of sightseeing in Japan (i.e.,
similar tags on their photos taken). Each user is, therefore, carrying a random number
of photos tagged with a short description that describes a particular sightseeing in Japan
and is associated with a GPS trajectory from the Pics ‘n’ Trails dataset. This resulted
in a social graph with mobile users that carry photos with tags and move in the city of
Tokyo, Japan.

In our experiments, we utilize the following three queries:

25

-- Query 1
SELECT S.title, S.url
FROM SmartphoneUsers S, Query Q
WHERE (distance(S.x,S.y,Q.x,Q.y) < 10 KM)

AND S.Title LIKE ’%optimization%’;

-- Query 2
SELECT S.title, S.url
FROM SmartphoneUsers S, Query Q
WHERE (distance(S.x,S.y,Q.x,Q.y) < 10 KM)

AND S.Title LIKE ’%networks%’;

-- Query 3
SELECT S.title, S.url
FROM SmartphoneUsers S, Query Q
WHERE (distance(S.x,S.y,Q.x,Q.y) < 10 KM)

AND S.Title LIKE ’%Kyoto%’;

where “S.x,S.y” represent the (x, y) coordinates of a Smartphone user in S and
“Q.x,Q.y” represent the (x, y) coordinates of the query user.
We execute nine different test instances using the two Mobile-Social Scenarios and the
three queries, Query 1, Query 2 and Query 3 as shown on Table 2. Our scenarios are
executed for various time periods (i.e., during the morning, during noon and during
night), in order to capture different mobility patterns that are inherent in the GeoLife
and Pics ‘n’ Trails datasets.

Table 2. Experimental Execution Scenarios and Test Instances.

Scenario Test Instance Q Time G′ # Objects Relevant Objects

T1 Query1 Morning 49 3877 82
T2 Query1 Noon 58 5504 73

MSS-1 T3 Query1 Night 95 8884 121
T4 Query2 Morning 49 3877 319
T5 Query2 Noon 58 5504 477
T6 Query2 Night 95 8884 695
T7 Query3 Morning 26 744 43

MSS-2 T8 Query3 Noon 66 1877 115
T9 Query3 Night 47 1456 92

Algorithms and Evaluation Metrics: We have implemented both the i) optimization
and ii) search algorithms, analyzed earlier in this paper, as described next:

– Search Algorithms: We have implemented i) the Centralized Search algorithm
(CS), presented in Section 2.1, which collects all data and metadata tags at the
centralized query processor prior query execution; ii) the Distributed Breadth-First-
Search Search (BFS), which conducts a distributed search using a random tree

26

that is generated with a BFS process which visits all nodes in the network, as pre-
sented in Section 2.1; iii) the Random Walker (RW) Search [32], which conducts
a distributed search using a list structure that captures a randomly chosen neigh-
bor on each step but that eventually visits all nodes in the network. and iv) the
SmartOpt Search, which conducts a distributed search using an optimized QRT
obtained from the application of ideas presented in this paper. SmartOpt trees are
inherently smaller in size, than their other alternatives, as this structure visits with a
higher probability the nodes having more relevant objects (i.e., based on the social
graph and the metadata stored for each node.) We evaluate the search algorithms,
in Experimental Series 1 (simulation) and Series 4 (real deployment), using the fol-
lowing metrics: Time, Energy and Recall, as these were defined in Section 2.2. For
the simulation we use the time and energy profiles for our Smartphone devices we
have presented in Section 2.1. For the real deployment, we utilize wall clock time
along with the PowerTutor [54] power (energy) measuring tool by the University
of Michigan, USA. In particular, PowerTutor is a component power management
and activity state introspection based tool that uses an automated power model con-
struction technique for accurate online power estimation in Android.

– Multi-Objective Optimization Algorithms: In order to assess the efficiency of
the tree construction process, we have implemented SmartOpt using two alterna-
tive approaches: i) the MOEA/D approach, as this was described in Section 4; and
ii) the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [14], which main-
tains a population IPgen of size m at each generation gen, for genmax genera-
tions. NSGA-II adopts the same evolutionary operators for offspring reproduction
as SmartOpt-MOEA/D. The key characteristic of SmartOpt-NSGA-II is that it uses
a fast non-dominated sorting and a crowded distance estimation for comparing the
quality of different solutions during selection as well as to update the IP gen and the
PF . The optimization algorithms are evaluated with respect to: i) Execution Time
for Generating X (Experimental Series 2); and ii) Multi-Objective Optimization
Quality for Generating X (Experimental Series 3).

For the former case (execution time), we measure the CPU time required for the op-
timizer to deriveX using both MOEA/D and NSGA-II. For the latter case (quality),
we use the following combination of metrics:
• C(A,B)-metric [59] (quality), which calculates the ratio of the non-dominated

solutions in set B dominated by the non-dominated solutions in A, divided by
the total number of non-dominated solutions in B. Hence,

C(A,B) =
|{x ∈ B|∃y ∈ A : y 	 x}|

|B| .

Therefore,C(A,B) = 1 means that all non-dominated solutions in B are dom-
inated by the non-dominated solutions inA. Note thatC(A,B)
= 1−C(B,A).

• S(A)-metric [58] (diversity), which measures the diversity of A’s solutions,
formally the hyper-volume in the objective space that is dominated by the
Pareto optimal solutions of set A. Again a lower S(A), denotes that algorithm
A has better diversity.

27

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

20 40 60 80 100

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Time Instance

Energy Consumption for all Algorithms

 CS
 BFS
 RW

 SmartOpt

 0.001

 0.01

 0.1

 1

20 40 60 80 100

T
im

e
O

ve
rh

ea
d

(s
)

Time Instance

Time Overhead for all Algorithms

 CS
 BFS
 RW

 SmartOpt

0%

20%

40%

60%

80%

100%

20 40 60 80 100

R
ec

al
l (

%
)

Time Instance

Recall for all algorithms

 CS
 BFS
 RW

 SmartOpt

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
Recall

Energy/Time/Recall
 CS

 BFS
 RW

 SmartOpt

Energy (mJ) Time (s)

Recall

Fig. 11. Evaluation of the CS, BFS, RW and SmartOpt search algorithms using the energy, time
and recall performance. The bottom/right figure shows SmartOpt compared to the solutions of
CS and BFS in the objective space at timestamp ts=70 of Mobile-Social Scenario-1 (MSS-1).

• NDS(A)-metric (cardinality), which measures the number of non-dominated
solutions in A’s PF. The higher the NDS(A) score, the better algorithm A is.

6.2 Series 1: Evaluating SmartOpt Search

In the first experimental series, we evaluate the performance of the SmartOpt search
phase against the CS, BFS and RW on 100 consecutive timestamps in Mobile-Social
scenario 1 (GeoLife+DBLP) using our model-driven simulator. At each timestamp (ts)
we compare the energy consumption, time overhead and recall of all algorithms.

Figure 11 illustrates the results of our experiment for all performance metrics. In
Figure 11 (top/left) we observe that the energy consumption of SmartOpt is one to
two orders of magnitude smaller than its competitor CS, BFS and RW in all times-
tamps. BFS seems more efficient than CS as it does not communicate all metadata to
the centralized query node. On the other hand, RW is worse than all approaches as the
sequential visit to all nodes in the network drains considerable energy (i.e., in each com-
munication only 1 message is sent, as opposed to the rest techniques that communicate
with several nodes in a single round.)

28

Similar observations apply for Figure 11 (top/right) where we demonstrate the time
overhead for all algorithms. This happens as the energy is proportional to the time
interval the communication transceiver is in active mode. Moreover in Figure 11 (bot-
tom/left), we show that the recall rate for the SmartOpt framework is close to 95%
consistently. Consequently, although we consume less time and less energy, we are able
to identify all expected answers.

In Figure 11 (bottom,right), we demonstrate the results for a single timestamp
(ts=70) for all algorithms. The various solutions generated by SmartOpt optimizer are
represented by open squares. The single solutions supplied by the CS, RW and BFS
algorithms are represented by a solid triangle, a solid square and a solid circle, respec-
tively. We observe that the solution provided by the CS algorithm is the worst w.r.t. BFS
and RW in all three performance metrics.

However, the CS algorithm demonstrates higher recall (10%) than all solutions pro-
vided by the SmartOpt framework. This occurs because, CS dictates global participa-
tion by all smart objects in the network (i.e., all smart objects forward their results to
the query user). However, this has a significantly negative impact on both energy and
performance. Specifically, compared to the SmartOpt best solutions, CS, BFS and RW
feature an increase of two orders of magnitude in energy and one order of magnitude in
time.

 10

 20

 30

 40

 50

 60

 70

T1 T2 T3 T4 T5 T6 T7 T8 T9

T
im

e
(s

)

Test Instance

CPU Execution Time for all test instances
(T1-6:Mobile Social Scenario 1, T7-9:Mobile Social Scenario 2)

SmartOpt-MOEA/D
SmartOpt-NSGA/II

Fig. 12. Evaluation of SmartOpt-MOEA/D vs. SmartOpt-NSGA-II in terms of CPU performance
in all nine test instances of MSS-1 (GeoLife+DBLP) and MSS-2(Pics ‘n’ Trails).

29

6.3 Series 2: Execution Time for Generating X s (PF)

In the second experimental series, we aim to identify whether SmartOpt generates the
expected tree solutions quickly enough. We consequently evaluate the performance of
the SmartOpt-MOEA/D and SmartOpt-NSGA-II approaches in terms of CPU time. We
benchmark each algorithm by recording the time required to execute the four steps of
the optimization phase described in Section 4.2, on all nine test instances. The results
of our experiment are illustrated in Figure 12.

We observe that SmartOpt-MOEA/D always outperforms SmartOpt-NSGA-II in
terms of CPU performance. This is more evident in test instances T4, T5, T6 where the
performance increases of SmartOpt-MOEA/D reaches as high as 56%. This is because
the decomposition of SmartOpt-MOEA/D naturally maintains the diversity of the popu-
lation, thus balancing the effort required for generating solutions in optimal areas of the
objective space. In contrast, the crowding distance mechanism of SmartOpt-NSGA-II
used for maintaining diversity, may result in additional effort for obtaining solutions in
the optimal areas of the objective space. Moreover, the overall CPU effort required in
mobile social scenario 2 (i.e., T7, T8 and T9) is lower for both MOEAs, since the size
of the Pics ‘n’ Trails dataset is smaller than the GeoLife+DBLP datasets.

Table 3. SmartOpt-MOEA/D (denoted as M) versus SmartOpt-NSGA-II (denoted as N) in
terms of quality, diversity and cardinality of the PF, in all nine test instances of Table 2. The best
performance in each case is given in bold. The mean and the standard deviation (SD) is provided
for each metric.

TIs C(M,N) C(N,M) NDS(M) NDS(N) S(M)x10−4 S(N)x10−4

T1 1.00 0.00 112 188 0.10 3.62
T2 1.00 0.00 125 200 0.01 0.57
T3 1.00 0.00 172 200 0.07 6.31
T4 1.00 0.00 200 200 0.70 15.02
T5 1.00 0.00 200 200 3.45 81.17
T6 1.00 0.00 200 200 0.80 127.25
T7 0.96 0.04 49 95 0.294 0.304
T8 0.95 0.04 95 200 0.4403 1.47
T9 0.89 0.1 58 200 0.523 1.77

Mean (µ) 0.98 0.02 134.56 187.00 0.71 26.39
Stddev(σ) 0.04 0.03 60.82 34.73 1.06 45.82

6.4 Series 3: Multi-Objective Optimization Quality of Generated X s (PF)

In the third experimental series, we study the quality of the QRT trees generated with the
SmartOpt-MOEA/D and SmartOpt-NSGA-II optimizers. In our experiments, we have
used the following algorithm setting: population size m = 200, crossover rate r c = 1,
mutation rate rm = 0.1, genmax = 250 and T = 12:

Figure 13 compares the performance of the two algorithms in combinations of two
of the three objectives as well as all together in a 3D view. The results indicate the

30

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
ov

er
he

ad
 (

s)

Energy Consumption (mJ)

Time/Energy (Total for all |G’ | nodes)

 SmartOpt-MOEA/D
 SmartOpt-NSGA-II

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
ec

al
l

Energy Consumption (mJ)

Recall/Energy (Total for all |G’ | nodes)

 SmartOpt-MOEA/D
 SmartOpt-NSGA-II

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

R
ec

al
l

Time (s)

Recall/Time (Total for all |G’ | nodes)

 SmartOpt-MOEA/D
 SmartOpt-NSGA-II

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.02 0.04 0.06 0.08 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1
Recall

Energy/Time/Recall (Total for all |G’ | nodes)

 SmartOpt-MOEA/D
 SmartOpt-NSGA-II

Energy (mJ)
Time (s)

Recall

Fig. 13. Evaluation of MOEA/D vs. NSGA-II using the energy, time and recall performance met-
rics in Mobile-Social Scenario-1(MSS-1).

superiority of SmartOpt-MOEA/D along the direction of all the three objectives, giv-
ing non-dominated solutions of higher recall, of lower energy consumption as well
as of lower time overhead. Besides, the 3-D subfigure (d) of Figure 13 indicates that
SmartOpt-MOEA/D searches the space more efficiently giving better diversity. More-
over, we observe that SmartOpt-NSGA-II obtains a higher number of NDS compared
to SmartOpt-MOEA/D. However, these solutions are of inferior quality due to its low
convergence speed.

Furthermore, the statistical results summarized in Table 3 compare the two ap-
proaches in all nine test instances of Table 2, supporting the observations just men-
tioned. That is, the non-dominated solutions obtained by SmartOpt-MOEA/D are of
higher quality (i.e., C-metric) compared to those obtained by SmartOpt-NSGA-II in all
cases. For example, none of the solutions obtained by SmartOpt-MOEA/D are domi-
nated by those of SmartOpt-NSGA-II’s and all of the solutions in SmartOpt-NSGA-II’s
PF are dominated by those of SmartOpt-MOEA/D’s (C-metric) in MSS-1. Furthermore,
the hyper-volume S-metric indicates that SmartOpt-MOEA/D searches the objective
space more effectively and provide a more diverse PF in all nine test instances. NSGA-

31

Fig. 14. A screenshot of the SmartP2P on SmartLab (right)

II, however, provides a higher number of NDSs for the decision maker to choose, but
they are of inferior quality.

6.5 Series 4: SmartP2P Prototype Evaluation on SmartLab

In the last experimental series 4, we evaluate our SmartP2P prototype Android im-
plementation, presented in Section 5, over our distributed SmartLab infrastructure as
illustrated in Figure 14. For the evaluation, we focus only on the distributed search al-
gorithms: BFS, RW and SmartP2P. We present the query response time, measured in
seconds and energy consumption, measured with PowerTutor in Watts and presented in
Joules. We utilize five different network sizes in Mobile Social Scenario 1 (MSS-1): 20,
49, 58, 95 and 138 and five different network sizes in Mobile Social Scenario 2 (MSS-
2): 20, 35, 50, 61 and 75 to show the scalability aspects of the different search algo-
rithms. In order to accommodate these instances over a physical infrastructure, which
was considerably smaller (i.e., 40+ smartphones), we had to run several instances on
each of the available physical smartphones (using separate socket servers). For exam-
ple, an HTC Desire smartphone could easily host tens of instances without any par-
ticular performance penalty (recall that these are 1GHz smartphones with 512MB of
RAM) while the lower-end HTC Hero devices (with a 512MHz processor and 288MB
of RAM) were excluded from our experiments as they were considerably slower and
could not host tens of instances. For practical reasons we did not utilize the Blue-tooth
connection between instances and considered as a local link the socket communication
of instances on the same physical smartphone host.

Figure 15 (a), presents the response time for the different executions given that
all algorithms obtain the complete result set (i.e., maximum recall) in mobile-social
scenario 1. We observe that SmartP2P obtains the expected answer in little anywhere

32

 0

 2000

 4000

 6000

 8000

 10000

 12000

20 49 58 95 138

R
es

po
ns

e
T

im
e

(m
s)

Network Size

Response Time vs Network Size
 (Scenario: MSS-1, Maximum Recall)

 BFS
 RW

 SmartP2P

(a) SmartP2P (time) in MSS-1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

20 49 58 95 138

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Network Size

Energy Consumption vs. Network Size
 (Scenario: MSS-1, Maximum Recall)

 BFS
 RW

 SmartP2P

(b) SmartP2P (energy) in MSS-1

 0

 2000

 4000

 6000

 8000

 10000

 12000

20 35 50 61 75

R
es

po
ns

e
T

im
e

(m
s)

Network Size

Response Time vs Network Size
 (Scenario: MSS-2, Maximum Recall)

 BFS
 RW

 SmartP2P

(c) SmartP2P (time) in MSS-2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

20 35 50 61 75

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Network Size

Energy Consumption vs. Network Size
 (Scenario: MSS-2, Maximum Recall)

 BFS
 RW

 SmartP2P

(d) SmartP2P (energy) in MSS-2

Fig. 15. Evaluating our SmartP2P prototype system in Android using the SmartLab Testbed for
different network sizes in both Mobile Social Scenarios 1 (GeoLife+DBLP) and Mobile Social
Scenarios 2 (Pics ‘n’ Trails) with respect to time and energy.

between 1.5 seconds and 6 seconds while both BFS and RW require in many cases as
much as 10 seconds. The competitive advantage of SmartP2P over both BFS and RW
is considerably better for larger network sizes. This is very encouraging as Smartphone
Networks might consist of thousands of nodes in an area of interest (i.e., within the
spatial boundary of a query.) Figure 15 (b), presents the energy consumption in mobile-
social scenario 1 as this was measured by PowerTutor (i.e., only the energy related to
CPU and Networking without taking into account costs related to LCD utilization.) The
given figure shows that SmartP2P manages to locate the complete answer set utilizing
25% and 33% less energy than RW and BFS, respectively. We also noticed that by
bringing down the recall expectation to ≈80%, would allow us to obtain great energy
savings considerably faster (≈50%). Similarly, Figures 15 (c) and (d) show that the
SmartP2P search approach is more efficient than the BFS and the RW in MSS-2 as
well. In particular, SmartP2P conserves up to 30% time and 25% energy for max recall.

33

7 Conclusions

In this paper, we present the SmartOpt framework for searching objects captured by
the users in a mobile social community. Our framework, is founded on an in-situ data
storage model and searches then take place over the MO-QRT structure we propose
in this paper. Our structure concurrently optimizes several conflicting objectives (i.e.,
energy, time and recall). Our experimental assessment uses a trace-driven experimental
methodology with mobility and social patterns derived by Microsoft’s Geolife project,
DBLP and Pics ‘n’ Trails, but also uses our real SmartP2P system developed in Android
and deployed over our SmartLab testbed of 40+ smartphone devices. Our study reveals
that our framework yields high query recall rates of 95%, with one order of magnitude
less time and two orders of magnitude less energy than its competitors. Additionally, our
study reveals that the MO-QRT structure is highly appropriate for content search and
retrieval in Smartphone Networks. In the future, we plan to fine-tune our peer-to-peer
search application and experiment with larger communities of users.

8 Acknowledgments:

This work was supported in part by the second author’s Startup Grant, funded by
the University of Cyprus, EU’s FP7 CONET project, EU’s FP6 Marie Curie TOK
“SEARCHiN” project and EU’s FP7 “MODAP” projects. We would like to thank Mr.
Christos Aplitsiotis for helping out with the development of SmartP2P and its experi-
mentation on SmartLab.

References

1. Allen, S.M., Colombo, G., Whitaker, R.M.: Cooperation through self-similar social net-
works. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 5(1) (2010)

2. Andreou, P., Zeinalipour-Yazti, D., Pamboris, A., Chrysanthis, P., Samaras, G.: Optimized
query routing trees for wireless sensor networks. Information Systems (InfoSys) 36(2), 267–
291 (2011)

3. Andreou, P., Zeinalipour-Yazti, D., Chrysanthis, P.K., Samaras, G.: Power efficiency through
tuple ranking in wireless sensor network monitoring. Distrib. Parallel Databases 29(1-2),
113–150 (Feb 2011)

4. Andreou, P., Zeinalipour-Yazti, D., Pamboris, A., Chrysanthis, P.K., Samaras, G.: Optimized
query routing trees for wireless sensor networks. Inf. Syst. 36(2), 267–291 (Apr 2011),
http://dx.doi.org/10.1016/j.is.2010.06.001

5. Azizyan, M., Constandache, I., Choudhury, R.R.: Surroundsense: mobile phone localization
via ambience fingerprinting. In: MobiCom (2009)

6. Balke, W.T., Gntzer, U., Zheng, J.X.: Efficient distributed skylining for web information
systems. In: IN EDBT. pp. 256–273 (2004)

7. Campbell, A., Eisenman, S., Lane, N., Miluzzo, E., Peterson, R., H. Lu, X.Z., Musolesi, M.,
Fodor, K., Ahn, G.: The rise of people-centric sensing. In IEEE Internet Computing 12(4),
12–21 (July-August 2008)

8. Chen, S.K., Wang, P.C.: Design and implementation of an anycast services discovery in
mobile ad hoc networks. ACM Transactions on Autonomous and Adaptive Systems (TAAS)
6(1), 2 (2011)

34

9. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting: Theory and optimiza-
tion. In: In Int. Inf. Sys. Conference (IIS. pp. 593–602. Springer (2005)

10. Chun, B.N., Culler, D.E., Roscoe, T., Bavier, A.C., Peterson, L.L., Wawrzoniak, M., Bow-
man, M.: Planetlab: an overlay testbed for broad-coverage services. Computer Communica-
tion Review 33(3), 3–12 (2003)

11. Das, T., Mohan, P., Padmanabhan, V., Ramjee, R., Sharma, A.: Prism: platform for remote
sensing using smartphones. In: MobiSys (2010)

12. DBLP: DBLP Computer Science Bibliography, http://dblp.uni-trier.de/xml/ (2010)
13. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley and Sons

(2002)
14. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic

algorithm: NSGA II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
15. Eisenman, S., Miluzzo, E., Lane, N., Peterson, R., Seop-Ahn, G., Campbell, A.: Bikenet: A

mobile sensing system for cyclist experience mapping. ACM Transactions on Sensor Net-
works (TOSN’09) 6(1) (December 2009)

16. Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S., Balakrishnan, H.: The pothole
patrol: using a mobile sensor network for road surface monitoring. In: MobiSys. pp. 29–39
(2008)

17. Gahng-Seop, A., Musolesi, M., Lu, H., Olfati-Saber, R., Campbell, A.: Metrotrack: Predic-
tive tracking of mobile events using mobile phones. In: DCOSS. pp. 230–243 (2010)

18. Gnutella: Gnutella peer-to-peer network (14 March 2000), http://gnutella.wego.com
19. Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets. In: Pro-

ceedings of the 31st international conference on Very large data bases. pp. 229–240. VLDB
’05, VLDB Endowment (2005)

20. Huang, Z., Jensen, C.S., Lu, H., Ooi, B.C.: Skyline queries against mobile lightweight de-
vices in manets. In: In Proc. of ICDE (2006)

21. Inamura, H., Montenegro, G., Ludwig, R., Gurtov, A., Khafizov, F.: TCP over Second (2.5G)
and Third (3G) Generation Wireless Networks. RFC 3481 (Best Current Practice) (Feb
2003), http://www.ietf.org/rfc/rfc3481.txt

22. Jia, J., Chen, J., Chang, G., Wen, Y., Song, J.: Multi-objective optimization for coverage con-
trol in wireless sensor network with adjustable sensing radius. Computers and Mathematics
with Applications 57(11–12), 1767–1775 (2009)

23. Kalogeraki, V., Gunopulos, D., Zeinalipour-Yazti, D.: A local search mechanism for peer-to-
peer networks. In: 11th International Conference on Information and Knowledge Manage-
ment (CIKM’02). pp. 300–307. McLean, Virginia, USA (2002)

24. Ko, Y.B., Vaidya, N.H.: Location-aided routing (lar) in mobile ad hoc networks. Wirel. Netw.
6(4), 307–321 (2000)

25. Konstantinidis, A., Aplitsiotis, C., Zeinalipour-Yazti, D.: SmartP2P: A Multiobjective
Framework for Finding Social Content in P2P Smartphone Networks. In: 13th International
Conference on Mobile Data Management (MDM’12)

26. Konstantinidis, A., Costa, C., Larkou, G., Zeinalipour-Yazti, D.: Demo: A programming
cloud of smartphones. In: 10th International Conference on Mobile Systems, Applications,
and Services (MobiSys’12)

27. Konstantinidis, A., Yang, K.: Multi-objective energy-efficient dense deployment in wireless
sensor networks using a hybrid problem-specific MOEA/D. Applied Soft Computing 11(6),
4117–4134 (2011)

28. Konstantinidis, A., Yang, K., Zhang, Q., Zeinalipour-Yazti, D.: A multi-objective evolution-
ary algorithm for the deployment and power assignment problem in wireless sensor net-
works. New Network Paradigms, Elsevier Computer Networks 54, 960–976 (2010)

35

29. Konstantinidis, A., Zeinalipour-Yazti, D., Andreou, P., Samaras, G.: Multi-objective query
optimization in smartphone social networks. In: 12th International Conference in Mobile
Data Management (2011)

30. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm for sky-
line queries. In: In VLDB. pp. 275–286 (2002)

31. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-
to-peer networks. In: 16th international conference on Supercomputing (ICS’02). pp. 84–95.
New York, USA (2002)

32. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-
to-peer networks. In: ICS. pp. 84–95 (2002)

33. Ng, W.S., Ooi, B.C., Tan, K.L., Zhou, A.: Peerdb: A p2p-based system for distributed data
sharing. Data Engineering, International Conference on 0, 633 (2003)

34. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline
queries. In: Proceedings of the 2003 ACM SIGMOD international conference on Manage-
ment of data. pp. 467–478. SIGMOD ’03, ACM, New York, NY, USA (2003)

35. Ra, M.R., Paek, J., Sharma, A., Govindan, R., Krieger, M.H., Neely, M.J.: Energy-delay
tradeoffs in smartphone applications. In: MobiSys. pp. 255–270 (2010)

36. Rajagopalan, R., Mohan, C.K., Mehrotra, K.G., Varshney, P.K.: Emoca: An evolutionary
multi-objective crowding algorithm. Journal of Intelligent Systems (2006)

37. Rajagopalan, R., Mohan, C.K., Varshney, P.K., Mehrotra, K.: Multi-objective mobile agent
routing in wireless sensor networks. In: Proc. IEEE CEC’05. Edinburgh, Scotland (Septem-
ber 2005)

38. Rana, R.K., Chou, C.T., Kanhere, S.S., Bulusu, N., Hu, W.: Ear-phone: an end-to-end partic-
ipatory urban noise mapping system. In: IPSN. pp. 105–116 (2010)

39. Repantis, T., Kalogeraki, V.: Data dissemination in mobile peer-to-peer networks. In: 6th
International Conference on Mobile Data Management (MDM’05). pp. 211–219. Ayia Napa,
Cyprus (2005)

40. Sarigöl, E., Riva, P., Alonso, G.: A tuple space for social networking on mobile phones. In
ICDE (2010)

41. de Silva, G.C., Aizawa, K.: Retrieving multimedia travel stories using location data and
spatial queries. In: The 17th ACM International Conference on Multimedia. pp. 785–788.
ACM (2009)

42. de Silva, G.C., Yamasaki, T., Aizawa, K.: Sketch-based spatial queries for retrieving human
locomotion patterns from continuously archived gps data. IEEE Trans. on Multimedia 11(7),
156–166 (2009)

43. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In: Proceedings
of the 27th International Conference on Very Large Data Bases. pp. 301–310. VLDB ’01,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2001)

44. Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H., Toledo, S.,
Eriksson, J.: Vtrack: accurate, energy-aware road traffic delay estimation using mobile
phones. In: SenSys ’09: Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems. pp. 85–98. ACM, New York, NY, USA (2009)

45. Tomiyasu, H., Maekawa, T., Hara, T., Nishio, S.: Profile-based query routing in a mobile so-
cial network. In: Mobile Data Management, 2006. MDM 2006. 7th International Conference
on. pp. 105 – 105 (May 2006)

46. Tsoumakos, D., Roussopoulos, N.: Adaptive probabilistic search for peer-to-peer networks.
In: Third International Conference on Peer-to-Peer Computing (P2P’03). pp. 102–109
(September 1-3 2003)

47. Vlachou, A., Doulkeridis, C., Kotidis, Y., Vazirgiannis, M.: Skypeer: Efficient subspace sky-
line computation over distributed data. In: International Conference on Data Engineering.
pp. 416–425 (2007)

36

48. Wang, S., Ooi, B.C., Tung, A.K.H.: Efficient skyline query processing on peer-to-peer net-
works. In: In IEEE International Conference on Data Engineering (ICDE) (2007. pp. 1126–
1135 (2007)

49. Werner-Allen, G., Swieskowski, P., Welsh, M.: Motelab: a wireless sensor network testbed.
In: Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Sym-
posium on. pp. 483 – 488 (april 2005)

50. Wu, P., Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D., Abbadi, A.E.: Parallelizing skyline
queries for scalable distribution. In: In EDBT06. pp. 112–130 (2006)

51. Xu, B., Wolfson, O., Naiman, C.: Machine learning in disruption-tolerant manets. ACM
Transactions on Autonomous and Adaptive Systems (TAAS) 4(4) (2009)

52. Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D.: Exploiting locality for scalable in-
formation retrieval in peer-to-peer systems. Information Systems (InfoSys), Elsevier 30(4),
277–298 (2005)

53. Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D.: pfusion: An architecture for internet-
scale content-based search and retrieval. IEEE TPDS 18(6), 804–817 (2007)

54. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang, L.: Accurate online
power estimation and automatic battery behavior based power model generation for smart-
phones. In: Proceedings of the eighth IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis. pp. 105–114. CODES/ISSS ’10, ACM, New
York, NY, USA (2010)

55. Zhang, Q., Li, H.: MOEA/D: A multi-objective evolutionary algorithm based on decompo-
sition. IEEE Transactions on Evolutionary Computation 11(6), 712–731 (2007)

56. Zheng, Y., Liu, L., Wang, L., Xie, X.: Learning transportation mode from raw gps data for
geographic applications on the web. In: WWW (2008)

57. Zhu, L., Tao, Y., Zhou, S.: Distributed skyline retrieval with low bandwidth consumption.
IEEE Trans. on Knowl. and Data Eng. 21, 384–400 (March 2009)

58. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a com-
parative case study. pp. 292–301. Springer (1998)

59. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and
the strength pareto approach. IEEE Trans. Evolutionary Computation pp. 257–271 (1999)

