
A Distributed Middleware Infrastructure for

Personalized Services∗

Marios D. Dikaiakos Demetris Zeinalipour-Yazti

Dept. of Computer Science Dept. of Computer Science

University of Cyprus University of California

PO Box 20537, Nicosia, Cyprus Riverside, CA, USA

mdd@ucy.ac.cy csyiazti@cs.ucr.edu

Abstract

In this paper we present an overview of eRACE, a modular and distributed inter-

mediary infrastructure that collects information from heterogeneous Internet sources

according to registered profiles or end-user requests. Collected information is stored for

filtering, transformation, aggregation, and subsequent personalized or wide-area dissem-

ination on the wireline or wireless Internet. We study the architecture and implemen-

tation of the main module of eRACE, an HTTP proxy named WebRACE. WebRACE

consists of a high-performance, distributed and multithreaded Web crawler, a multi-

threaded filtering processor and an object cache. We discuss the implementation of

WebRACE in Java, describe a number of performance optimizations, and present its

performance assessment.

1 Introduction

The rapid expansion of the Web, and the developments in mobile-device and wireless-

Internet technologies have resulted to a large heterogeneity of client devices currently used

for accessing Internet services. Furthermore, they have raised the capacity mismatch be-

tween clients and Internet servers. To cope with these trends, software infrastructures for

∗Work supported in part by the Research Promotion Foundation of Cyprus under grant PENEK 23/2000

and by the European Union under the ANWIRE project (contract IST-2001-38835).

Internet services have to: (i) Support seamless access from a variety devices; (ii) Cus-

tomize content according to the requirements and limitations of different terminal devices.

(iii) Support both synchronous (on-demand) and asynchronous modes of interaction with

users, thus coping with frequent disconnections of wireless access and user mobility. (iv) Op-

timize the amount of useful content that reaches users through client devices with limited

resources and restricted interfaces, by enabling service personalization, localization and fil-

tering of information. (v) Guarantee high availability and robustness, as well as incremental

performance and capacity scalability with an expanding user base.

Possible approaches for coping with these requirements are the so-called end-to-end

solutions, where origin servers adapt their content on-the-fly, taking into account consoli-

dated user profiles [43] or the terminal device and network connection involved in a user

session [35]. For an end-to-end approach to work properly, however, adaptation software

has to be inserted at each origin server. Consequently, software updates have to be prop-

agated to all origin servers whenever new terminal devices and content-encoding protocols

emerge. Moreover, on-the-fly adaptation of content can be very time-consuming, leading to

a deterioration of user experience [21].

An alternative approach for providing personalization, content customization, ubiquity

and mobility, is the employment of proxies with a functionality significantly extended over

what is found in traditional proxies for the wireline or wireless Web [21]. Given the high-

performance requirements for high throughput, 24x7 availability, and performance scalabil-

ity of next-generation Internet services [11, 40], however, centralized proxies are expected to

face performance problems as well, thus necessitating the distribution of their computation,

storage and complexity into the networking infrastructure [21]. In such a case, a number

of distributed, programmable and possibly mobile intermediary servers would be deployed

throughout the network. These servers would mediate between primary information sources

and various client systems, providing performance scalability, better sharing of resources,

higher cost efficiency, and a streamlining of new service provision [10].

The focus of our work is on the development of eRACE, an intermediary infrastructure

with enhanced functionality and distributed architecture, to support the development and

deployment of personalized services and the provision of ubiquitous access thereof. In

this paper we present the design principles and architecture of eRACE. Furthermore, we

2

describe the design, implementation and performance assessment of WebRACE, which is an

eRACE-proxy dealing with collecting, filtering and caching content from the World-Wide

Web, according to personal and service profiles. WebRACE consists of a multithreaded

crawler, a multithreaded filtering engine, and an object cache. The remaining of this paper

is organized as follows: Section 2 presents an overview of the eRACE architecture. Section 3

describes the main challenges behind WebRACE design and implementation. Sections 4, 5

and 6 describe the main components of WebRACE: the Mini-crawler, the Object Cache and

the Annotation Engine. Section 7 presents our experimentation and performance assessment

of WebRACE. Furthermore, it presents the performance enhancements that we achieve by

caching to cache the crawling state in the Object Cache, and by distributing the crawler

to a network of workstations. Section 8 presents an overview of recent related work. We

provide our conclusions in Section 9.

2 The Architecture of eRACE

2.1 Overview and Goals

The extensible Retrieval, Annotation and Caching Engine (eRACE) is a middleware infras-

tructure designed to support the development and deployment of intermediaries on Internet.

Intermediaries are “software programs or agents that meaningfully transform information

as it flows from one computer to another” [8, 38], and represent a useful abstraction for

describing and developing personalized proxies, mobile services, etc.

eRACE is a modular, configurable, and distributed proxy infrastructure that collects

information from heterogeneous Internet sources and protocols according to eRACE profiles

registered within the infrastructure, and end-user requests. Collected information is stored

in the software cache for further processing, personalized dissemination to subscribed users,

and wide-area dissemination on the wireline or wireless Internet.

eRACE supports personalization by enabling the registration, maintenance and man-

agement of personal profiles representing the interests of individual users. Furthermore,

its structure allows the easy customization of service provision according to parameters,

such as information-access modes (pull or push), client-proxy communication (wireline or

wireless; email, HTTP, WAP), and client-device capabilities (PC, PDA, mobile phone, thin

3

clients). Ubiquitous service-provision is supported by eRACE thanks to the decoupling of

information retrieval, storage and filtering, from content publishing and distribution. The

eRACE infrastructure can also easily incorporate mechanisms for providing subscribed users

with differentiated service-levels at the middleware level. Finally, the design of eRACE is

tuned for providing performance scalability, which is an important consideration given the

expanding numbers of WWW users, the huge increase of information sources available on

the Web, and the need to provide robust services.

Key design and implementation decisions made to accomplish these goals are described

below:

1. The information architecture of eRACE is defined in terms of metadata that represent

user account and connection information, user and service profiles, state information

of eRACE modules and information exchanges taking place between them. Specifica-

tions are defined as XML Document Type Definitions (DTDs) [51]. We chose XML

because it is simple, self-descriptive, and extensible. Hence, we can easily extend our

descriptions to incorporate new services, terminal devices, and QoS policies. Further-

more, we can re-use existing modules and API’s that process XML data. Central

to this set of meta-data is the “eRACE profile” and the “eRACE annotation.” The

eRACE profile is a concise XML description of the operations and transformations

that eRACE modules are expected to perform upon heterogeneous Internet sources:

information gathering, filtering and caching of retrieved content, transcoding, dissem-

ination, etc. The eRACE-profile DTD is general and expressive so as to represent: (i)

personal interests of subscribers, thus supporting the deployment of personalized ser-

vices over the Web; (ii) generic services that can be deployed on wide-area networks,

such as notification systems, portals, mobile services, etc. The results of profile-driven,

filtering operations performed upon gathered content are encoded in XML and named

eRACE Annotations or Annotation Cache Information (ACI’s).

2. Data sharing between modules of the eRACE infrastructure is done through messages

that transport XML-encoded information and events. Therefore, we can easily decou-

ple and isolate modules from each other and distribute them physically across machine

boundaries at configuration or run-time. Furthermore, modules with stringent perfor-

mance requirements are multithreaded and employ distributed data-structures [29], to

4

allow the exploitation of parallel execution on shared-memory multiprocessor systems

and networks of workstations.

3. eRACE translates user requests and eRACE profiles into “eRACE requests,” encoded

in XML and tagged with QoS information. These requests are scheduled for execution

by an eRACE scheduler, which can implement different scheduling policies based on

QoS tags. The explicit maintenance of XML-encoded information regarding pending

requests and content scheduled for dissemination, makes it easy to keep track of the

system’s run-time behavior, to compare alternative scheduling algorithms, to imple-

ment load-balancing techniques for sustaining high-availability during high loads, and

to apply QoS policies with different service levels.

4. eRACE is implemented with Java [28]. Java was chosen for a variety of reasons. Its

object-oriented design enhances the software development process, supports rapid pro-

totyping and enables the re-use and easy integration of existing modules. Java class

libraries provide support for key features of eRACE: platform independence, multi-

threading, network programming, high-level programming of distributed applications,

string processing, code mobility, compression, etc. Our choice of Java, however, came

with a certain risk-factor that arose from known performance problems of this plat-

form and its run-time environment. Performance and robustness are issues of critical

importance for systems like eRACE, which must perform as a server, run continuously

and sustain high-loads at short periods of time.

5. Support for mobility and disconnected operations of Proxy and Content-Distribution

agents will be provided by Mitsubishi’s Concordia Mobile Agent platform [36, 37]. For

that matter, we have conducted a number of studies to assess the performance and

robustness of this platform, with encouraging results [23, 48]. Furthermore, we imple-

mented two earlier prototypes prototype of eRACE [22, 52] with Concordia; mobile

agents were used to implement the communication protocol between users and eRACE

servers. To this end, the front-end interface of eRACE was implemented as a Java

applet with an embedded transporter able to launch and receive Concordia Agents.

“Agent proxies” were implemented as stationary Concordia Agents able launching

mobile agents to access and combine information sources over the network.

5

Figure 1: eRACE System Architecture.

2.2 System Architecture

2.2.1 First Tier

eRACE is organized as a two-tier architecture (see Figure 1). The first tier includes modules

that manage services provided to users: the Service Manager, Content-Distribution Agents,

and Personal Information Roadmap (PIR) Servlets.

The Service Manager is comprised of modules for handling user connection (authenti-

cation, login) and profile management. Each time a user connects to eRACE, the Service

Manager notifies other modules so that content starts “flowing” to the user. Furthermore,

the Service Manager maintains and manages user and service profiles that are defined and

stored as XML data. A profile is a set of long-term, continuously evaluated queries [50]; in

eRACE, these queries can be typical queries to Web databases, HTTP requests for World-

Wide Web resources, access to general-purpose Search Engines or Subject Cataloging Sites,

subscription to Usenet News, etc. Each profile is annotated with a number of data and

control parameters. Data parameters are query arguments, e.g., a stock symbol of interest.

Control parameters determine the frequency of query execution, the expected amount of in-

formation gathered from queries (e.g., summary vs. full results), the priority of notification

for a given query, etc. Profiles are managed by the Service Manager through the Java API

of PDOM [34], which is a thread-safe, persistent Document Object Model data manager.

6

The Service Manager translates these profiles into eRACE requests that are forwarded for

execution to the second tier of eRACE (see Figure 1).

Content-Distribution Agents retrieve content pertinent to user and service profiles, and

maintained in the caches of eRACE’s Agent Proxies (with meta-information kept in the

Annotation Cache). Content is aggregated by the CDA’s, which decide when and how

to disseminate it to end-users, following possible terminal- or connection-specific transfor-

mations (adaptation, transcoding, etc.). Additional optimizations, such as caching content

within the Content-Distribution Agents “near” the PIR Servlets, will be addressed in future

work.

eRACE provides users with seamless access to their content through the Personal Infor-

mation Roadmap (PIR). This is a customized user-interface that implements a simple e-mail

based information provision paradigm, seeking to cope with problems of network disorienta-

tion and information overloading. The PIR provides a user with a personalized and unified

view of her personal information space across different devices. The PIR is implemented

as a set of Java Servlets, which transcode it to a format appropriate for the users’ terminal

connections (HTML for connections over HTTP and WML for connections over WAP).

The PIR can be used simultaneously with other tools employed to access information on

Internet (browsers, e-mailers, etc).

2.2.2 Second Tier

The second tier of eRACE consists of a number of protocol-specific agent-proxies like We-

bRACE, mailRACE, newsRACE and dbRACE that retrieve and cache information from

the WWW, POP3 email-accounts, USENET NNTP-news, and Web-database queries re-

spectively (see Figure 1).

Agent-proxies are driven by a Request Scheduler, which scans continuously a database of

Unified Resource Descriptions (URD-DB in Figure 1) and schedules URD’s for execution to

the corresponding agent-proxy. A Unified Resource Description (URD) is an XML-encoded

data structure, which is part of an “eRACE request,” and describes source information,

processing directives and urgency information for Internet sources monitored by eRACE.

In essence, each URD represents a request to retrieve and process content from a particular

Internet source on behalf of a particular user or service. A typical URD request is shown

7

<urd>

<uri timing= “600000” lastcheck = “97876750000” port= “80′′ >

http://www.cs.ucy.ac.cy/default.html

< /uri>

<type protocol= “http” method= “pull” processtype= “filter”/ >

<keywords>

<keyword key= “ibm” weight= “1” / >

<keyword key= “research” weight= “3” / >

<keyword key= “java” weight= “4” / >

<keyword key= “xmlp4j” weight= “5” / >

< /keywords>

<depth level= “4”/ >

<urgency urgent= “1”/ >

< /urd>

Table 1: A typical URD instance.

in Table 1.

The URD database (URD-DB) is populated by the Service Manager of eRACE. URD-

DB is a single XML-encoded document managed by PDOM [34]. XML documents are

parsed by PDOM and stored in Java serialized binary form on secondary storage, organized

in pages, each containing 128 DOM nodes of variable length. The parsed document is

accessible to DOM operations directly, without re-parsing. PDOM nodes accessed by a

DOM operation are loaded into a main memory cache. PDOM supports main-memory

caching of XML nodes, enabling fast searches in the DOM tree.

Access to URD-DB’s contents is provided through the data manager of PDOM, which

issues XQL queries (eXtensible Query Language) to a GMD-IPSI XQL engine [34, 42].

This engine is a Java-based storage and query application, which handles large XML doc-

uments and incorporates two key mechanisms: a persistent implementation of W3C-DOM

Document objects [2], and a full implementation of the XQL query language.

The content produced by a URD execution is stored in the software cache of the cor-

responding agent-proxy and filtered by the Annotation Engine of eRACE according to

processing directives defined in that URD. Meta-information produced by the filtering pro-

cess is encoded as an XML data-structure named Annotation Cache Information (ACI) and

8

<aci owner = ‘‘csyiazt1’’ extension = ‘‘html’’ format= ‘‘html’’

relevance= ‘‘18’’ updatetime= ‘‘97876950000 filesize= ‘‘2000’’>

<uri>http://www.cs.ucy.ac.cy/default.html< /uri>

<urgency urgent= ‘‘1’’/ >

<docbase>969890.gzip< /docbase>

<expired expir= ‘‘false’’ / >

<summary>This is a part of the document with keywords 1)...< /summary>

< /aci>

Table 2: ACI snippet.

cached separately. ACI’s are used by Content-Distribution Agents for information dissem-

ination to end-users. ACI is an extensible data structure that encapsulates information

about the Web source that corresponds to the ACI, the potential user-recipient(s) of the

“alert” that will be generated by eRACE’s Content Distribution Agents according to the

ACI, a pointer to the cached content, a description of the content (format, file size, ex-

tension), a classification of this content according to its urgency and/or expiration time,

and a classification of the document’s relevance with respect to the semantic interests of

its potential recipient(s). The XML description of the ACI’s is extendible and therefore we

can easily include additional information in it without having to change the architecture of

WebRACE. ACI’s are stored in an XML-ACI PDOM database. An example of a typical

ACI snippet is given in Table 2.

Agent-proxies implement a number of optimizations such as coalescing different URD

requests that target the same information source. Furthermore, agent-proxies implement

expiration policies that differ from the expiration policies of information sources on Internet.

eRACE maintains and manages multiple versions of the content published on some infor-

mation source every time this content is of interest to some eRACE profile, and for as long

as the resulting information has not been retrieved by interested end-users. This approach

makes it necessary to manage obsolete information stored in eRACE caches explicitly. This

task is carried out by a Garbage Collector module (see Figure 1).

9

3 WebRACE Design and Implementation Challenges

WebRACE is the agent-proxy that deals with information sources on the WWW and ac-

cessible through the HTTP protocols (HTTP/1.0, HTTP/1.1). Other proxies have the

same general architecture with WebRACE, differing only in the implementation of their

protocol-specific proxy engines.

WebRACE is comprised of three basic components: the Mini-crawler, the Object Cache,

and the Annotation Engine. These components operate independently and asynchronously

(see Figure 2). They can be distributed to different computing nodes, execute in different

Java heap spaces, and communicate through permanent socket links. Through these sockets,

the Mini-crawler notifies the Annotation Engine every time it fetches and caches a new

page in the Object Cache. The Annotation Engine can then process the fetched page

asynchronously, according to pre-registered user profiles or other criteria.

In the development of WebRACE we address a number of challenges: First, is the design

and implementation of a user-driven crawler. Typical crawlers employed by major search

engines such as Google [12], start their crawls from a carefully chosen fixed set of “seed”

URL’s. In contrast, the Mini-crawler of WebRACE receives continuously crawling directives

which emanate from a queue of standing eRACE requests (see Figure 2). These requests

change dynamically with shifting eRACE-user interests, updates in the base of registered

users, changes in the set of monitored resources, etc.

A second challenge is to design a crawler that monitors Web-sites exhibiting frequent

updates of their content. WebRACE should follow and capture these updates so that

interested users are notified by eRACE accordingly. Consequently, WebRACE is expected

to crawl and index parts of the Web under short-term time constraints and keep multiple

versions of the same Web-page in its store, until all interested users receive the corresponding

alerts.

Similarly to personal and site-specific crawlers like SPHINX [39], WebRACE is cus-

tomized and targets specific Web-sites. These features, however, must be sustained in the

presence of a large and increasing user base, with varying interests and different service-level

requirements. In this context, WebRACE must be scalable, sustaining high-performance

and short turn-around times when serving many users and crawling a large portion of the

Web. To this end, it should avoid duplication of effort and combine similar requests when

10

Figure 2: WebRACE System Architecture.

serving similar user profiles. Furthermore, it should provide built-in support for QoS policies

involving multiple service-levels and service-level guarantees. Consequently, the scheduling

and performance requirements of WebRACE crawling and filtering face very different con-

straints than systems like Google [12], Mercator [33], and SPHINX [39].

Finally, WebRACE is implemented entirely in Java v.1.3. Extensive performance and

memory debugging with the OptimizeIt profiler [49], however, identified a number of per-

formance problems arising because of Java core classes (excessive allocation of new objects

causing heap-space overflows and performance degradation. Consequently, we developed

our own data-structures that use a bounded amount of heap-space regardless of the crawl

size, and maintain part of their data on disk. Furthermore, we re-wrote some of the mission-

critical Java classes, streamlining very frequent operations. More information on implemen-

tation details can be found in [54, 53].

4 The Mini-crawler of WebRACE

A crawler is a program that traverses the hypertext structure of the Web automatically,

starting from an initial hyper-document and recursively retrieving all documents accessible

from that document. Web crawlers are also referred to as robots, wanderers, or spiders.

Typically, a crawler executes a basic algorithm that takes a list of “seed” URL’s as its

11

input, and repeatedly executes the following steps [33]: It initializes the crawling engine

with the list of seed URL’s and pops a URL out of the URL list. Then, it determines the

IP address of the chosen URL’s host name, opens a socket connection to the corresponding

server, asks for the particular document, parses the HTTP response header and decides if

this particular document should be downloaded. If this is so, the crawler downloads the

corresponding document and extracts the links contained in it; otherwise, it proceeds to the

next URL. The crawler ensures that each extracted link corresponds to a valid and absolute

URL, invoking a URL-normalizer to “de-relativize” it, if necessary. Then, the normalized

URL is appended to the list of URL’s scheduled for download, provided this URL has not

been fetched earlier.

In contrast to typical crawlers [39, 33], WebRACE refreshes continuously its URL-seed

list from requests posted by the eRACE Request Scheduler. These requests have the follow-

ing format:

[Link, ParentLink, Depth, {owners}]
Link is the URL address of the Web resource sought, ParentLink is the URL of the page

that contained Link, Depth defines how deep the crawler should “dig” starting from the

page defined by Link, and {owners} contains the list of eRACE users potentially interested

in the page that will be downloaded.

The Mini-crawler is configurable through configuration files and can be adapted to

specific crawl tasks and benchmarks. The crawling algorithm described in the previous

section requires a number of components, which are listed and described in detail below:

• The URLQueue for storing links that remain to be downloaded.

• The URLFetcher that uses HTTP to download documents from the Web. The

URLFetcher contains also a URL extractor and normalizer that extracts links from a

document and ensures that the extracted links are valid and absolute URL’s.

• The Object Cache, which stores and indexes downloaded documents, and ensures that

no duplicate documents are maintained in cache. The Object Cache, however, can

maintain multiple versions of the same URL, if its contents have changed with time.

12

4.1 The URLQueue

The URLQueue is an implementation of the SafeQueue data structure that we designed and

implemented to achieve the efficient and robust operation of WebRACE and to overcome

problems of the java.util.LinkList component of Java [28]. SafeQueue is a circular array

of QueueNode objects with its own memory-management mechanism, enabling the re-use of

objects and minimizes garbage-collection overhead. Moreover, SafeQueue provides support

for persistence, overflow control, disk caching, multi-threaded access, and fast indexing to

avoid the insertion of duplicate QueueNode entries [54, 53].

URLQueue is a SafeQueue subclass comprised of URLQueueNode’s, i.e., Java objects

that represent requests coming from the Request Scheduler of eRACE. During the server’s

initialization. The length of the URLQueue is determined during WebRACE initialization

from its configuration files. At initialization time, WebRACE allocates the heap-space

required to store all the nodes of the queue. This approach is chosen instead of allocating

Queue Nodes on demand for memory efficiency and performance. In our experiments, we

configured the URLQueue size to two million nodes, i.e., two million URL’s. This number

corresponds to approximately 27MB of heap space. A larger URLQueue can be employed,

however, at the expense of heap size available for other components of WebRACE.

4.2 The URLFetcher

The URLFetcher is a multithreaded WebRACE that fetches documents from the Web using

the HTTP/1.0 and HTTP/1.1 protocols. URLFetcher threads retrieve pending requests

from the URLQueue, conducting synchronous I/O to download WWW content, and over-

lapping I/O with computation. In the current version of WebRACE, resource management

and thread scheduling is left to Java’s runtime system and the underlying operating sys-

tem. The number of available URLFetcher threads, however, can be configured during the

initialization of the WebRACE-server.

In addition to handling HTTP connections, the URLFetcher processes downloaded doc-

uments. To this end, it invokes its URLExtractor and normalizer sub-component. The

URLExtractor extracts links (URL’s) out of a page, disregards URL’s pointing to uninter-

esting resources, normalizes the URL’s so that they are valid and absolute and, finally, adds

these links to the URLQueue. As shown in Figure 3, the URLExtractor and normalizer

13

Figure 3: URL Extractor Architecture

works as a 6-step pipe within the URLFetcher.

5 The Object Cache

The Object Cache is the component responsible for managing documents cached in sec-

ondary storage. It is used for storing downloaded documents that will be retrieved later for

processing, annotation, and subsequent dissemination to eRACE users. The Object Cache,

moreover, caches the crawling state in order to coalesce similar crawling requests and to

accelerate the re-crawling of WWW resources that have not changed since their last crawl.

The Object Cache is comprised of an Index, a Meta-info Store and an Object Store (see

Figure 2). The Index resides in main memory and indexes documents stored on disk; it is

implemented as a java.util.HashTable, which contains URL’s that have been fetched and

stored in WebRACE. That way, URLFetcher’s can check if a page has been re-fetched, before

deciding whether to download its contents from the Web. The Meta-info Store collects and

maintains meta-information for cached documents. Finally, the Object Store is a directory

in secondary storage that contains a compressed version of downloaded resources.

The Meta-info Store maintains a meta-information file for each Web document stored

in the Object Cache. Furthermore, a key for each meta-info file is kept with the Index of

the Object Cache to allow for fast look-ups. The contents of a meta-info file are encoded in

XML and include: (i) The URL address of the corresponding document; (ii) The IP address

of its origin Web server; (iii) The document size in KiloBytes; (iv) The Last-Modified field

returned by the HTTP protocol during download; (v) The HTTP response header, and all

extracted and normalized links contained in this document. An example of a meta-info file

is given in Table 3.

14

< webrace:url>http://www.cs.ucy.ac.cy/~epl121/< /webrace:url>

< webrace:ip>194.42.7.2< /webrace:ip>

< webrace:kbytes>1< /webrace:kbytes>

< webrace:ifmodifiedsince>989814504121< /webrace:ifmodifiedsince>

<webrace:header>

HTTP/1.0 200 OK

Server: Netscape-FastTrack/2.01

Date: Fri, 11 May 2001 13:50:10 GMT

Accept-ranges: bytes

Last-modified: Fri, 26 Jan 2001 21:46:08 GMT

Content-length: 1800

Content-type: text/html

< /webrace:header>

<webrace:links>

http://www.cs.ucy.ac.cy/Computing/labs.html

http://www.cs.ucy.ac.cy/

http://www.cs.ucy.ac.cy/helpdesk

< /webrace:links>

Table 3: Example of meta-information file.

Normally, a URLFetcher executes the following algorithm to download a Web page:

1. Retrieve a QueueNode from the URLQueue and extract its URL.

2. Retrieve the URL and analyze the HTTP-header of the response message. If the host

server contains the message “200 Ok,” proceed to the next step. Otherwise, continue

with the next QueueNode.

3. Download the body of the document and store it in main memory.

4. Extract and normalize all links contained in the downloaded document.

5. Compress and save the document in the Object Cache.

6. Save a generated meta-info file in the Meta-info Store.

7. Add the key (hashCode) of the fetched URL to the Index of the Object Cache.

15

8. Notify the Annotation Engine that a new document has been fetched and stored in

the Object Cache.

9. Add all extracted URL’s to the URLQueue.

To avoid the overhead of the repeated downloading and analysis of documents that have

not changed, we alter the above algorithm and use the Meta-info Store to decide whether

to download a document that is already cached in WebRACE. More specifically, we change

the second and third steps of the above crawling algorithm as follows:

2. Access the Index of the Object Cache and check if the URL retrieved from the

URLQueue corresponds to a document fetched earlier and cached in WebRACE.

3. If the document is not in the Cache, download it and proceed to step 4. Otherwise:

• Load its meta-info file and extract the HTTP Last-Modified time-stamp assigned

by the origin server. Open a socket connection to the origin server and request

the document using a conditional HTTP GET command (if-modified-then),

with the extracted time-stamp as its parameter.

• If the origin server returns a “304 (not modified)” response and no message-

body, terminate the fetching of this particular resource, extract the document

links from its meta-info file, and proceed to step 8.

• Otherwise, download the body of the document, store it in main memory and

proceed to step 4.

If a cached document has not been changed during a re-crawl, the URLFetcher proceeds

with crawling the document’s outgoing links, which are stored in the Meta-info Store and

which may have changed.

6 The Annotation Engine (AE)

The Annotation Engine processes documents that have been downloaded and cached in the

Object Cache of WebRACE. Its purpose is to “classify” collected content according to user-

interests described in eRACE profiles. The meta-information produced by the processing

16

Figure 4: WebRACE Annotation Engine.

of the Annotation Engine is stored as eRACE annotations (ACI’s) linked to the cached

content. Pages that are not relevant to any user-profile are dropped from the cache.

Personalized annotation engines are not used in typical Search Engines [12], which em-

ploy general-purpose indices instead. To avoid the overhead of incorporating a generic

look-up index in WebRACE that will be updated dynamically as resources are downloaded

from the Web, we designed the AE so that it processes downloaded pages “on the fly.”

Therefore, each time the Annotation Engine receives a ‘‘process(file,{users})’’ re-

quest through established socket connections with the Mini-crawler, it inserts the request

in the Coordinator, which is a SafeQueue data structure (see Figure 4). Multiple Filtering

Processors remove requests from the Coordinator and process them according to the Unified

Resource Descriptions (URD’s) of eRACE users contained in the request. Currently, the

annotation engine implements a well-known string-matching algorithm looking for weighted

keywords that are included in the user-profiles [50].

Filtering Processor (FP) is the component responsible for evaluating if a document

matches the interests of a particular eRACE-user, and for generating an ACI out of a

crawled page (see Figure 5). The Filtering Processor works as a pipe of filters: At step 1,

FP loads and decompresses the appropriate file from the Object Cache of WebRACE. At

step 2, it removes all links contained in the document and proceeds to step 3, where all

special HTML characters are also removed. At step 4, any remaining text is added to a

Keyword HashTable. Finally, at step 5, a pattern-matching mechanism loads sequentially

17

Figure 5: The Filtering Processor.

all the required URD elements from the URD-PDOM and generates ACI meta-information,

which is stored in the ACI-PDOM (step 6). This pipe requires an average of 200 msecs to

calculate the ACI for a 70KB Web page, with 3 potential recipients.

In our experiments, we have configured the SafeQueue size of the Annotation Engine

to 1000 nodes, which proved to be adequately large in experiments conducted with 10

Filtering-processor threads and 100 URLFetcher threads.

7 Experiments and Performance Assessment

To evaluate the performance of WebRACE we ran a number of tests and extracted mea-

surements of performance-critical components. In particular, we investigated the benefits

of caching the crawling state, the overall performance of the crawler, and the effects that

multithreading has on URLFetcher performance. For our experiments, we crawled three

classes of Web sites: the first class includes servers that provide content which does not

change very frequently (remote University sites in the U.S.); the second class consists of

popular news-sites, search-engine sites and portals (cnn.com, yahoo.com, msn.com, etc.);

the third class consists of Web servers residing in our departmental network.

7.1 Overall Performance and Benefits from Caching Crawling State

To assess the performance improvement achieved caching crawling state in the Meta-info

Store, we conducted experiments with the first two classes of Web sites. For these exper-

iments we configured WebRACE to use 150 concurrent URLFetchers and ran it on our

18

0 5 10 15 20 25 30 35 40 45

Time (seconds).

50

100

150

200

250

300

350

400

450

500

550

600

650

700

764

0

200

400

600

800

N
um

be
r

of
 H

T
T

P
R

eq
ue

st
s.

[Crawl vs. Re-crawl, 25 US Universities (2 levels)]

Crawling
Re-Crawling after 1 hour with Meta-Info Store

0 50 100 150 200 250 300 350 400 450 500 550 600

Time (milliseconds).

200

400

600

800

1000

1200

1400

1600

1856

N
um

be
r

of
 H

T
T

P
R

eq
ue

st
s.

[Crawl .vs ReCrawl 10 Frequently Changed Portals (2 levels)]

Crawling 10 Portals (2 levels each).
Re-Crawling after 10 minutes with Meta-Info Store.
Re-Crawling after 1 hour with Meta-Info Store.
Re-Crawling after 1 hour without Meta-Info Store.

Figure 6: Crawling vs. re-crawling in WebRACE.

dual-processor Sun Enterprise E250 Server, with the Annotation Processor running concur-

rently with 10 threads on a Sparc 5.

The diagram of Figure 6 (left) presents the progress of the crawl and re-crawl operations

for the first class of sites. The time interval between the crawl and the subsequent re-crawl

was one hour; within that hour the crawled documents had not changed at all. The delay

observed for the re-crawl operation is attributed to the HTTP “if-modified-since” validation

messages and the overhead of the Object Cache. As we can see from this diagram, the

employment of the Meta-info Store results to an almost three-fold improvement in the

crawling performance. Moreover, it reduces substantially the network traffic and the Web-

servers’ load generated because of the crawl.

The diagram of Figure 6 (right) presents our measurements from the crawl and re-crawl

operations for the second class of sites. Here, almost 10% of the 993 downloaded documents

change between subsequent re-crawls. From this diagram we can easily see the performance

advantage gained by using the Meta-info Store to cache crawling meta-information: from a

throughput of 3.37 requests/sec of the first crawl, we achieve throughput of 18.31 and 20.77

requests/sec for the two subsequent re-crawls, respectively.

It should be noted that within the first 100 msecs of all these crawling experiments,

crawling and re-crawling exhibit practically the same performance behavior. This is at-

tributed to the fact that most of the crawled portals reply to our HTTP GET requests with

19

0 5 10 15 20 25 30

Time (min)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

0

5000

10000

H
T

T
P

R
eq

ue
st

s.

Crawling www.cs.ucy.ac.cy (10 levels, 45 URLfetchers)

HTTP Requests.
"404 - File Not Found" HTTP Responses.
"text/html, text/plain" documents downloaded and cached.

Figure 7: Performance of a longer crawl.

“301 (Moved Permanently)’’ responses, and re-direct our crawler to other URL’s. In

these cases, the crawler terminates the connection and schedules immediately a new HTTP

GET operation to fetch the requested documents from the re-directed address.

Finally, in Figure 7, we present measurements from a longer crawl that took 29.38

mins to complete and produced 11669 documents. This crawl was conducted on our (slow)

departmental Web servers.

7.2 URLFetcher Performance

To evaluate the overall performance of the URLFetcher, we ran a number of experiments

launching many concurrent fetchers that try to establish TCP connections and fetch docu-

ments from Web servers located on our 100Mbits LAN. Each URLFetcher pre-allocates all

of its required resources before the benchmark start-up. The benchmarks ran on a 360MHz

UltraSPARC-IIi, with 128MB RAM and Solaris 5.7.

As we can see from Figure 8, the throughput increases with the number of concurrent

URLFetchers, until a peak P is reached. After that point, throughput drops substantially,

because of the synchronization overhead incurred by the large number of concurrent threads.

This crawling process took a very short time (3 minutes with only one thread), which is

actually the reason why the peak value P is 40. In this case, URLQueue empties very

fast, limiting the utilization of URLFetcher’s near the benchmark’s end. Running the

same benchmark for a lengthy crawl we observed that 100 concurrent URLFetcher’s achieve

20

1 2 5 10 20 4050 100 300 500700

Number of concurrent URL-fetchers

2

4

6

8

10

12

M
ax

 T
hr

ou
gh

pu
t (

N
 P

ag
es

/s
ec

)

Number of Concurrent URL-fetchers executing in WebRACE (normal-log scale)

P

Figure 8: URLFetcher throughput degradation.

optimal crawling throughput.

7.3 Distributed Mini-Crawler Execution

In order to speed-up the performance of WebRACE, we sought to parallelize the Mini-

Crawler by running multiple multithreaded URLFetcher’s on a network of workstations,

keeping the number of threads at each workstation optimal. To this end, we employed the

Java-based Distributed Data Structure component, which was developed at UC/Berkeley [29].

The DDS component distributes and replicates the contents of a data-structure across a

cluster or network of workstations, providing the programmer with a conventional, single-

site, in-memory interface to the data structure [29]. Coherence between distributed replicas

is established through an implementation of a two-phase commit protocol, which is trans-

parent to the programmer of services on top of DDS.

When using the DDS layer and API, we kept the core of WebRACE intact and added-on

a module that could handle the distribution of the Mini-Crawler. To this end, we ran multi-

ple URLFetchers on different machines and used the Distributed Hashtable implementation

of DDS [29] to index the documents gathered by the URLFetchers, allowing the crawlers to

know the content of the Meta-info store. The total time spent to incorporate the DDS in

WebRACE and make it distributed was less that 3 hours.

The topology of the distributed Mini-Crawler is presented in Figure 9. We employed

21

Figure 9: WebRACE Distributed Crawler Network Topology.

eight crawling nodes, one DDS indexing node, and one control terminal for monitoring and

control. The crawling nodes are IBM 43P workstations running AIX, SPARC workstations

running Solaris, and a dual processor Sun Enterprise E250 server, all connected on our

10/100 Mbps Local Area Network.

To assess the performance improvement provided by the distribution of WebRACE, we

conducted an experiment crawling our first class of servers (University sites) in a depth of 3

levels. To this end, we configured each crawling node to use only 45 concurrent URLFetch-

ers. Measurements are presented in Figure 10, which shows that the performance of the

distributed WebRACE scales linearly with the number of crawling nodes. It is interesting

to note that for 45 concurrent URLFetcher threads, the performance of the distributed We-

bRACE with one crawling node is better than that of the “standalone” WebRACE. This is

attributed to the poor performance of the synchronized java.util.HashTable used in the

latter case. Finally, different crawling nodes display a different crawling throughput: on the

average, the E250 dual processor server was three times faster than the SPARC-stations,

and almost ten times faster than the AIX machines.

22

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

Time (seconds).

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000
16700

0

50

100

150

N
um

be
r

of
 H

T
T

P
R

eq
ue

st
 (t

ex
t/h

tm
l,t

ex
t/p

la
in

) d
on

e.

[Crawling with multiple hosts 25 US Universities (3 levels)]

1 Crawler & java.util.HashTable

1 Crawler & Distributed DDS Hashtable
2 Crawlers & Distributed DDS Hashtable
4 Crawlers & Distributed DDS Hashtable
8 Crawlers & Distributed DDS Hashtable

Figure 10: WebRACE Distributed Crawler Performance.

8 Related Work

8.1 Intermediaries

Research and development on intermediary software for Internet has produced a variety of

systems, ranging from proxy servers [18], subscription-based notification and information

dissemination services [50, 25, 5, 44, 22], tools that support mobile Web access [27], and

more generic, programmable infrastructures that can be used to build ubiquitous services

[6, 10, 30, 26]. These systems can be analyzed in the context of the architectural and func-

tional specifications for “Open Pluggable Edge Services” (OPES), which are proposed by

the IETF’s OPES working group for describing intermediary services in open, distributed

settings [1, 3]. Intermediary software can be characterized as “middleware,” since it pro-

vides a “reusable and expandable set of services and functions, commonly needed by many

applications to function well in a networked environment” [4]. Here, we describe some char-

acteristic examples of intermediary infrastructures. A more detailed survey can be found

in [21].

A programmable framework for building various intermediary services is the Web Browser

Intelligence or WeB Intermediaries (WBI) by IBM Almaden [7, 6, 38]. WBI is a pro-

grammable proxy server designed for the development and deployment of intermediary ap-

23

plications. The design of WBI is based on the notion of “information streams” that convey

data from information providers (e.g., a Web server) to information consumers (e.g., a Web

browser), and can be classified into unidirectional and bidirectional messages or transaction

streams [8]. WBI has been used to develop a number of applications such as a manager-

repository for cookies and a Web-browsing service for mobile devices [6]. WBI plugins can

be installed both on a client machine and on any other networked machine, possibly near

an origin server. Multiple client-side and server-side WBI intermediaries can cooperate to

establish one WBI service.

Building mobile services from proxy components is the main goal of the iMobile project

of AT&T Research [46, 15]. The iMobile proxy maintains user and device profiles, accesses

and processes Internet resources on behalf of the user, keeps track of user interaction and

performs content transformations according to device and user profiles. The architecture

of iMobile is established upon the infrastructure of iProxy, a programmable proxy server

designed to host agents and personalized services developed in Java [47]. iMobile consists of

three main abstractions: devlets, infolets and applets. A devlet is an agent-abstraction for

supporting the provision of iMobile services to different types of mobile devices connected

through various access networks. A devlet-instance communicates with a device-specific

“driver” that is either co-located in the iProxy server or resides at a remote mobile support

station. The infolet abstraction provides a common way of expressing the interaction be-

tween the iMobile server and various information sources or information spaces (in iMobile

terminology) at a level higher than the HTTP protocol and the URI specification. Different

sources export different interfaces to the outside world: JDBC and ODBC for corporate

databases, the X10 protocol for home networks, IMAP for email servers, etc. Finally, an

iMobile applet is a module that processes and aggregates content retrieved by different

sources and relays results to various destination devices. At the core of an iMobile server

resides the “let engine,” which registers all devlets, infolets and applets, receives commands

from devlets, forwards them to the right infolet or applet, transcodes the result to an appro-

priate terminal-device format and forwards it to the terminal device via the proper devlet.

A broader approach that seeks to develop a robust infrastructure and programming

platform for Internet-scale systems and services in Java comes from the Ninja project at

UC/Berkeley [30]. The architecture of Ninja consists of bases, active proxies, units and

24

paths. Bases are scalable platforms designed to host Internet services. They consist of

a programming model and I/O substrate designed to provide high-concurrency, robust-

ness, and transparent distribution of data to cluster-nodes [29]. Moreover, they include a

cluster-based execution environment (vSpace) that provides facilities for service component

replication, load-balancing and fault-tolerance [30]. The programming model of Ninja con-

sists of four design patterns that service programmers can use to compose different stages

of a single service: wrap, pipeline, combine and replicate [30]. Active proxies are fine-grain

intermediaries providing transformational support between Ninja services and terminal de-

vices. Active proxies perform data distillation, protocol adaptation, caching, encryption,

etc. Examples of active proxies include wireless base-stations, network gateways, firewalls,

and caching proxies. In Ninja terminology, a path is a flow of typed data through multi-

ple proxies across a wide-area network; each proxy performs transformational operations

to adapt the data into a form acceptable by the next service or device along the path.

Similarly to WBI plugins, Ninja-paths can be established dynamically. Finally, units are

abstractions for the client devices attached to the Ninja infrastructure, which range from

PC’s and laptops to mobile devices, sensors and actuators.

8.2 Crawlers

Crawlers have been a topic of intensive research in a number of contexts [12, 39, 17, 41,

45, 13, 16]. Here, we provide a brief overview of crawlers that bare some resemblance with

WebRACE in terms of their design or scope. In particular, we focus on the following four

classes of crawlers: i) parallel, ii) personal, iii) focused and iv) peer-to-peer.

Parallel crawlers employ multiple, concurrent crawling processes to minimize the time of

large crawls. Typically, large crawlers are used by popular search engines, Web caches, and

other large information retrieval systems. Despite the wide deployment of parallel crawlers,

very few published studies have investigated crawling strategies [20] or evaluated crawler

performance [16, 41]. Cho and Molina [16] explore the trade-offs of crawler parallelization

and identify a number of parameters that are important in the design of a parallel crawler.

According to this work, the main challenge confronting parallel crawlers is how to commu-

nicate internal state (i.e. indices, list of pending and downloaded URLs) among the several

crawling processes. This challenge arises only for parallel crawlers that work on overlapping

25

sets of URLs; other parallel crawlers restrict the visits of the different processes to separate,

pre-determined sets of URLs 1. Ideally, a crawling system tries to minimize the overlap

among the concurrent processes, which is achieved by communicating internal state, while

at the same time minimize the communication among the various processes distributed

across several hosts.

ii) Personal crawlers, such as WebSPHINX [39] and the Competitive Intelligence (CI)

Spider [14], allow users to “dispatch” simple crawlers on the Web without the need of acquir-

ing access to dedicated crawling infrastructures. WebSPHINX includes a crawl visualization

module, which allows its user to visually inspect accessed pages and broken links. Simi-

larly to WebRACE, WebSPHINX supports exhaustive traversal techniques (breadth-first or

depth-first traversal), multithreading, and JAVA. Nevertheless, it is designed for single-user

usage and therefore does not support runtime scheduling of several crawling requests. The

CI Spider collects user specified web pages and performs linguistic analysis and clustering

of results. Such results are expected to help users or corporate managers to obtain critical

information about some competitive environment (e.g. other companies) and to make in-

formed decisions about important issues (such as investment, marketing or planning). CI

Spider is designed to run on a client machine and therefore it is questionnable whether it

provides the necessary performance scalability in order to extend its coverage to very large

sub-domains of the Web.

iii) Focused crawlers: The inability of traditional personal and parallel crawlers to

contextually prioritize the crawling sequence of URLs led to the development of focused

crawlers [13], that is crawlers seeking and acquiring pages on a specific set of topics. Topics

are usually provided offline as collections of contextually related documents, such as the

documents organized in Web taxonomies (Yahoo! or Dmoz Open Directory). These col-

lections are subsequently utilized for training some given classifier (e.g. a “Naive” Bayes

Classifier [32]). The classifier will then be able to make decisions on whether the crawler

should expand on a given URL or whether some URL should be discarded. The selection

of the right training set and classifier are critical in the success of a focused crawler, as

short-term crawling path decisions may supersede crawling paths that will ultimately lead

1This kind of crawler would be called, according to the terminology of [16], a static-assignment firewall-

mode crawler.

26

to a larger set of valuable pages. Subsequent research in [24] suggests that by using an

additional back-crawl phase (i.e. crawling towards the parents rather than children) before

proceeding to the crawling phase can further improve the precision of focused crawlers by

50-60%. Although focused crawlers are able to build specialized Web indices with signifi-

cant savings in hardware and network resources, they are not significantly useful as general

purpose crawlers since the latter are interested in eventually exploring a large segment of

the WWW graph.

iv) Peer-to-peer crawlers: Search engines usually rely on expensive centralized infras-

tructures comprised of clusters of workstations with terabytes of disk storage and many

gigabytes of main memory. Although such infrastructures are feasible, they are not very

scalable as many hundreds of gigabytes of new data are added to the WWW on a daily

basis. A peer-to-peer approach for addressing the scalability problem is adopted by the

Grub Crawler [31], which deploys a peer-to-peer infrastructure at which peers donate their

computer’s unused bandwidth to help probing the Web for pages that have changed. This re-

duces the burden of the actual crawler since it does not need to continuously examine which

pages have changed and, therefore, can cope with information that changes frequently. A

similar approach is followed by the YouSearch project [9] at IBM Almaden, which proposes

the deployment of transient peer crawlers to build a search engine that provides “always-

fresh” content. The main idea in YouSearch is that each user using the service contributes

its host to become a transient crawler. In effect, this results to a network of transient

crawlers in which each crawler maintains an “always-fresh” snapshot of a pre-specified list

of Web resources. Each crawler also sends a compact index of its crawl (i.e. a bloom filter),

to a centralized component at regular intervals. This helps the system redirect some user’s

query to the most relevant crawler, i.e. to the crawler that has content relevant to the

query, rather than flooding the network with queries.

8.3 Performance Assessment

To assess the performance of WebRACE we compare it with the crawler of WebSPHINX,

since both systems are written in JAVA and support multithreading. We could not compare

WebRACE with many commercial (e.g. Overture, Google or MSN) or research crawlers [41,

16, 12], as none of them was publicly available. Furthermore, we did not compare WebRACE

27

0 60 120 180 240 300 360 420 480 540 600

Time (seconds).

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

1000

2000

3000

4000

5000

N
um

be
r

of
 D

oc
um

en
ts

 D
ow

nl
oa

de
d.

DOWNLOADS of WebRACE and WebSPHINX
 crawling the homepages of the 10 UC Campuses (3 levels).

WebRACE, 40 Threads, 150MB Heap Space
 WebSPHINX, 40 Threads, 450MB Heap Space

System Crash
(Out-of-Memory Exception)

Completed

0 60 120 180 240 300 360 420 480 540 600

Time (seconds).

1

2

3

4

5

6

7

8

9

10

11

0

2

4

6

8

10

T
hr

ou
gh

pu
t (

do
cu

m
en

ts
/s

ec
on

d)
.

THROUGHPUT of WebRACE and WebSPHINX
 crawling the homepages of the 10 UC Campuses (3 levels) .

WebRACE, 40 Threads, 150MB Heap Space
 WebSPHINX, 40 Threads, 450MB Heap Space

System Crash
(Out-of-Memory Exception)

Completed

Figure 11: Crawling the 10 UC Campuses using WebRACE and WebSPHINX.

to existing single-threaded crawlers, such as the unix-based wget crawler, since such a

comparison would not be fair.

To compare WebRACE and WebSPHINX quantitatively, we deployed both crawlers with

a static seed list, that is without injecting new crawl requests at runtime. We made this

choice because WebSPHINX does not provide any explicit mechanism to cope with runtime

request scheduling. Our benchmark ran on a 2.0GHz Intel Pentium IV, using 512MB RAM,

running Windows XP and Sun’s Java 1.4.2 runtime. Our seed list included the homepages

of the 10 University of California campuses, and our crawl spanned three levels for each

entry in the seed list. We configured both crawlers to use breadth-first traversal using 40

threads and restricted them to download only content that did not exceed 1MB. We also

configured WebRACE’s maximum heap space (i.e. the maximum space allocated by the

runtime) to 150MB. On the other hand we allowed WebSPHINX to use a heap of up to

450MB, since it consumes extraordinary amounts of memory.

As we can see in figure 11, the WebRACE crawler outperformed the WebSPHINX

crawler as it accomplished the crawl of 4247 objects at an average download rate of 9.3

pages/second. The WebSPHINX crawler on the other hand did not manage to accomplish

the crawling task as it crashed with an Out-of-Memory exception. We believe that this

is caused by the fact the WebSPHINX crawler maintains several in-memory structures.

Another observation is that the throughput of the WebSPHINX crawler is consistently low

(≈3.9 pages/second). This happens even at the first 120 seconds, where the crawler does

28

not utilize its whole available heap space, which implies that the crawler would not be able

to perform any better even in the presence of more main memory.

8.4 Remarks

In our work, we address the challenge of designing and implementing modular, open, dis-

tributed, and scalable intermediary infrastructures, using Java. Our effort differs from other

systems in a number of key issues: (i) Our design is established upon a set of XML gram-

mars that define the information and meta-information collected, generated and exchanged

between the various modules of our system. The employment of XML makes it easier to

decouple information retrieval, storage and processing from content publishing and distribu-

tion. Furthermore, it enables us to describe easily new services, terminal devices, and infor-

mation sources, without altering the basic design of our infrastructure. Finally, it exports

the operations “executed” by the engine to the system-programming level, thus making

possible the implementation of different scheduling and resource-management policies ac-

cording to differentiated service-levels provided to individual users or services. (ii) eRACE

consists of modules that communicate via messages and events; therefore, it is relatively

easy to distribute these modules to different machines, achieve distributed operation and

scalable performance. (iii) Instead of making eRACE a totally generic infrastructure, we de-

veloped and optimized modules which provide a functionality necessary nowadays in most

intermediary systems: a “user-driven” high-performance crawler, an object cache, and a

filtering processor. These, performance-critical modules are multithreaded and distributed

thanks to the employment of Java and of distributed data structures in Java. (iv) The de-

velopment of new services on top of eRACE is supported through the definition of new XML

profiles inserted at the information architecture of eRACE. Additional programmability is

provided by the employment of the mobile-agent programming paradigm, which supports

mobility and disconnected operation of end-users as well. (v) Although a large number of

papers have been published on Web crawlers [39, 33, 17, 13, 45, 41, 14], and Internet mid-

dleware, the issue of incorporating flexible, scalable and user-driven crawlers in middleware

infrastructures remains open. This issue is addressed in the context of WebRACE.

29

9 Conclusions and Future Work

In this paper, we presented WebRACE, a World-Wide Web “agent-proxy” that collects,

filters and caches Web documents. WebRACE is designed in the context of eRACE, an ex-

tensible Retrieval Annotation Caching Engine. WebRACE consists of a high-performance,

distributed Web crawler, a filtering processor, and an object cache, written entirely in Java.

In our work, we addressed the challenges arising from the design and development of We-

bRACE. We described our design and implementation decisions, and various optimizations.

Furthermore, we discussed the advantages and disadvantages of using Java to implement

the crawler, and presented an evaluation of its performance.

To assess WebRACE’s performance and robustness we ran numerous experiments and

crawls; several of our crawls lasted for days. Our system worked efficiently and with no

failures when crawling local Webs in our LAN and University WAN, and the global Internet.

Our experiments showed that our implementation is robust and reliable. The combination

of techniques such as, multithreading, caching the crawling state, and the employment of

distributed data stuctures in Java, improved the scalability and performance of WebRACE.

Further optimizations will be included in the near future, so as to prevent our crawler

from overloading remote Web servers with too many concurrent requests. We also plan to

investigate alternative queue designs and different crawling strategies (breadth-first versus

depth-first) that have been reported to provide improved crawling efficiency.

References

[1] Open Pluggable Edge Services. http://www.ietf-opes.org.

[2] Document Object Model (DOM) Level 1 Specification. W3C Recommendation 1,

October 1998. http://www.w3.org/TR/REC-DOM-Level-1/.

[3] Open Pluggable Services Working Group Charter.

http://www.ietf.org/html.charters/opes-charter.html, October 2003.

[4] R. Aiken, M. Carey, B. Carpenter, I. Foster, C. Lynch, J. Mambreti, R. Moore,

J. Strasnner, and B. Teitelbaum. Network Policy and Services: A Report of a Workshop

on Middleware, 2000. RFC 2768, IETF. http://www.ietf.org/rfc/rfc2768.txt.

30

[5] D. Aksoy, M. Altinel, R. Bose, U. Cetintemel, M.J. Franklin, J. Wang, and S.B. Zdonik.

Research in Data Broadcast and Dissemination. In Proceedings of the First Interna-

tional Conference on Advanced Multimedia Content Processing, AMCP ’98, Lecture

Notes in Computer Science, pages 194–207. Springer Verlag, 1999.

[6] R. Barrett and P. Maglio. Intermediaries: New Places for Producing and Manipulating

Web Content. Computer Networks and ISDN Systems, 30(1–7):509–518, April 1998.

[7] R. Barrett and P. Maglio. Intermediaries: New places for producing and manipulating

Web content. In Proceedings of the Seventh International World Wide Web Conference

(WWW7), 1998.

[8] R. Barrett and P. Maglio. Intermediaries: An approach to manipulating information

streams. IBM Systems Journal, 38(4):629–641, 1999.

[9] M. Bawa, R.J. Bayardo, S. Rajagopalan, E. Shekita. ”Make it Fresh, Make it Quick –

Searching a Network of Personal Webservers”. In Proc. of the 12th Int. World Wide

Web Conference, WWW-2003, May 2003, Budapest, Hungary

[10] E. Brewer, R. Katz, E. Amir, H. Balakrishnan, Y. Chawathe, A. Fox, S. Gribble,

T. Hodes, G. Nguyen, V. Padmanabhan, M. Stemm, S. Seshan, and T. Henderson. A

Network Architecture for Heterogeneous Mobile Computing. IEEE Personal Commu-

nications Magazine, 5(5):8–24, October 1998.

[11] E. A. Brewer. Lessons from Giant-Scale Services. Internet Computing, 5(4):46–55,

July-August 2001.

[12] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual (Web) Search Engine.

Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

[13] S. Chakrabarti, M. van den Berg, and B. Dom. Focused Crawling: A New Approach to

Topic-Specific Web Resource Discovery. In 8th World Wide Web Conference, Toronto,

May 1999.

[14] M. Chau and H. Chen. Personalized and Focused Web Spiders. In N. Zhong, J. Liu,

and Y. Yao, editors, Web Intelligence, chapter 10, pages 197–217. Springer-Verlag,

February 2003.

31

[15] Yih-Farn Chen, Huale Huang, Rittwik Jana, Trevor Jim, Matti Hiltunen, Sam John,

Serban Jora, Radhakrishnan Muthumanickam, and Bin Wei. iMobile EE: an enterprise

mobile service platform. Wireless Networks, 9(4):283–297, 2003.

[16] J. Cho and H. Garcia-Molina. Parallel Crawlers. In Proceedings of the Eleventh Inter-

national World-Wide Web Conference, pages 124–135. ACM Press, May 2002.

[17] J. Cho, H. Garcia-Molina, and L. Page. Efficient crawling through URL ordering.

In Proceedings of the Seventh International WWW Conference, pages 161–172, April

1998.

[18] I. Cooper, I. Melve, and G. Tomlinson. Internet Web Replication and Caching Taxon-

omy, January 2001. IETF, RFC 3040, http://www.ietf.org/rfc/rfc3040.txt.

[19] M. Dikaiakos. FIGI: Using Mobile Agent Technology to Collect Financial Information

on Internet. In Workshop on Data Mining in Economics, Marketing and Finance.

Machine Learning and Applications. Advanced Course on Artificial Intelligence 1999

(ACAI ’99). European Coordinating Committee on Artificial Intelligence and Hellenic

Artificial Intelligence Society, July 1999.

[20] M. Dikaiakos, A. Stassopoulou, L. Papageorgiou. Characterizing Crawler Behavior

from Web Server Access Logs. In E-Commerce and Web Technologies. Proceedings of

the 4th International Conference on Electronic Commerce and Web Technologies (EC-

Web 2003), K. Bauknecht, A. Min Tjoa and G. Quirchmayr (Eds.), Lecture Notes in

Computer Science series, vol. 2738, pages 369-378, Springer, September 2003

[21] M. Dikaiakos. Intermediary Infrastructures for the World-Wide Web. Computer Net-

works, 2004. To appear.

[22] M. Dikaiakos and D. Gunopulos. FIGI: The Architecture of an Internet-based Financial

Information Gathering Infrastructure. In Proceedings of the International Workshop

on Advanced Issues of E-Commerce and Web-based Information Systems, pages 91–94.

IEEE-Computer Society, April 1999.

[23] M. Dikaiakos, M. Kyriakou, and G. Samaras. Performance Evaluation of Mobile-Agent

Middleware: A Hierarchical Approach. In G. P. Picco, editor, Proceedings of the 5th

32

International Conference on Mobile Agents (MA 2001), volume 2240 of Lecture Notes

in Computer Science, pages 244–259. Springer, 2002.

[24] M. Diligenti, F.M. Coetzee, C.L. Giles, and M. Gori. Focused Crawling Using Context

Graphs. In Proceedings of the 26th VLDB Conference, pages 527–534, 2000.

[25] F. Douglis, T. Ball, Y.-F. Chen, and E. Koutsofios. The AT&T Internet Difference

Engine: Tracking and Viewing Changes on the Web. World Wide Web, 1(1):27–44,

January 1998.

[26] P. Farjami, C. Gorg, and F. Bell. Advanced Service Provisioning Based on Mobile

Agents. Computer Communications, (23):754–760, 2000.

[27] A. Fox, I. Goldberg, S. Gribble, D. Lee, A. Polito, and E. Brewer. Experience with

Top Gun Wingman: A Proxy-based Graphical Web Browser for the 3Com PalmPilot.

In Proceedings of the IFIP International Conference on Distributed Systems Platforms

and Open Distributed Processing (Middleware ’98), pages 407–426, 1998.

[28] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley,

1996.

[29] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scalable, Distributed Data

Structures for Internet Service Construction. In Proceedings of the Fourth Sympo-

sium on Operating Systems Design and Implementation (OSDI 2000), pages 319–332.

The USENIX Association, 2000.

[30] S. Gribble, M. Welsh, R. von Behren, E. Brewer, D. Culler, N. Borisov, S. Czerwinski,

R. Gummadi, J. Hill, A. Joseph, R.H. Katz, Z.M. Mao, S. Ross, and B. Zhao. The Ninja

Architecture for Robust Internet-scale Systems and Services. Computer Networks,

35:473–497, 2001.

[31] Grub - ”help crawl it all”, LookSmart. http://www.grub.org/

[32] J. Han, M. Kamber ”Data Mining: Concepts and Techniques”. Morgan Kaufmann,

San Francisco, California, 2001.

[33] A. Heydon and M. Najork. Mercator: A Scalable, Extensible Web Crawler. World

Wide Web, 2(4):219–229, December 1999.

33

[34] G. Huck, I. Macherius, and P. Fankhauser. PDOM: Lightweight Persistency Support

for the Document Object Model. In Proceedings of the 1999 OOPSLA Workshop

Java and Databases: Persistence Options. Held on the 14th Annual ACM SIGPLAN

Conference on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA ’99). ACM, SIGPLAN, November 1999.

[35] A. Joshi. On proxy agents, mobility, and web access. Mobile Networks and Applications,

5:233–241, 2000.

[36] R. Koblick. Concordia. Communications of the ACM, 42(3):96–99, March 1999.

[37] Horizon Systems Laboratory. Mobile Agent Computing. A White Paper. Mitsubishi

Electric ITA., January 1998.

[38] P. Maglio and R. Barrett. Intermediaries Personalize Information Streams. Commu-

nications of the ACM, 43(8):96–101, August 2000.

[39] R. Miller and K. Bharat. SPHINX: A Framework for Creating Personal, Site-specific

Web Crawlers. In Proceedings of the Seventh International WWW Conference, pages

161–172, April 1998.

[40] D. Milojicic. Internet Technology. IEEE Concurrency, pages 70–81, January-March

2000.

[41] M. Najork and A. Heydon. High-Performance Web Crawling. Technical Report 173,

Compaq Systems Research Center, September 2001.

[42] GMD-IPSI XQL Engine. http://xml.darmstadt.gmd.de/xql/.

[43] M. Perkowitz and O. Etzioni. Towards adaptive Web sites: Conceptual framework and

case study. Artificial Intelligence, 118:245–275, 2000.

[44] S.H. Phatak, V. Esakki, B.R. Badrinath, and L. Iftode. Web&: An Architecture

for Non-Interactive Web. Technical Report DCS-TR-405, Department of Computer

Science, Rutgers University, December 1999.

[45] S. Raghavan and H. Garcia-Molina. Crawling the Hidden Web. In VLDB 2001: 27th

International Conference on Very Large Data Bases, September 2001.

34

[46] H. Rao, Y. Chen, D. Chang, and M. Chen. iMobile: A Proxy-based Platform for Mobile

Services. In The First ACM Workshop on Wireless Mobile Internet (WMI 2001), pages

3–10. ACM, 2001.

[47] H. Rao, Y. Chen, and M. Chen. A Proxy-based Web Archiving Service. In Middleware

Symposium, 2000.

[48] G. Samaras, M. Dikaiakos, C. Spyrou, and A. Liverdos. Mobile Agent Platforms for

Web-Databases: A Qualitative and Quantitative Assessment. In Proceedings of the

Joint Symposium ASA/MA ’99. First International Symposium on Agent Systems and

Applications (ASA ’99). Third International Symposium on Mobile Agents (MA ’99),

pages 50–64. IEEE-Computer Society, October 1999.

[49] VMGEAR. OptimizeIt!: The Java Ultimate Performance Profiler.

http://www.vmgear.com/.

[50] T. W. Yan and H. Garcia-Molina. SIFT - A Tool for Wide-Area Information Dis-

semination. In Proceedings of the 1995 USENIX Technical Conference, pages 177–186,

1995.

[51] Franois Yergeau, Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve

Maler. Extensible Markup Language (XML) 1.0 (Third Edition) W3C Recom-

mendation. Technical Report REC-xml-20040204, World-Wide Web Consortium,

http://www.w3.org/TR/2004/REC-xml-20040204/, February 2004.

[52] D. Zeinalipour-Yazti. eRACE: an eXtensible Retrieval, Annotation and Caching En-

gine, June 2000. B.Sc. Thesis. In Greek.

[53] D. Zeinalipour-Yazti and M. Dikaiakos. High-Performance Crawling and Filtering

in Java. Technical Report TR-01-3, Department of Computer Science, University of

Cyprus, June 2001.

[54] D. Zeinalipour-Yazti and M. Dikaiakos. Design and Implementation of a Distributed

Crawler and Filtering Processor. In A. Halevy and A. Gal, editors, Proceedings of

the Fifth International Workshop on Next Generation Information Technologies and

Systems (NGITS 2002), volume 2382 of Lecture Notes in Computer Science, pages

58–74. Springer, June 2002.

35

