
5-1
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

EPL646 – Advanced Topics in Databases

Lecture 5

Indexing II: Hash-based Indexing
Chapter 11: Ramakrishnan & Gehrke

Demetris Zeinalipour

http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

Department of Computer Science

University of Cyprus

http://www2.cs.ucy.ac.cy/~dzeina/

5-2
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Lecture Outline
Hash Indexes (Ευρετήρια Κατακερματισμού)

• 11.1) Static Hashing (Στατικός
Κατακερματισμός)

• Dynamic Hashing (Δυναμικός
Κατακερματισμός)

– 11.2) Extendible Hashing (Επεκτατός
Κατακερματισμός)

– 11.3) Linear Hashing (Γραμμικός
Κατακερματισμός)

– 11.4) Extendible vs Linear Hashing

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

5-3
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Introductory Remarks
(Εισαγωγικές Επισημάνσεις)

• As for any index, 3 alternatives for data entries k*:

– Alternative 1: <k>

– Alternative 2: <k, RID>

– Alternative 3: <k, [RID1, RID2, …, RIDn]>

– Choice orthogonal to the indexing technique

• Hashing (Κατακερματισμός): key-to-address

transformation: involves computing the address

of a data item by computing a function on the

search key value.

• Hash Indexes (Ευρετήρια Κατακερματισμού) are

best for equality queries (Επερωτήσεις

Ισότητας). Cannot support range queries.

5-4
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Hash Function h(k)
(Συνάρτηση Κατακερματισμού)

• Hash function [h(key)]: Maps the key to a bucket (κάδο) where the key is

expected to belong.

• A good hash function has the following properties:

– Distributes keys uniformly (ομοιόμορφα) - all buckets are equally likely to be picked -

and at random (τυχαία) - similar hash keys should be hashed to very different buckets.

– Low Cost. Plain hash functions (rather than cryptographic hash functions such as

MD5,SHA1) usually have a low computational cost.

– Determinism: for a given input value it always generates same hashvalue.

• We shall utilize a Trivial Ηash Function (τετριμμένη συνάρτηση

κατακερματισμού), i.e., the data itself (interpreted as an integer in binary

notation). E.g., 4410 = 1011002

• Which Bucket does key k belong to: h(k) mod Ν (Ν = # of buckets). These are

the d least significant bits.

h(key)

%

N

h
1
0

N-1

key

5-5
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Static Hashing
(Στατικός Κατακερματισμός)

• Build a fixed structure at index construction time.

• Data Entries are stored on a number of successive

primary pages (πρωτοβάθμιες σελίδες).

– Primary pages are fixed, allocated sequentially during index

construction. Overflow pages (σελίδες υπερχείλισης) are utilized

when primary pages get full.

– Primary Pages are never de-allocated during deletions.

– That is similar to the way ISAM indexes are constructed…

 h(k) %

N h

Primary bucket pages

Overflow pages

1
0

N-1

k

k: Search Key ,e.g., age field

h(k): Identifies bucket for data entry k*

5-6
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Static Hashing
(Στατικός Κατακερματισμός)

• Search: Ideally 1 I/O (unless record is located in overflow

chain). Insert/Delete: 2 I/Os (read and write) page.

• Drawback: Long overflow chains (Αλυσίδες Σελίδων

Υπερχείλισης) can develop and degrade performance.

• How to avoid overflow chains?

1. 80% Occupancy: By initially keeping pages 80% full we can

avoid overflow pages if the file does not grow too much.

2. Rehashing (Επανακερματισμός): Hash the file with a different

hash function (see next slide) to achieve 80% occupancy and

no overflows. Drawback: Takes time (we need to rehash the complete DB)!

3. Dynamic Hashing: Allow the hash function to be modified

dynamically to accommodate the growth/shrink of the

database (i.e., essentially rehash selected, rather than all, items)

• Extendible Hashing (Επεκτακτό Κατακερματισμό)

• Linear Hashing (Γραμμικό Κατακερματισμό)

5-7
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

• To understand the motivation of Extendible Hashing

consider the following situation:

• A Bucket (primary page) becomes full (e.g., page 00 on

left).Why not re-organize file by doubling # of buckets?

• Answer: The entire file has to be read once and written back

to disk to achieve the reorganization, which is expensive!

Extendible Hashing
(Επεκτατός Κατακερματισμός)

000

001

010

011

100

101

110

111

00

01

10

h2

Doubling #

Buckets Utilize the 2 least

significant bits of

key age (i.e., %4)

Utilize the 3 least

significant bits of

key age (i.e., %8)

Data File

101100

011001
100001

110010

101100

011101

010110

5-8
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Extendible Hashing
(Επεκτατός Κατακερματισμός)

• Basic Idea: Use directory of pointers to buckets and

double the directory instead of Doubling the Data file.

– Directory much smaller than file, so doubling is much cheaper.

• Just split the bucket that overflowed NOT ALL of them

– Only one page of data entries is split.

– Additionally, no overflow pages are constructed!

00

01
10
11

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

1* 5* 21* 13*

32* 16*

10*

15* 7* 19*

h1

Data Pages

5-9
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Extendible Hashing: Search
(Επεκτατός Κατακερματισμός: Αναζήτηση)

13* 00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

• Example: Locate data entry r with hash value h(r)=5 (binary

101). Look at directory element 01 (i.e., “Global-depth least-

significant bits of h(r), δηλ., 2 λιγότερα σημαντικά ψηφία”)

• We then follow the pointer to the data page (bucket B in figure)

h1

r=“Demo”
h(r) =

101

Global/Local

Depths to be

described more

carefully next

5-10
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus) Split Image of A (Απεικόνιση Διαίρεσης)

Extendible Hashing: Insert
(Επεκτατός Κατακερματισμός: Εισαγωγή)

Insert Algorithm Outline

• Find target buffer: Done similarly to Search

• If target bucket is NOT full, insert and finish (e.g., insert h(r)=9, which

is binary 1001, can be inserted to bucket B).

• If target bucket is full, split it (allocate new page and re-distribute).

E.g., insertion of h(r)=20 (10100) causes the split of bucket A and

redistribution between A and A2

In order to

link A2 we

need to

double

directory!

000

100

Bucket A2

needs to be

pointed from

the directory.

Thus, we will

double the

directory (next

slide)

Insert

20

(10100)

5-11
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

• When does bucket split cause directory doubling?

• When target bucket is full AND Local Depth == Global Depth

• Otherwise, a red pointer is available (i.e., vacant page is already avail.).

• Notice that after doubling some pointers (red) are

redundant (those will be utilized in subsequent inserts)

Insert h(r)=20 (Causes Doubling)

20*

2

Bucket A2
(`split image'
of Bucket A)

4* 12*

19*

2

2

2

000

001

010

011

100

101

110

111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

32*

1* 5* 21* 13*

16*

10*

15* 7*

4* 20* 12*

00

01

10

11

2 2

2

2

LOCAL DEPTH 2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

1* 5* 21* 13*

32* 16*

10*

15* 7* 19*

LOCAL DEPTH

GLOBAL DEPTH

 Before After

Bucket

Reorga

nization

5-12
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Comments on Extendible Hashing
(Σχόλια για τον Επεκτατό Κατακερματισμό)

• Global depth of directory: Tells us how many least significant bits to

utilize during the selection of the target bucket.

– Initially equal to log2(#Buckets), e.g., log28=3

– Directory Doubles => Increment Global Depth

• Local depth of a bucket: Tells as how many least significant bits to

utilize to determine if an entry belongs to a given bucket.

– Bucket is Split => Increment Local Depth

• (GlobalDepth – LocalDepth) can be larger than 1 (e.g., if

corresponding buckets are continuously splitted leaving in that way

the local depth of other nodes small while global depth increases)

 During an Insertion to full bucket if

Local Depth == Global Depth

then we need to split!

5-13
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Extendible Hashing: Delete
(Επεκτατός Κατακερματισμός: Διαγραφή)

• Delete: Essentially the reverse operation of insertion

• If removal of data entry makes bucket empty then merge

with `split image’ (e.g., delete 32,16, then merge with A2)

• If every bucket is pointed by two directory elements we

should halve the directory (although not necessary for

correctness)

X X

Split-Image of A

Halve

Directory

20*

13*

5-14
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Comments on Extendible Hashing
(Σχόλια για τον Επεκτατό Κατακερματισμό)

• Equality Search Cost: If directory fits in memory

then answered with 1 disk access; else 2.

– Static Hashing on the other hand performs equality

searches with 1 I/O (assuming no collisions).

• Yet, the Extendible Hashing Directory can usually

easily fit in main memory, thus same cost.

Other issues:

• Directory can grow large if the distribution of hash values is

skewed (ασύμμετρη κατανομή) (e.g., some buckets are

utilized by many keys, while others remain empty).

• Multiple entries with same hash value (collisions) cause

problems … as splitting will not redistribute equally the keys

5-15
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Linear Hashing (LH)
(Γραμμικός Κατακερματισμός - ΓΚ)

• Another dynamic hashing scheme (like EH).

• LH handles the problem of long overflow chains (presented in

Static Hashing) without using a directory (what EH does)

• Idea: Use a family of hash functions h0, h1, h2, ... where each

hash function maps the elements to twice the range of its

predecessor, i.e.,

– if hi(r) maps a data entry r into M buckets, then hi+1(r) maps a data

entry into one of 2M buckets. Hash functions are like below:

• hi(key) = h(key) mod(2iN), i=0,1,2… and N=“initial-#-of-buckets”

– We proceed in rounds of splits: During round Level only hLevel(r) and

hLevel+1(r) are in use.

– The buckets in the file are split (every time we have an overflow), one-

by-one from the first to the last bucket, thereby doubling the number

of buckets.

5-16
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Linear Hashing: Insertion
(Γραμμικός Κατακερματισμός: Εισαγωγή)

Insert Algorithm Outline:

• Find target buffer (similarly to search with hLevel(r) and hLevel+1(r))

• If target bucket is NOT full, insert and finish (e.g., insert h(r)=9, which is

binary 1001, can be inserted to bucket B).

• If target bucket is full:

– Add overflow page and insert data entry. (e.g., by inserting h(r)=43 (101011)

causes the split of bucket A and redistribution between A and A2

– Split Next bucket and increment Next (can be performed in batch mode)
• Note that 32(100000), 44(101100), 36(100100)

Add 43

(1010112) Overflow page

A

A2

5-17
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Linear Hashing: Insertion Remarks
(Γραμμικός Κατακερματισμός: Επισημάνσεις Εισαγωγής)

• The buckets in the file are split (every time we have an

overflow), one-by-one from the first to the last bucket ΝR

(using Next index), thereby doubling the number of

buckets.

• Since buckets are split round-robin, long overflow chains

presumably don’t develop (like static hashing) as

eventually every bucket has a good probability of a split!

• LH can choose any criterion to `trigger’ (προκαλέσει)

split :

– e.g., Split whenever an overflow page is added.

– e.g., Split whenever the index is e.g., 75% full.

– Many other heuristics could be utilized.

5-18
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Linear Hashing: Increasing

Level after Insert

0 h h 1

22*

00

01

10

11

000

001

010

011

00 100

Next=3

01

10

101

110

Level=0
PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10* 18* 34*

35* 31* 7* 11* 43*

44* 36*

37* 29*

30*

0 h h 1

37*

00

01

10

11

000

001

010

011

00 100

10

101

110

Next=0

Level=1

111

11

PRIMARY
PAGES

OVERFLOW
PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31* 7*

50*

If Next = NR (after overflow) then level is increased by

1 (thus h2, h1 will be utilized) and Next becomes 0
• Below the addition of 50* (110010)causes Next to become

equal to 4, thus the Level is increased by one.

Insert

50

110010

NR=4

NR=8

Corresponding

Bucket (Κάδοι

Αντιστοιχίας)

BEFORE INSERTION

5-19
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Overview of LH File
(Ανασκόπηση Αρχείου ΓΚ)

To insert: Utilize

hLevel

Buckets that existed

at the beginning of

this round:

Next

New Pages from Split
`split image' buckets:

created (through splitting

of other buckets) in this

round

ΝR

Splitted Pages

Unsplitted Pages

To insert: Utilize hLevel | hLevel+1

• Assume that we are in the middle of an execution.

• Then the Linear Hash file has the following structure

5-20
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Linear Hashing: Search
(Γραμμικός Κατακερματισμός : Αναζήτηση)

0
h h

1

Level=0, N=4

00

01

10

11

000

001

010

011

Next=0

PRIMARY

PAGES

Data entry r
with h(r)=5

Primary

bucket page

44* 36* 32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

(The actual

contents of

the linear

hashed file)

(This info is

for illustration

only!)

Search: To find bucket for data entry r, find hLevel(r):

Unsplit Bucket: If hLevel(r) in range [Νext..NR) then r belongs here (e.g., 9)

Split Bucket: If hLevel(r) maps to bucket smaller than Νext (i.e., a bucket that

was split previously, then r could belong to bucket hLevel(r) or bucket hLevel(r)

+ NR; must apply hLevel+1(r) to find out (e.g., 4410=1011002)

ΝR:Initial buckets for round R

hLevel(r) + NR

Split Unsplit

hLevel(r)

hLevel(r)

