
Noname manuscript No.
(will be inserted by the editor)

In-Network Data Acquisition and Replication in Mobile

Sensor Networks

Panayiotis Andreou · Demetrios
Zeinalipour-Yazti · Panos K.
Chrysanthis · George Samaras

the date of receipt and acceptance should be inserted later

Abstract This paper assumes a set of n mobile sensors that move in the
Euclidean plane as a swarm. Our objectives are to explore a given geographic
region by detecting and aggregating spatio-temporal events of interest and to
store these events in the network until the user requests them. Such a set-
ting finds applications in mobile environments where the user (i.e., the sink)
is infrequently within communication range from the field deployment. Our
framework, coined SenseSwarm, dynamically partitions the sensing devices
into perimeter and core nodes. Data acquisition is scheduled at the perimeter,
in order to minimize energy consumption, while storage and replication takes
place at the core nodes which are physically and logically shielded to threats
and obstacles. To efficiently identify the nodes laying on the perimeter of the
swarm we devise the Perimeter Algorithm (PA), an efficient distributed algo-
rithm with a low communication complexity. For storage and fault-tolerance
we devise the Data Replication Algorithm (DRA), a voting-based replication
scheme that enables the exact retrieval of values from the network in cases of
failures. We also extend DRA with a spatio-temporal in-network aggregation
scheme based on minimum bounding rectangles to form the Hierarchical-DRA
(HDRA) algorithm, which enables the approximate retrieval of events from the
network. Our trace-driven experimentation shows that our framework can of-
fer significant energy reductions while maintaining high data availability rates.
In particular, we found that when failures across all nodes are less than 60%,
our framework can recover over 80% of detected values exactly.

P. Andreou, D. Zeinalipour-Yazti (contact author), and G. Samaras, Department of
Computer Science, University of Cyprus, Nicosia, 1678, Cyprus; Tel.: +357-22-892755; Fax:
+357-22-892701; E-mail: {panic,dzeina,cssamara}@cs.ucy.ac.cy

P.K. Chrysanthis, Department of Computer Science, University of Pittsburgh, Pittsburgh,
PA 5213-4034, Tel.: +1-412-624-8924; Fax: +1-412-624-8854; E-mail: panos@cs.pitt.edu

2

Keywords

Mobile Sensor Networks, Data Management, Fault Tolerance.

1 Introduction

Stationary sensor networks have been predominantly used in applications rang-
ing from environmental monitoring [33,30] to seismic and structural monitor-
ing [7] as well as industry manufacturing [20]. Recent advances in distributed
robotics and low power embedded systems have enabled a new class of Mobile
Sensor Networks (MSNs) [8,38] that can be used in land [3,9,24], ocean [25]
and air [11] exploration and monitoring, automobile applications [13,10], habi-
tant monitoring [30] and a wide range of other scenarios. MSNs have a similar
architecture to their stationary counterparts, thus are governed by the same
energy and processing limitations, but are supplemented with implicit or ex-
plicit mechanisms that enable these devices to move in space (e.g., motor or
sea/air current). Additionally, MSN devices might derive their coordinates
through absolute (e.g., dedicated Geographic Positioning System hardware)
or relative means (e.g., localization techniques [26,40], which enable sensing
devices to derive their coordinates using the signal strength, time difference of
arrival or angle of arrival). The absence of a stationary network infrastructure
in MSNs makes continuous data acquisition to some sink point a non-intuitive
task as data acquisition needs to be succeeded by in-network storage [39,31,
28,1], such that these events can later be retrieved by the user. Additionally,
the operation of MSNs is severely hampered by the fact that failures are om-
nipresent, thus fault-tolerance schemes become of prime importance in such
environments.

There are numerous advantages of MSNs over their stationary counter-
parts. In particular, MSNs offer: i) dynamic network coverage, by reaching
areas that have not been adequately sampled; ii) data routing repair, by re-
placing failed routing nodes and by calibrating the operation of the network;
iii) data muling, by collecting and disseminating data/readings from stationary
nodes out of range; iv) staged data stream processing, by conducting in-network
processing of continuous and ad-hoc queries; and v) user access points, by en-
abling connection to handheld and other mobile devices that are out of range
from the communication infrastructure.

In this paper we present SenseSwarm, a novel framework for the acquisition
and storage of spatio-temporal events in MSNs. In SenseSwarm, nodes have
the dual role of perimeter and core nodes. Data acquisition is scheduled at
the perimeter, in order to minimize energy consumption, while storage and
replication takes place at the core nodes. Such a setting is suited well for
applications in which new events are more prevalent at the periphery of the
swarm. (e.g., water and contamination detection) rather than for applications
where new events might occur anywhere in the network.

3

Mobile Sensor Networks are useful in an ever increasing number of appli-
cations and domains. Below, we motivate our discussion by describing two of
these applications that are founded on the premise of MSNs. In particular,
we present applications using the MBARI ocean observation system [22] and
applications using People-centric Sensing [4].

Example 1 - MBARI ocean observation systems: The Monterey
Bay Aquarium Research Institute (MBARI) [22] is one of the leading in-
stitutes in deep-sea exploration and under-water research. MBARI currently
drives a number of ocean observation projects like the Monterey Ocean Ob-
serving System (MOOS), the Monterey Accelerated Research System (MARS)
and the Autonomous Ocean Sampling Network (AOSN). The aforementioned
ocean observation systems provide critical information for research on climate
change, biogeochemical cycles, ecosystem assessment, and environmental haz-
ards. To accomplish data acquisition, these systems utilize sensor devices at-
tached on aerial and underwater vehicles that move in space and perform a
coordinated task. Since most oceanographic instruments have no means of
connecting with the surface, they have to rely on battery operation and local
data storage while exploring the underwater terrain. This necessitates the use
of energy efficient mobile sensor network infrastructures and especially data
replication strategies that ensure data availability in cases of failures. These
are characteristics offered by the Senseswarm Framework presented in this
work.

Example 2 - People-Centric Sensing: People-centric sensing [4], aims
to support sensor-enabled applications that engage the general public through
the use of their own personal mobile devices. The recent miniaturization and
integration of sensors into popular consumer mobile devices (e.g., iPhone, HTC
Hero) has enabled a myriad of new sensor based applications for personal, so-
cial and public sensing. These applications can be utilized for increasing the
sensing coverage of large public spaces and collect targeted information about
their mobile device owners (e.g., human mobility patterns). The information
can then be uploaded to a centralized database system or exchanged with
neighboring mobile devices. What is really important, is that these environ-
ments allow new levels of data sharing among commodity devices. Specifically,
a particular device can request sensor data from any available neighboring
device through the establishment of an adhoc communication network (e.g.,
through Bluetooth or Wi-Fi). Assuming that the users of such a system move
in a coordinated manner (e.g., a group of cyclists), highlights the distinct
characteristics of the Senseswarm framework presented in this work.

In order to better frame the SenseSwarm framework, let us consider a
phenomenon, described as an arbitrarily shaped sub-region of the terrain where
the MSN has been deployed (Figure 1). We assume that this phenomenon and
does not expand, shrink or move rapidly. When the MSN moves closer to the
phenomenon (i.e., at T=3) it is easy to see that perimeter nodes will be the
first ones capturing the event. In this setting, perimeter nodes continuously
sample the events of the phenomenon and transmit their results to the MSN.
The storage of these detected events takes place at the core nodes since these

4

T=1 T=2 T=3

Perimeter Sensor

Core Sensor

Phenomenon Phenomenon
Phenomenon

Fig. 1 Example Scenario: SenseSwarm detects physical phenomena (e.g., oil spills) by
using a swarm of sensor nodes that are dynamically organized in perimeter and core nodes.
Perimeter nodes continuously sample the events of the phenomenon and transmit their
results to the core nodes. Storage and replication of detected events takes place at the core
nodes since these are expected to feature a longer lifetime (due to their reduced sensing
activity) but also because these are physically shielded to threats and obstacles.

nodes are expected to feature a longer lifetime (due to their reduced sensing
activity) but are also physically shielded to threats and obstacles that might
immobilize the sensors. In order to increase the overall fault-tolerance of our
system, we propose data replication schemes that increase the availability of
data and thus also the accuracy of executed queries. More specifically, the
goals of the SenseSwarm framework are the following:

– Minimize the energy consumption required for defining the perimeter of
the network. We accomplish this by introducing the distributed Perimeter
Algorithm (PA).

– Maximize fault tolerance and recoverability in the presence of network
failures according to application preferences. We accomplish this by intro-
ducing the DRA and HDRA algorithms.

This paper builds upon our previous works [37,2] in which we presented the
initial design of the SenseSwarm framework. In this paper we introduce several
new improvements including a novel hierarchical voting-based fault-tolerance
scheme as well as an in-network aggregation scheme, that in conjunction in-
creases the availability of data and thus improves both fault tolerance and
query execution. This is shown through additional experimental evaluation.

In particular, our work makes the following contributions:

– We present the Perimeter Algorithm (PA), which efficiently constructs a
perimeter of a MSN using a two-phase protocol. Our algorithm has a O(n)
message complexity, where n is the total number of sensors instead of
O(n2), featured by the centralized algorithm.

5

– We devise a voting-based replication scheme to preserve the data (i.e.,
acquired events) in cases of system failures. In particular, we devise the
DRA algorithm that replicates data using distributed read/write quorums.

– We additionally devise HDRA, a spatio-temporal in-network aggregation
scheme based on minimum bounding rectangles that enables the retrieval
of acquired events in an approximate form.

– We experimentally validate the efficiency of our propositions using a trace-
driven experimental study that utilizes real sensor readings.

The remainder of the paper is organized as follows: Sect. 2 overviews the
related research work and provides background on our perimeter construction
and fault-tolerance schemes we present. Sect. 3 formalizes our system model
and assumptions, Sect. 4 the PA algorithm and Sect. 5 the DRA and HDRA
algorithms. Sect. 6 presents our experimental study and Sect. 7 concludes the
paper.

2 Related Work and Background

This section provides an overview of traditional data acquisition frameworks in
order to highlight the unique characteristics of the SenseSwarm framework. It
also provides background on the two main problems our framework addresses
(i.e., the perimeter construction and the data replication processes).

Traditional data acquisition frameworks for sensor networks (e.g., TinyDB
[19], Cougar [35]), perform a combination of in-network aggregation and fil-
tering in order to reduce the energy consumption while conveying data to the
sink. The MINT View framework [36] performs in-network top-k pruning in
order to further reduce the consumption of energy. In data centric routing,
such as directed diffusion [14], low-latency paths are established between the
sink and the sensors. Contrary to our approach, all the above frameworks
have been proposed for stationary sensor networks while this work consid-
ers the challenges of a mobile sensor network setting. In data centric storage
schemes [31,28,1], data with the same attribute (e.g., humidity readings) is
stored at the same node in the network offering therefore efficient location
and retrieval. Such an approach is supplementary to the perimeter-based data
acquisition framework we propose in this paper. Supplementary to our frame-
work are also the MicroHash [39] and TINX [21] local index structures, which
provide O(1) access to data stored on the local flash media of a sensor device.
Such structures can be deployed to speed up the retrieval of data whenever re-
quired. Additionally, optimization query processing techniques like the works
presented in [23,34] can be used in conjuction with our framework in order to
speed up query execution.

The first problem our framework investigates is that of partitioning the
network into perimeter and core nodes. The perimeter construction problem we
consider has similarities to the convex hull problem in computational geometry,
which finds applications in pattern recognition, image processing and GIS [6].
The convex hull problem is defined as follows: given a set of points, identify

6

the boundary of the smallest convex region that encloses all the points either
on the boundary or on its interior. Such a boundary is both non-intersecting
(i.e., no edge crosses any other edge) and convex (i.e., all internal angles are
less than π). There are numerous centralized algorithms for computing the
convex hull with varying complexities.

Two of the most popular convex hull algorithms are the Jarvis March [6]
(or Gift Wrapping) algorithm and the Graham’s scan algorithm [6]. The main
difference between the convex hull and the perimeter problem we consider in
this work, is that the latter defines non-convex cases (i.e., internal angles are
up to 2π). Non-convex cases are typical for a sensor network context as convex
angles might not be feasible due to communication radius constraints. Addi-
tionally, convex hull algorithms are centralized while we develop techniques to
compute the boundaries in a distributed fashion minimizing communication
and energy consumption without sacrificing correctness.

Related work in the context of sensor networks appears in [5], where the au-
thors present localized techniques that enable the sensors to determine whether
they belong to the boundary of some phenomenon. Yet, the underlying as-
sumption in the given work is that the edge sensors are not within commu-
nication range while we consider the perimeter to be a continuous chain of
nodes. In [27] the authors present an algorithm that can identify perimeter
nodes without any location information but in the presence of specialized
nodes, called bootstrap beacon nodes, which have long range antennas that
enable them to broadcast messages to the entire network. The sensor nodes
can then estimate their distance to these special nodes and decide if they
are perimeter nodes. In SenseSwarm we do not assume that these specialized
long-range bootstrap beacons are available. On the contrary, our assumption
is that all sensor nodes have the same capabilities. However, the work in [27]
is supplementary to SenseSwarm because if bootstrap beacons were available
we could have utilized them to calculate the perimeter faster. In SenseSwarm,
once perimeter nodes have been identified, the core nodes need not to know
their coordinates (actual or virtual) since they forward their results to their
parents. This routing scheme is different from [27,17] where virtual coordinates
are necessary for maintaining the correct routing tables used for forwarding
packets. In [17] nodes make forwarding decisions in a greedy manner by only
using information about the immediate neighbors of the node. In SenseSwarm
we do not perform routing decisions but instead we focus on sensing, aggregat-
ing and storing. In [32], the authors devise an algorithm that combines current
and historic measurements to trace a contour of a given value in the field (e.g.,
an oil spill). The presented ideas (e.g., that of quickly arriving at the contour)
are supplementary to ideas presented in this paper.

The second problem our framework investigates is that of data replication
to improve fault-tolerance. At a high level, our proposed schemes consist of
maintaining a set of identical copies of each datum at several nodes in the net-
work. For ease of exposition, let us consider the example network of Figure 2,
which will be utilized throughout this paper. On the left part of Figure 2 we
illustrate a segment of a MSN at a specific time τ . Assume that a copy of the

7

s1

s2

s3

Perimeter Sensor (S
p
)

Core Sensor (S
c
)

Replication Scenario

Replication Direction

Sink (randomly chosen)

s4

s5

s6

s7

s8

s9

s10

s11

s12

MBR Tables at chronon t

S1: S2: S3:a b c

S7-10: cS5: a

S4:

a

b
f

Virtual Perimeter

S12: a

S6:

S11: c

S12:

c

t

a

b
g

a

b
h

X Dimension

Fig. 2 Replication and Aggregation in SenseSwarm: In-network aggregates are constructed
during replication by using Minimum Bounding Rectangles (MBRs).

datum d1 (i.e., data published by node s1), has been replicated to nodes s4,
s5, s6, s12. Now let node s1 permanently fail along with its one hop neighbors
(i.e., s4 and s5) at time instance τ + 1. Since d1 has been replicated beyond
these nodes then it will be feasible to recover d1 if necessary.

Our proposed solution is based on a voting-based data replication scheme.
Voting algorithms [16,18] have been among the most popular techniques to
offer fault-tolerant properties in distributed systems. A vote denotes the pref-
erence of some node to replicate a specific piece of information to another node.
Voting schemes consist of first selecting a set of nodes where a specific datum
will be replicated (i.e., the write quorum) and another set of nodes where a
query will be conducted at, to search for that specific datum (i.e., the read quo-
rum). One of the major challenges is to effectively choose the correct quorums
so that the replication process will produce consistent results in an efficient
manner. SenseSwarm’s data replication algorithm utilizes the basic ideas of
voting in conjunction with the unique characteristics of MSN systems.

3 System Model and Assumptions

In this section we will formalize our basic terminology and assumptions. The
main symbols and their respective definitions are summarized in Table 1.

Let ℜ × ℜ denote a two-dimensional grid of points in the Euclidean plane
that discretizes a given geographic area. Also assume a Cartesian coordinate
system to describe the position of each point in the grid with coordinates
(x, y). In order to be able to introduce movement patterns to the sensor net-

8

Table 1 Definition of Symbols

Symbol Definition

n Number of Sensors S = {s1, s2, ..., sn}
m Number of attributes at each si {a1, a2, ..., am}

(sx
i , sy

i) x and y coordinates of each si

r The communication radius of each si

NH(si) 1-hop (in commun. range) neighbors of si

V (si, sj) A Vector defined as (sx
j − sx

i , sy
j − sy

i)

LeftN(si) The predecessor of si on the perimeter
RightN(si) The successor of si on the perimeter

Sp, Sc The set of Perimeter nodes, Core nodes
Q An m-dimensional Query
e Epoch Duration (i.e., data acquisition interval)

σ, σ′ Perimeter Reconstruction, Replication interval
di The datum of node si

vj
i
, vi The vote (preference) of si to replicate di

to node sj , All votes from si

work we uniformly distribute the n sensing devices in an area n
1

2 ×n
1

2 approx-
imately in the middle of ℜ2. Each si (i ≤ n) can derive its coordinates (sx

i , sy
i)

through some absolute or relative mechanism. Additionally, each si can be
aware of its neighboring nodes, denoted as NH(si), using a local 1-hop broad-
cast. The sensing devices are coarsely synchronized through some operating
system mechanism (e.g., similarly to TinyOS [12]) or through the GPS and

can communicate with other sensors in a uniform radius r, i.e., 1 ≤ r ≪ n
1

2 .
The user can specify one or more m-dimensional Boolean queries of the type

Q={q1 ⊙ q2 ⊙ ... ⊙ qm}, where qi (i ≤ m) corresponds to some predicate such
as q1=”Temperature > 100” and ⊙ denotes some binary Boolean operator.
These queries correspond to the user-defined local events of interest and are
registered at each si either prior the deployment or during execution. The
discussion of more complex query types is outside the scope of this paper.

A SenseSwarm network is initiated by conceptually dividing S into perime-
ter nodes Sp and core nodes Sc using the algorithms as presented in [37]. This
operation is periodic and will be repeated after σ time instances (see Fig-
ure 3). Each perimeter sensor si (i ≤ n) then acquires m physical parameters
A={a1, a2, ..., am} from its environment during every epoch e, which defines
the interval after which data acquisition re-occurs. The value for e is either
dynamically adjusted according to the dynamics of the swarm or prespecified.
In a sea oil-spill detection scenario, e can be configured to several hours as sur-
face drifters usually float very slowly on the sea surface. The above procedure
generates spatio-temporal tuples of the form {t, x, y, a1, a2, ..., am} locally at
each sensor. The generated tuples of interest (with respect to Q) are stored in
some local vector, referred to as di (i.e., datum of node si).

In order to increase the availability of di structures, we adopt a data repli-
cation scheme based on votes that will be presented in Section 5. A vote vj

i

denotes the preference of sensor si (i.e., the publisher of some datum di), to
replicate di to node sj (i 6= j) at a given time instance. Additionally, we define

9

Epoch (e) 0 1 2 3 4 5 7 8 9 10

Acquisition
Phase

11

Perimeter
Reconstruction

Replication
Phase

σ

12

...

...

...σ’

σ

σ’

Fig. 3 Outline of the SenseSwarm framework operation.

vi as the set of all votes by node si on the given time instance. In our approach,
we assume that every σ′ time instances every sensor si ∈ Sp proceeds with the
replication of its local datum di to the votes of si.

4 Perimeter Construction Phase

This section describes algorithms for the construction of a perimeter in a MSN.
We first describe a centralized solution and then our Perimeter Algorithm.

4.1 Centralized Perimeter Algorithm (CPA)

First note that the construction and dissemination of a perimeter can be per-
formed in a centralized manner, i.e., a sink collects the coordinates of all nodes
in S, using an ad-hoc spanning tree, and then identifies the perimeter nodes
(Sp) using some straightforward geometric calculations. Finally, the sink dis-
seminates the ordered set Sp to all nodes in S using a spanning tree. Clearly,
the first and last phase of the CPA algorithm require the transfer of many
(x, y)-pairs between nodes. Specifically, although both phases require O(n)
messages the first phase requires the transfer of O(n2) (x, y)-pairs (i.e., assume

that the nodes are connected in a bus topology which yields
∑n

1 (i)=n(n+1)
2

(x, y) pairs), while the last phase requires the transfer of O(p ∗ n) (x, y)-pairs
(i.e., each edge transfers the complete perimeter of size p).

4.2 Perimeter Algorithm (PA)

We shall next describe our distributed algorithm which minimizes the transfer
of (x, y)-pairs, thus minimizing energy consumption. To simplify the descrip-
tion and w.l.o.g., assume that we have no coincidents (i.e., two points with
the same (x, y) coordinates) and that no three points are collinear (i.e., lie

10

Algorithm 1 : Perimeter Algorithm (PA)

Input: Sensor si (1 ≤ i ≤ n), the set of sensors S
Output: An update of the set Sp

1: procedure Perimeter Algorithm(si, S)
2: minAngle=360◦; // Variable initialization
3: // Identify smin (node with the minimum y-coordinate in S).
4: smin = Find Min Coordinates(S);
5: Disseminate(smin, S); // ∀si ∈ S
6: if (si = smin) then
7: LeftN(si)=smin;
8: else
9: LeftN(si)=wait(); // Get token from LeftN(si).

10: end if
11: // Find neighbor with min. polar angle from si

12: for j=1 to |NH(si)| do
13: if (∡(LeftN(si), si, sj)≤minAngle) then
14: minAngle=∡(LeftN(si), si, sj));
15: RightN(si)=sj

16: end if
17: end for
18: Sp = Sp

S

RightN(si); // Add RightN(si) to perimeter.
19: Send(si, RightN(si)); // Send token to RightN(si)
20: end procedure

on the same line). Although these assumptions make the discussion easier our
implementation elaborately supports them.

Algorithm 1 presents the steps of the distributed PA process that is ex-
ecuted by each sensor every σ time instances. In line 4, procedure Find
Min Coordinares(S) identifies the sensor with the minimum y-coordinate
and returns its id to the variable smin. If more than one sensors have the
y-coordinate equal to sy

min, then the above procedure returns the one with
the minimum value in its x-coordinate. The above procedure is achieved by
constructing an aggregation tree rooted at the given sink using TAG [20]. In
particular, each si identifies among its children and itself the minimum sy

min

value and then recursively forwards the triple (smin, sx
min, sy

min) to si’s parent.
This step, has similarly to CPA, a message complexity of O(n) but the overall
number of (x, y)-pairs transmitted to the sink is only O(n) rather than O(n2)
(i.e., exactly one pair per edge). This improvement is due to the in-network
aggregation that takes place in our approach.

Concurrently with the above operation in line 4, each si updates its neigh-
bor list NH(si) as such an updated list will be necessary in the subsequent
steps. Note that this update does not introduce any extra cost, as si simply
adds to NH(si) the neighbors that have participated in the calculation of
smin.

In line 5, we disseminate smin to all the nodes in the network S from the
sink. This has a message complexity of O(n) and the overall number of (x, y)-
pairs transmitted is O(n), compared to O(p ∗ n) required by CPA. The next
task is to identify the nodes on the perimeter. Before proceeding, let us provide
the following definitions:

11

Definition 1 [Left Neighbor of si (LeftN(si))]: The predecessor of si

on the perimeter. The termination condition of this recursive definition is as
follows: LeftN(smin) = smin, where sy

min ≤ sy
j (∀sj ∈ S, 1 ≤ j ≤ n).

Definition 2 [Right Neighbor of si (RightN(si))]: The successor of si on
the perimeter such that LeftN(si) 6= RightN(si), if |NH(si)| > 1.

Continuing with the description of our algorithm in lines 8-10 each si,
other than smin, identifies its left neighbor. This is achieved by waiting for
a token (i.e., the identifier of LeftN(si)) from LeftN(si). When the token
arrives, the node will execute the remaining steps of the algorithm (lines 12-
19). In particular, in lines 12-17, si identifies the neighbors with the minimum
polar angle from its x-axis. The x-axis of node si is defined in our context
to be collinear with the vector V (LeftN(si), si). This ensures the correctness
of the algorithm although we omit a formal proof due to space limitations.
In line 15 we utilize the notation ∡(a, b, c) to denote the angle between three
arbitrary points a, b, c in the plane. Our objective in the given block (line 13-
18), is to identify the neighbor with the minimum polar angle (which is then
coined RightN(si)), counterclockwise starting from π. Finally in line 19, si

transmits a token to RightN(si) notifying it that it is the next node on the
perimeter. The procedure between lines 12-20 continues sequentially along the
network perimeter until any si receives the token for a second time from its
left neighbor or a timeout period expires. At the end, every node receiving the
token knows that it belongs to Sp while the rest nodes continue to belong to
Sc.

The identification of smin takes O(n) messages and the token dissemination
takes O(p) messages, where p is the number of the nodes on the perimeter.
Thus the overall message complexity is O(p + n). In the future we plan to
devise techniques to incrementally compute the perimeter.

Example: Figure 4 illustrates the perimeter construction for eight nodes
{s1 · · · s8}. Assume that we have executed steps 2-5 of Algorithm 1 and that
we continue with the execution of the perimeter construction at node smin

(i.e., s1). smin measures the polar angle of all the nodes in NH(smin) to its
x-axis and subsequently derives RightN(smin)=2 (s3 is not within communi-
cation range from s1). Next, smin sends a token to s2 informing it that it is
the next node on the perimeter. Upon reception of the token, s2 sets its x-axis
collinear with V (s1, s2). The same idea applies to all nodes on the perimeter
until s8 transmits the token to s1.

5 Acquisition and Data Replication Phase

In this section we describe the second phase of the SenseSwarm Framework
during which the perimeter nodes Sp start acquiring information from their
environment and then replicate this information to their neighboring nodes.

12

Left(smin)=1 smin

s1

s3

s2

s4

s5

s6

s7

s8

Right(smin)=2

Left(s2)=1
Right(s2)=3

Left(s3)=2
Right(s3)=4

Left(s4)=3
Right(s4)=5

Left(s5)=4
Right(s5)=6Left(s6)=5

Right(s6)=7

Left(s7)=6
Right(s7)=8

Left(s9)=7
Right(s8)=1

Fig. 4 Execution of PA: The construction starts at smin and proceeds counterclockwise
starting from π.

Recall that the acquisition step proceeds every e time instances during
which each si generates spatio-temporal tuples of the form {t, x, y, a1, a2, ..., am}.
The generated tuples of interest (i.e., the tuples that satisfy the predicates of
Q) are recorded in the local di (datum) structure of each si. Next, di structures
are replicated to neighboring nodes according to the algorithms we propose
in this section. In particular, we propose a data replication scheme based on
votes and a replication scheme based on spatial approximations.

The first presented algorithm, DRA, replicates the di structures to w neigh-
boring nodes (for any w ≥ 1). If it is necessary to recover di then it is required
to read di structures from at least r = v−w+1 votes of si, where v is the total
number of votes of si. For instance when w = 2 and v = 4 then r = 4−2+1 = 3
(i.e., 3 reads) are adequate to recover any replicated di in its exact form. When
w = 1 and v = 4 then r = 4 − 1 + 1 = 4 reads are necessary to recover any
replicated di. The second presented algorithm, HDRA, extends the basic DRA
idea by additionally constructing the Minimum Bounding Rectangles (MBRs)
of tuples in di (see Figure 2 right). The system then replicates the MBR(di)
vector, rather than di, to its parent node in a virtual spanning tree. That
significantly increases the availability of dis in cases of failures. Additionally,
the HDRA approach will return an approximate answer, rather than an exact
answer, in cases the algorithm can not proceed otherwise. The details of the
above two algorithms follow next.

13

Algorithm 2 : Data Replication Algorithm (DRA)
Input: A sensor si ∈ Sp, a threshold parameter vmin, representing the minimum number
of votes a sensor must register.
Output: The data replication configuration (r,w) of si.
1: procedure DRA(si ∈ Sp)
2: ⊲ Step 1: Find neighbors of si ∈ Sc

3: NH(si)← Find hop-1 neighbors of si that belong to Sc

4: if (|NH(si)| < vmin) then
5: NH(si)← recursively expand neighbors
6: end if
7: ⊲ Step 2: Define possible read write (r,w)-combinations
8: RW={(r, w): v≥w>v/2, v≥r≥1, r+w>v}, where v = |NH(si)|
9: ⊲ Step 3: Eliminate redundant (r,w)-combinations

10: RW ′={(r,w): (r,w)∈RW, r+w=v+1}
11: ⊲ Step 4: Rank the (r,w) in RW’ according to f
12: (rx,wx)← maxi≤|RW ′ |f(ri, wi)
13: ⊲ Step 5: Replicate the information to neighbors
14: vi = select(NH(si), wx) // select a set of wx neighbors
15: notifys∈vi

(s, di) // replicate di to these wx neighbors
16: end procedure

5.1 Data Replication Algorithm (DRA)

The objective of the DRA algorithm is to construct a data replication configu-
ration that will present to each si an energy efficient plan on how to replicate
its local di structures. A data replication configuration is an energy efficient
(read,write)-combination that dictates how many read and writes operations
are necessary per di, such that a di structure can be preserved in cases of fail-
ures. It is important to notice that if energy conservation was not important
then we could have opted for a scheme that replicates each di to the entire
network.

Algorithm 2 presents the details of the DRA algorithm. For ease of ex-
position, we will again utilize Figure 2 (left) to demonstrate the operation of
DRA. Let us focus on the perimeter sensor s1 (although a similar discussion
applies to the other perimeter nodes as well). The DRA algorithm starts in the
first step by discovering an adequate number of votes (candidate neighbors)
for each perimeter sensor si (lines 2-6). This is done by probing the 1-hop core
node neighbors of s1, (NH(s1)), which are s4 and s5 (line 3). If the number of
neighboring nodes, |NH(s1)| is lower than a user-defined threshold vmin (for
our discussion let vmin=4) then s1 expands its neighbors by incorporating
more multi-hop nodes (line 5). That results in the increase of the NH(s1) set
(i.e., s6 and s12 are added to NH(s1)). Besides the identifier of each neigh-
bor, s1 also stores the hop count for each of them (i.e., (s4,1), (s5,1), (s6,2),
(s12,2)) so that it can later decide which set of neighbors will produce the
most energy-efficient replication strategy. Since the number of candidates in
NH(s1) is 4, thus the vmin requirement has been satisfied, s1 utilizes all of
these 4 nodes including itself (i.e., vi=5). Next, s1 proceeds with selecting a
subset of vi for data replication. This is done by utilizing a voting process that
operates as follows (we denote |vi| as v for brevity):

14

In Step 2 we define two integers, r (number of read operations) and w
(number of write/replicate operations) with the following properties:

r+w>v, v≥r≥1, v≥w>v/2

We then create the RW -set of eligible (r,w)-combinations (line 8). In our
example, since w needs to be in the range 5 ≥w > 2.5 then w ∈ {3, 4, 5}. Fur-
thermore, since r+w > v then r > v−w the following (r,w)-combinations are
valid combinations: RW={(1,5),(2,5),(3,5),(4,5),(5,5), (2,4),(3,4),(4,4),(5,4),
(3,3),(4,3),(5,3)}.

In Step 3 of the voting process, we aim to eliminate redundant (r,w)-
combinations in the RW set. To understand the intuition behind this elim-
ination consider the (1,5)-combination. Since w=5 (i.e., all sensors hold a
replica of datum d1) then it is redundant to read more replicas than one
(i.e., (2, 5), (3, 5), · · · , (5, 5) are redundant). Although all of these combina-
tions can recover di in cases of failures, they do not have the same energy
requirements and should thus be excluded from the RW set. For instance
the (2,5)-combination requires 1 read more than the (1,5)-combination and
should thus be eliminated. The elimination of redundant combinations yields
RW ′={(1,5), (2,4), (3,3)}.

The objective of Step 4 is to further prune the RW’ set in order to derive the
(r,w)-combination that requires the least possible energy, but this operation
is not straightforward. On one hand, by having more w operations involved in
the replication process increases the overall fault-tolerance. On the other hand,
more w operations would also incur additional messaging and consequently
require more energy. The negative effect of more w operations is particularly
more apparent in cases where nodes have a hop distance from si that is larger
than 1 (i.e., are not 1-hop neighbors).

Consequently, in this fourth step fourth step of the DRA algorithm, we
rank the remaining RW ′={(1,5), (2,4), (3,3)} combinations using a ranking
function f(r,w) and choose the one with the highest score. Our ranking function
tries to balance the fault tolerance and replication overhead (i.e., message
complexity). This is accomplished by examining the effect of both parameters
in each combination and then opt for the one that maximizes both. However,
this ranking function can be easily adapted to the requirements of the MSN
application developer. For example, in an MSN with extremely limited energy
reserves, an application may choose to sacrifice high levels of fault tolerance
in order to minimize the communication overhead.

The local ranking process presented in this paper proceeds as follows:

– Calculate the number of broadcast messages (nbm(r,w)) that would be
required for the replication process of the remaining (r,w)-combinations
∈ RW ′ using the hop-count information gathered during lines 2-6 of DRA.
Normalize nbm(r,w) to [0..1] using the following function:

nbm′

(r,w) = min(nbm∀(r,w))/nbm(r,w).

– Calculate the replication spreading factor (rsf(r,w)) by normalizing the w
of each combination to [0..1] using formula w/max(∀w ∈ RW ′).

15

Table 2 Ranking the (r,w)-combinations of RW’ during the fourth step of DRA

(r,w) nbm(r,w) nbm′
(r,w)

rsf(r,w) f(r,w)

(1,5) 4 1.0 1.0 2.0
(2,4) 5 0.8 0.8 1.6
(3,3) 4 0.6 1.0 1.6

– Calculate the rank of each (r,w)-combination by summing the number of
broadcast messages and replication spreading factor parameters: f(r,w) =
nbm′

(r,w) + rsf(r,w).
1

The results of the ranking on our example are summarized in Table 2. The
presented results indicate that the (1,5)-combination has the highest rank in
the f function and consequently that plan is utilized for the replication of si’s
datum.

In the final fifth step of DRA, si proceeds with the replication of di to the
identified neighboring nodes. In particular, in line 14 si selects wx neighbors
from its NH(si) list and stores these results in the vi set. Each si then proceeds
with the replication of di to the identified wx nodes in line 15. This completes
the operation of the DRA algorithm.

A question that now arises is how to retrieve (i.e., read) the di struc-
tures from the network during the execution of a query. Fortunately, this is
a straightforward procedure as the querying node can proceed by querying
rx neighbors, which are defined in the same manner the wx neighbors were
constructed, and be sure that a copy of di has been recovered.

Theorem 1: The DRA algorithm guarantees that a datum di can be recovered
if the number of reads (rx) from the votes of si is at least v−wx +1 (v ≥ wx),
where v denotes the number of all votes and wx the number of writes during
the replication of di.

Proof: Let us select first two sets, R and W , such that |R| = rx and |W | = wx

(R, W ⊂ vi) as dictated by DRA. Since wx > v/2 then di has been replicated
to more than half of the nodes assigned a vote by node i. Now, considering
that rx + wx > v, we must have R ∩ W 6= ∅. Hence any read operation is
guaranteed to read the value of at least one copy which has been updated by
the latest write �

5.2 Hierarchical Data Replication Algorithm (HDRA)

In this section we describe an extension of the original DRA algorithm which
attempts to replicate di structures at an even coarser representation through-

1 nbm′
(r,w)

and rsf(r,w) are the two most prominent parameters for selecting the best

(r,w)-combination. However, one could also consider parameters like capacity required to
store the data and recovery performance.

16

out the network such that this information survives in cases of high failure
rates and disconnections.

At a high level, the HDRA algorithm proceeds as follows: When the DRA
algorithm completes its operation, some arbitrary node ssink (e.g., the one
with the minimum (x,y) coordinates), identifies itself as the sink node. ssink

then recursively disseminates a request to its 1-hop neighbors, using a typical
tree-based query dissemination mechanism [12], asking them to conduct an
aggregation of their local datum results (i.e., both their own di result and those
data that have been replicated to si). The aggregated result is forwarded to
ssink through the parents of each node si, as those parents are identified during
the tree construction process. The above procedure continues recursively until
all n sensors have received the aggregation request and forwarded their answers
to ssink.

When the above procedure terminates, nodes farther away from a node si

will contain a coarser representation of the information stored locally on si.
That has two advantages: i) Even if si is completely eliminated from the system
then the user will still be able to recover a coarser representation of di from
the j-hop neighbors of si (where j ≥ 1); ii) The network can speedup query
execution as certain queries can be answered at no extra cost. For instance a
query that aims to answer the question: “Has the swarm detected any water,”
can be answered even if the system preserves only a very coarse representation
of the generated di structures.

Before proceeding with the details of the HDRA algorithm let us define
the notion of an MBR which is utilized during the in-network aggregation
process.

Definition 3 [Minimum Bounding Rectangle]: A rectangle that encloses
all points in a given area V . The Cartesian coordinates of the bounding box
MBR(V) are defined by the following quadruple:

(min{sx
i }, min{sy

j}, max{sx
k}, max{sy

l }), [i, j, k, l ≤ n]

The MBR is an approximation for a set of detected events in the area V and
might encapsulate |V | events using only five real numbers, i.e., (ts, MBR(V)),
as opposed to (|V |*2 + 1) real numbers. That makes MBRs highly compact
structures, enabling huge energy savings during their replication. This is par-
ticularly true when 5 ≪ |V |. Finally, note that an MBR can easily incorporate
aggregate answers (aggr) with the bounding box as (t, x1, y1, x2, y2, aggr).

The specifics of the HDRA algorithm are shown in Algorithm 3. In line 3,
node si waits in standby mode until it receives an Aggregate Request from its
parent, which is a message that initiates the construction of the in-network
aggregation tree. In line 4, it immediately broadcasts Aggregate Request to its
own neighborhood. Each node then waits for the MBRs of its children nodes.
Without loss of generality, we adopt the child anchor mechanism used in [35],
where a sensor sj confirms to exactly one of its parent si that it wants to be
its child. This provides si with a list of children so that si can know when
all the answers from its children have arrived. Whenever an MBR is received

17

Algorithm 3 : Hierarchical Data Replication Algorithm (HDRA)

Input: A set of sensors S = {s1, s2, · · · sn}, a randomly selected sink ssink

Output: A set of n distributed MBRs organized in a Querying Routing Tree.
1: procedure HDRA(S, si)
2: MBRi = NULL;
3: receive(Aggregate Request, parent(si));
4: broadcast(Aggregate Request);
5: for j = 1 to |children(si)| do
6: receive(MBRj , child(sj));
7: MBRi = merge(MBRi, MBRj);
8: end for
9: send(MBRi, parent(si));

10: end procedure

from some child sj (line 6), this MBRj is merged with the local MBRi (line
7) and when all children have answered then MBRi is forwarded to the parent
node of si (line 9).

Example: Figure 2 illustrates the MBRs developed locally at each of the
eight sensors. We observe that s1 through s3 know precisely where their events
happened, thus the MBRs a, b and c are actually point coordinates. On the
contrary, s4 has an approximation of s1’s and s2’s answer (this is denoted as
MBR f). The intuition is that even if both s1 and s2 fail, then the user will
still be able to recover an approximation of where the event has occurred (i.e.,
through s4 or some other node). On the same figure, we also notice that s12 has
an MBR which encapsulates all the events that have occurred. When a user
performs a query, we collect the MBRs from all the nodes for the user-specified
interval and intersect these boxes. This allows us to derive the coordinates of
the points at which events have occurred.

Discussion: Although the MBR aggregation ideas are only conducted in
space, a similar logic could also be applied in order to conduct spatio-temporal
aggregation (i.e., using (x, y, ts)). In particular, we could extend the definition
of MBRs to Minimum Bounding Cuboids (MBC) (i.e., rectangular boxes). A
MBC contains the coordinates of an event in space and time. Note that the
MBC structure is not fundamentally different than the MBR structure, as
it is represented again using two coordinates (i.e., 3D coordinates) but the
discussion of this extension is outside the scope of this paper.

6 Experimental Evaluation

In this section we present the experimental evaluation of the SenseSwarm
framework. Using a trace-driven methodology, we measured the time and en-
ergy behavior of our proposed algorithms as well as the robustness of our
SenseSwarm framework in the presence of failures.

18

 220

 240

 260

 280

 300

 320

 340

 360

 380

 300 350 400 450 500

Mote Locations (T=0)

perimeter

 220

 240

 260

 280

 300

 320

 340

 360

 380

 300 350 400 450 500

Mote Locations (T=20)

perimeter

 220

 240

 260

 280

 300

 320

 340

 360

 380

 300 350 400 450 500

Mote Locations (T=80)

perimeter

 220

 240

 260

 280

 300

 320

 340

 360

 380

 300 350 400 450 500

Mote Locations (T=100)

perimeter

Fig. 5 Sample simulator output for individual scenes at timestamps 0,20,80 and 100.
Perimeter nodes are connected using dashed lines.

6.1 Experimental Methodology

We adopt a trace-driven experimental methodology in which a real dataset
from n sensors is fed into our trace-driven simulator. Our methodology is as
follows:

Swarm Simulation: In order to introduce motion to our sensor network we
have derived synthetic spatial coordinates for the n sensors using the Craig
Reynold’s algorithm [29], which is widely used in the computer graphics com-
munity. Using this algorithm we generated 100 individual scenes and during
each scene a sensor obtains 100 readings (i.e., σ=σ′=100). Our simulator has
the ability to visual representations of the swarm simulation as illustrated in
Figure 5. Additionally, in order to simulate failures we make the assumption
that there is a X% independent probability that a node fails at any given
timestamp.

Dataset: We utilize a real dataset from Intel Berkeley Research [15]. This
dataset contains data that is collected from 58 sensors deployed at the premises
of the Intel Research in Berkeley between February 28th and April 5th, 2004.
The motes utilized in the deployment were equipped with weather boards and
collected time-stamped topology information along with humidity, tempera-
ture, light and voltage values once every 31 seconds. The dataset includes 2.3
million readings collected from these sensors. We use 10,000 readings from the

19

Table 3 Configuration parameters for all experimental series.

Section Objective n Failures Scenes

6.2 Energy Cost 54,150,300,500 20% 1000

6.3 Time Overhead 54 0% 1000

6.4 Coverage 54 10%-50% 1000

6.5 Acquisition Cost 54 20% 1000

6.6 Fault Tolerance 54 20-90% 100

6.7 Scalability 54,150,300,500 50% 100

54 sensors that had the largest amount of local readings since some of them
had many missing values.

Sensing Device: We use the energy model of Crossbow’s research sensor
device TelosB [7] to validate our ideas. TelosB is a ultra-low power wireless
sensor equipped with a 8 MHz MSP430 core, 1MB of external flash storage,
and a 250Kbps Chipcon (now Texas Instruments) CC2420 RF Transceiver
that consumes 23mA in receive mode (Rx), 19.5mA in transmit mode (Tx),
7.8mA in active mode (MCU active) with the radio off and 5.1µA in sleep
mode. Our performance measure is Energy, in Joules, that is required at each
discrete time instance to resolve the query. The energy formula is as following:
Energy(Joules) = V olts × Amperes × Seconds. For instance the energy to
transmit 30 bytes at 1.8V is: 1.8V × 23 ∗ 10−3A× 30 ∗ 8bits/250kbps = 39µJ .

Perimeter Performance Metrics: In order to evaluate the coverage effi-
ciency of the perimeter algorithm (PA) under failures, we introduce the Cov-
erage ratio metric, which is defined as the ratio of the area generated by
perimeter nodes under failures over the area generated by perimeter nodes
under no failures.

Replication Performance Metrics: In order to evaluate the accuracy per-
formance of our two replication algorithms, we introduce two metrics i) ab-
solute fault-tolerance accuracy, and ii) approximate fault-tolerance accuracy.
Absolute fault-tolerance accuracy is the percentage of discovered events over
the total number of events requested by a query and will be utilized for the
evaluation of the DRA algorithm which attempts to uncover exact answers to
queries. Approximate fault-tolerance accuracy measures the proximity penalty
that occurs when the MSN returns an MBR that encloses an event instead
of the actual coordinates of a specific event. We will provide a more thor-
ough description of this performance metric in Section 6.6. Note that in either
experiment each node only propagates correct results to the sink.

Table 3 summarizes the configuration parameters for all experiments men-
tioned in the subsequent sections.

20

 0

 500

 1000

 1500

 2000

 2500

 3000

54 150 300 500

E
ne

rg
y

(J
)

Network Size (n)

Perimeter Construction Performance with Different Network Sizes
 n=54,150,300,500, scenes=1000 failures=20%

Centralized Perimeter Algorithm (CPA)
Perimeter Algorithm (PA)

Fig. 6 Evaluating the energy consumption of the Perimeter Algorithm.

6.2 Perimeter Phase Evaluation: Energy Cost

In the first experimental series, we investigate the efficiency of our distributed
PA algorithm compared to the centralized CPA algorithm. Figure 6 presents
the aggregate cost (i.e., for the whole network and for all 10,000 timestamps)
of the two algorithms for 4 different network sizes 54, 150, 300 and 500. These
networks were derived from the initial dataset of 54 nodes using replication
of the sensor readings to different initial coordinates. We observe that the
PA algorithm consumes in all cases between 85%-89% less energy than the
CPA algorithm. This is attributed to the fact that during the computation of
smin, the PA algorithm intelligently percolates only one (x, y)-pair to the sink
rather than all of them. Additionally, we observe that the performance gap
between the two algorithms grows substantially with the size of the network.
Specifically, for n=54 the total energy difference between the two algorithms
was 163 Joules while for n=500 the total energy difference was 2,208 Joules.

6.3 Perimeter Phase Evaluation: Time Overhead

In the second experimental series, we measure the time overhead for each phase
of the PA algorithm. We chose to present the time in simulated CPU ticks, as
opposed to milliseconds, because the conversion would sometimes lead us to
very small (close to zero) quantities. We record the time ticks at the start and
end of each phase and show the duration for all 1000 timestamps.

In Figure 7, we observe that the time overhead for the first phase of the PA
algorithm (i.e., initialization and discovery of the node with min y-coordinate)
is quite low. This happens as the discovery and dissemination process for

21

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 200 400 600 800 1000

P
er

fo
rm

an
ce

 (
T

im
e

T
ic

ks
)

Timestamp (t)

Perimeter Time Overhead for each phase
Dataset:Intel54, n=54, scenes=1000

PA Phase 1
PA Phase 2

Fig. 7 Evaluating the time overhead of each phase of the PA algorithm.

identifying the smin node requires minimal processing at each node (i.e., in the
discovery process each node transmits its coordinates and in the dissemination
process each node only processes messages if it is smin.) On the other hand,
the second phase of the PA algorithm is somehow more expensive. This is
attributed to the fact that each node si has to discover its neighboring nodes
and then process their coordinates in order to identify the next perimeter node
(i.e., RightN(si)). The time overhead for the second phase is also augmented
by the number of perimeter nodes (i.e., the larger the number of perimeter
nodes, the larger the overall time overhead).

6.4 Perimeter Phase Evaluation: Coverage Under Failures

In the third experimental series, we investigate the area coverage generated
by the PA algorithm under different failure settings, ranging from 0% (no
failures) to 50% (high failure rate). We ran each experiment 10 times and
record the average coverage ratio, defined as the ratio of the area generated
by perimeter nodes under failures over the area generated under no failures,
for each respective execution. The results of these experiments are depicted in
Figures 8 and 9.

Figure 8 illustrates the coverage ratio for each of the failure scenarios. In
order to display the results of the experiment more efficiently, we have applied
a spline interpolation smoothing between consecutive timestamps. We observe
that even with 50% failures the average coverage ratio for all experiments
is above 70%. In Figure 9 we investigate the distribution of results in all
experiments using a box plot. We observe that for experiments with failures
≤30% the majority of the coverage ratio results fall in the 3rd quartile (i.e.,

22

0%

...

60%

70%

80%

90%

100%

100 200 300 400 500 600 700 800 900 1000

C
ov

er
ag

e
R

at
io

 (
%

%
)

Timestamp (t)

Perimeter Algorithm Coverage Ratio under failures
Dataset:Intel54, n=54, scenes=1000, failures=10-50%

F=10%
F=20%
F=30%
F=40%
F=50%

Fig. 8 Evaluating the coverage ratio of the Perimeter Algorithm.

0%

20%

40%

60%

80%

100%

10% 20% 30% 40% 50%

C
ov

er
ag

e
R

at
io

 (
%

)

Failure Rate (%)

Perimeter Algorithm Coverage Ratio under failures
Dataset:Intel54, n=54, scenes=1000, failures=10-50%

Fig. 9 Analysis of coverage ratio under different failure scenarios.

the perimeter coverage area generated by the PA algorithm is very close to the
area generated under normal execution). This is more evident in experiments
with 10% and 20% failures where the maximum value for each experiment
is identical to the highest value of the 3rd quartile. Finally, we observe that
in all experiments there are scenarios (5% of the cases) where the coverage
ratio is 20-25% below the average (illustrated by the bottom whisker lines).
Investigating the individual scenes, we found out that this occurs when 3 or
more perimeter nodes fail. However, in the majority of cases (95%) the PA
algorithm maintains a competitive coverage ratio under node failures.

23

0

1

2

3

4

5

6

7

...

23

 0 200 400 600 800 1000

E
ne

rg
y

(m
J)

Timestamp (t)

Acquisition Energy Cost of the SenseSwarm Framework
 Dataset=Intel54, n=54, scenes=1000 failures=20%

R R R R R R R R R

Uniform Framework
SenseSwarm Framework

Fig. 10 Evaluating the energy cost of acquiring data at the perimeter of the swarm (Sens-
eSwarm) versus the cost of acquiring information throughout the complete swarm (Uniform).

6.5 Acquisition Cost Evaluation

In the fourth experimental series, we measure the cost of operating a Sens-
eSwarm network in which nodes suspend their sensing activity. As a baseline
of comparison we utilize the Uniform framework, one in which all 54 sens-
ing devices sense at any given moment. Figure 10 shows that the cost of the
SenseSwarm framework is almost 75% less than the energy cost of the Uni-
form framework. We also observe that every σ timestamps, a reconstruction of
the perimeter is triggered in PA. This yields a non-uniform cost equivalent to
23mJ. Although this cost is quite high, the average cost is still well below the
overall cost of the Uniform framework. Particularly, the SenseSwarm network
still consumes on average 1.7± 2.2mJ while the Uniform framework consumes
6.7 ± 0.3mJ.

6.6 Replication Phase Evaluation: Fault Tolerance

In the fifth experimental series, we evaluate the fault-tolerance accuracy of our
two replication algorithms using the metrics described in Section 6.1.

In the first experiment we measure the absolute fault-tolerance accuracy
of the Data Replication Algorithm (DRA). To accomplish this, we compare
DRA against a version that does not employ any replication strategy, coined
No-Replication Algorithm (NRA). We execute both algorithms on each of the
individual scenes generated by our swarm simulator. During each one of the
100 individual scenes, we randomly select a sensor node to be the sink. As soon
as the sink is selected, it registers 10 random queries each of which requesting
events detected by different sets of perimeter sensors. In order to measure the

24

0

20%

40%

60%

80%

100%

20% 30% 40% 50% 60% 70% 80%

A
cc

ur
ac

y
(%

)

Failure Rate (%)

Absolute Fault Tolerance
Dataset:Intel54, n=54, scenes=100, vmin=3

NRA
DRA

Fig. 11 Evaluating the absolute fault-tolerance accuracy (that measures the percentage of
data that can be recovered) for the DRA and NRA algorithms.

accuracy of each of the algorithms, we measure the average ratio of detected
events over the total number of events requested by the 10 queries.

Figure 11 illustrates the absolute fault-tolerance accuracy of the two al-
gorithms over an increasing failure rate. We observe that in all cases DRA
maintains a competitive advantage of ≈19-48% over NRA. This is due to the
voting-based replication strategy utilized by DRA. Note that we have config-
ured DRA with vmin=3 (i.e., 3 votes). Since, in DRA, detected events are
replicated to 3 neighboring nodes, even if a node fails, its detected events are
easily obtained by its votes thus ensuring a higher level of accuracy. We also
observe that with a 60% failure rate the accuracy of both algorithms starts to
decrease rapidly. This is expected at such high failure rates as large segments
of the query routing tree become inaccessible by the sink.

We have finally measured the number of extra communication messages
that DRA requires during replication. We discovered that on average, DRA
requires approximately 90±32 extra messages (i.e., has a message complexity
of O(n)).

In the second experiment, we measure the approximate fault-tolerance ac-
curacy of the HDRA algorithm over an increasing failure rate. Similar to the
first experiment, we register 10 random queries at each individual scene re-
questing events captured at the perimeter nodes. This experiment differenti-
ates from the previous one in the sense that sensor nodes participating in the
query are able to return a MBR in the cases where the event requested by
the query is not discovered in the sensors local storage. Note that an MBR is
only returned if its rectangle/area encloses the event requested by the query.
In the worst case example, the network will return the MBR stored at the sink

25

0

20%

40%

60%

80%

100%

20% 30% 40% 50% 60% 70% 80% 90%

A
pp

ro
xi

m
at

e
A

cc
ur

ac
y

(%
)

Failure Rate (%)

Approximate Fault Tolerance
Dataset:Intel54, n=54, scenes=100

HDRA
NRA

Fig. 12 Evaluating the approximate fault-tolerance accuracy (that penalizes recovered
answers with large MBRs) for the HDRA and NRA algorithms.

(i.e., the area that encloses all events). Consequently, in order to measure the
approximate fault-tolerance accuracy Φ, we use the following formula:

Φ = 1 −
EQ

Esink

where EQ is the area defined by the MBR returned by some query Q, and
Esink is the area defined by the MBR stored at the sink. Simply put, the above
formula favors results that are more precise (i.e., EQ is small).

Figure 12 illustrates the approximate fault-tolerance accuracy of the HDRA
algorithm over an increasing failure rate. We observe that HDRA is able to
capture requested events with very high approximate fault-tolerance accuracy,
even at failure rates as high as 80%. This is due to the fact that in HDRA,
detected events are not only replicated to near-by core nodes but are also
hierarchically stored to many more nodes in the form of MBRs. As a result, a
query requesting these events will most likely receive either the exact events
or a close MBR approximation to them. Finally, note that in the extreme
case where all perimeter notes detect new events, the message complexity of
HDRA is O(n) (i.e., nodes will recursively transmit their data and MBRs to
their parent nodes until all results arrive at the sink node).

6.7 Replication Phase Evaluation: Scalability

In the final experimental series, we evaluate the scalability of our DRA and
HDRA algorithms. We measure the Absolute (DRA) and Approximate (HDRA)
fault tolerance accuracy using 4 networks with different number of nodes. We
utilize a 50% failure rate in all experiments in order to test our algorithms

26

0%

20%

40%

60%

80%

100%

54 150 300 500

A
cc

ur
ac

y
(%

)

Network Size (n)

Scalability of DRA and NRA with Different Network Sizes
 n=(54,150,300,500), scenes=100, failures=50%

DRA

HDRA

Fig. 13 Evaluating the scalability of the DRA and HDRA algorithms.

accuracy in a high risk scenario. Figure 13 illustrates the results of this exper-
iment.

We observe that both the DRA and HDRA algorithms maintain a high
degree of accuracy in all experiments. Additionally, we observe that as the
network size increases, both of the algorithms present increased accuracy. The
reason behind this is that since the number of sensors increases the results are
distributed farther into the network. This rapidly decreases the probability
of losing results which can only occur if a number of neighboring nodes fail
simultaneously.

7 Conclusions and Future Work

This paper presents a novel perimeter-based data acquisition framework for
mobile sensor networks, coined SenseSwarm. SenseSwarm dynamically parti-
tions the sensing devices into perimeter and core nodes. Data acquisition is
scheduled at the perimeter, with the invocation of the PA algorithm, while
storage and replication takes place at the core nodes, with the invocation of
the DRA and HDRA algorithms. Our trace-driven experimentation with real-
istic data shows that our framework offers singnificant energy reductions while
maintaining high data availability rates. In particular, we found that even with
60% system failures we can recover the 80% of generated events exactly. In the
future we plan to study other geometric shapes besides MBRs, different sink
selection strategies for in-network replication and also techniques to incremen-
tally maintain the perimeter rather than reconstructing it in every iteration.
We additionally plan to develop a real people-centric application founded on
the ideas presented in this work.

27

Acknowledgements: We would like to thank Polys Kourousides for the
insightful discussions regarding the perimeter construction algorithm. This
work was supported in part by the University of Cyprus under a Startup
Grant of the second author, the Open University of Cyprus under project
SenseView, the US National Science Foundation under the project AQSIOS
(#IIS-0534531), the European Union under the projects IPAC (#224395) and
CONET (#224053), and the project FireWatch (#0609-BIE/09), sponsored
by the Cyprus Research Promotion foundation.

References

1. Aly M., Pruhs K., Chrysanthis P.K., “KDDCS: a load-balanced in-network data-centric
storage scheme for sensor networks”, In Proceedings of the 15th ACM International
Conference on Information and Knowledge Management (CIKM), Arlington, Virginia,
USA, November 6-11, pp.317-326, 2006.

2. Andreou P., Zeinalipour-Yazti D., Andreou M., Chrysanthis P.K., Samaras G.,
“Perimeter-Based Data Replication and Aggregation in Mobile Sensor Networks” In
Proceedings of the 10th International Conference on Mobile Data Management: Systems,
Services and Middleware (MDM), Taipei, Taiwan, May 18-20, pp.244-251, 2009.

3. Bergbreiter, S.; Pister, K.S.J., “CotsBots: An Off-the-Shelf Platform for Distributed
Robotics,”, In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Las Vegas, NV, October 28-30, pp.27-31, 2003.

4. Campbell A.T., Eisenman S.B., Lane N.D., Miluzzo E., Peterson R.A., Lu H., Zheng
X., Musolesi M., Fodor K., Ahn G.S., “The Rise of People-Centric Sensing”, In IEEE
Internet Computing Vol. 12, No. 4, pp.12-21, 2008.

5. Chintalapudi K. and Govindan R., “Localized Edge Detection In Sensor Fields”, In Ad
Hoc Networks, Vol. 1, No. 1, pp. 273-291, 2003.

6. Cormen T.H., Leiserson C.E., Rivest R.L., and Stein C., “Introduction to Algorithms:
2nd edition”, The MIT Press and McGraw-Hill, 2001.

7. Crossbow Technology Inc, http://www.xbow.com/
8. Chrysanthis P.K. and Labrinidis A., “NSF Workshop on Data Management for Mobile

Sensor Networks Report”, Pittsburgh, USA, Jan 16-17, 2007.
9. Dantu K., Rahimi M.H., Shah H., Babel S., Dhariwal A., and Sukhatme G.S., “Robo-

mote: Enabling mobility in sensor networks”, In Proceedings of the 4th international
symposium on Information Processing in Sensor Networks (IPSN-SPOTS), Los Angeles,
California, April 25-27, No.55, 2005.

10. Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S. and Balakrishnan H., “The
Pothole Patrol: Using a Mobile Sensor Network for Road Surface Monitoring”, In Pro-
ceeding of the 6th international conference on Mobile Systems, applications, and services
(MobiSys), Breckenridge, CO, USA, June 17-20, pp.29-39, 2008.

11. Hasan A., Pisano W., Panichsakul S., Gray P., Huang J-H., Han R., Lawrence D. and
Mohseni K., “SensorFlock: An Airborne Wireless Sensor Network of Micro-Air Vehicles”,
In Proceedings of the 5th international conference on Embedded Networked Sensor Sys-
tems (SenSys), Sydney, Australia, Noveber 6-9, pp.117-129, 2007.

12. Hill J., Szewczyk R., Woo A., Hollar S., Culler D., Pister K., “System Architecture
Directions for Networked Sensors”, In ACM SIGPLAN Notices, Vol.34, No.5, pp.93-104,
2000.

13. Hull B., Bychkovsky V., Chen K., Goraczko M., Miu A., Shih E., Zhang Y., Balakrishnan
H., and Madden S., “CarTel: A Distributed Mobile Sensor Computing System”, In
Proceedings of the 4th international conference on Embedded Networked Sensor Systems
(SenSys), Boulder, Colorado, USA, October 31 - November 3, pp.125-138, 2006.

14. Intanagonwiwat C., Govindan R. Estrin D., “Directed diffusion: A scalable and ro-
bust communication paradigm for sensor networks”, In Proceedings of the 6th annual
international conference on Mobile Computing and Networking (MobiCom), Boston,
Massachusetts, USA, August 6-11, pp. 56-67, 2000.

28

15. Intel Lab Data, http://db.csail.mit.edu/labdata/labdata.html
16. Jalodia S., Mutchler D., “Dynamic Voting Algorithms for Maintaining the Consistency

of a Replicated Database”, In ACM Transactions on Database Systems (TODS), Vol.15,
pp.230-280, June, 1990.

17. Karp B., Kung H.T., “GPSR: Greedy Perimeter Stateless Routing for Wireless Net-
works”, In Proceedings of the 6th annual international conference on Mobile computing
and networking (MobiCom), Boston, Massachusetts, USA, August 6-11, pp.243-254,
2000.

18. Koren I., Krishna C.M., “Fault-Tolerant Systems”, Elsevier, ISBN: 978-0-12-088525-1,
2007.

19. Madden S.R., Franklin M.J., Hellerstein J.M., Hong W., “The Design of an Acqui-
sitional Query Processor for Sensor Networks”, In Proceedings of the ACM SIGMOD
international conference on Management of data (SIGMOD), San Diego, California,
USA, June 9-12, pp.491-502, 2003.

20. Madden S.R., Franklin M.J., Hellerstein J.M., Hong W., “TAG: a Tiny AGgregation
Service for Ad-Hoc Sensor Networks”, In Proceedings of the 5th symposium on Operating
systems design and implementation (OSDI), Vol.36, Issue.SI, pp.131-146, 2002.

21. Mani A., Rajashekhar M., Levis P. “TINX: a tiny index design for flash memory on
wireless sensor devices”, In Proceedings of the 4th international conference on Embedded
networked sensor systems (Sensys), Boulder, Colorado, USA, October 31 - November 3,
pp.425-426, 2006.

22. Monterey Bay Aquarium Research Institute (MBARI), http://www.mbari.org/rd/
23. Nascimento M.A., Alencar R.A.E., Brayner A., “Optimizing Query Processing in Cache-

Aware Wireless Sensor Networks”, In SpringerLink, Lecture Notes in Computer Science,
Vol. 6187, pp.60-77, 2010.

24. Navarro-Serment, L.E., Grabowski, R., Paredis, C.J.J., and Khosla, P.K. “Millibots:
The Development of a Framework and Algorithms for a Distributed Heterogeneous Robot
Team”, In IEEE Robotics and Automation Magazine, Vol. 9, No. 4, December, 2002.

25. Nittel S., Trigoni N., Ferentinos K., Neville F., Nural A., Pettigrew N., “A drift-tolerant
model for data management in ocean sensor networks”, In Proceedings of the 6th ACM
international workshop on Data engineering for wireless and mobile access (MobiDE),
Beijing, China, June 10, pp.49-58, 2007.

26. Purohit A., Zhang P., “SensorFly: a controlled-mobile aerial sensor network”, In Pro-
ceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys),
Berkeley, California, pp.327-328, 2009.

27. Rao A., Ratnasamy S., Papadimitriou C., Shenker S., Stoica I., “Geographic Routing
without Location Information”, In Proceedings of the 9th annual international conference
on Mobile computing and networking (MobiCom), San Diego, CA, USA, September 14-
19, pp.96-108, 2003.

28. Ratnasamy S., Karp B., Shenker S. Estrin D., Govindan R., Yin L., Yu F., “Data
centric storage in sensornets with GHT, a geographic hash table”, In Mobile Networks
and Applications (MONET), Vol. 8, No. 4, pp.427-442, 2003.

29. Reynolds, C. W., “Flocks, Herds, and Schools: A Distributed Behavioral Model”, In
Proceedings of the 14th annual conference on Computer graphics and interactive tech-
niques (SIGGRAPH), pp.25-34, 1987.

30. Sadler C., Zhang P., Martonosi M., Lyon S., “Hardware Design Experiences in Ze-
braNet”, In Proceedings of the 2nd international conference on Embedded networked
sensor systems (SenSys), Baltimore, MD, USA, November 3-5, pp.227-238, 2004.

31. Shenker S., Ratnasamy S., Karp B., Govindan R., Estrin D., “Data-centric storage in
sensornets”, In ACM SIGCOMM Computer Communication Review, Vol. 33, No. 1,
pp.137-142, 2003.

32. Srinivasan S., Ramamritham K., Kulkarni P., “ACE in Hole: Adaptive Contour Esti-
mation Using Collaborating Mobile Sensors”, In Proceedings of the 7th international
conference on Information processing in sensor networks (IPSN), St. Louis, Missouri,
USA, April 22-24, pp.147-158, 2008.

33. Szewczyk R., Mainwaring A., Polastre J., Anderson J., Culler D., “An Analysis of a
Large Scale Habitat Monitoring Application”, In Proceedings of the 2nd international
conference on Embedded networked sensor systems (SenSys), Baltimore, MD, USA,
November 3-5, pp.214-226, 2004.

29

34. Wu S-H., Chuang K-T., Chen C-M., Chen M-S., “DIKNN: An Itinerary-based KNN
Query Processing Algorithm for Mobile Sensor Networks”, In Proceedings of the IEEE
23rd International Conference on Data Engineering (ICDE), Istanbul, Turkey, April
15-20, pp.456-465, 2007.

35. Yao Y., Gehrke J.E., “The cougar approach to in-network query processing in sensor
networks”, In SIGMOD Record, Vol.32, No.3, pp.9-18, 2002.

36. Zeinalipour-Yazti D., Andreou P., Chrysanthis P. and Samaras G., “MINT Views:
Materialized In-Network Top-k Views in Sensor Networks”, In Proceedings of the 8th
International Conference on Mobile Data Management, Mannheim, Germany, May 7 -
11, pp.182-189, 2007.

37. Zeinalipour-Yazti D., Andreou P., Chrysanthis P.K., Samaras G., “SenseSwarm: a
perimeter-based data acquisition framework for mobile sensor networks”, In Proceed-
ings of the 4th workshop on Data management for sensor networks: in conjunction with
33rd International Conference on Very Large Data Bases (DMSN), Vienna, Austria,
September 24, pp.13-18, 2007.

38. Zeinalipour-Yazti D., Chrysanthis P.K., ”Mobile Sensor Network Data Management”
Book Chapter in the Encyclopedia of Database Systems (EDBS), Editors: Ozsu, M.
Tamer; Liu, Ling (Eds.), ISBN: 978-0-387-49616-0, 2009.

39. Zeinalipour-Yazti D., Lin S., Kalogeraki V., Gunopulos D., Najjar W., “MicroHash:
An Efficient Index Structure for Flash-Based Sensor Devices”, In Proceedings of the
4th conference on USENIX Conference on File and Storage Technologies (FAST), San
Francisco, CA, USA, December 13-16, pp.3, 2005.

40. Zhang P., Martonosi M., “LOCALE: Collaborative Localization Estimation for Sparse
Mobile Sensor Networks”, In Proceedings of the 7th international conference on Infor-
mation processing in sensor networks (IPSN), St. Louis, Missouri, USA, April 22-24,
pp.195-206, 2008.

