
ΕΠΛ 646: Προχωρημένα Θέματα Βάσεων Δεδομένων – ΕΡΓΑΣΤΗΡΙΟ #5, Εαρινό Εξάμηνο 2019
Υπεύθυνος Εργαστηρίων: Χριστόφορος Παναγιώτου

ΕΠΛ646 Προχωρημένα Θέματα
Βάσεων Δεδομένων

Τμήμα Πληροφορικής
Πανεπιστήμιο Κύπρου

ΕΡΓΑΣΤΗΡΙΟ #5

External Sorting and Evaluation of Relational Operators
1. (Exercise 13.1) Suppose you have a file with 10,000 pages and you have three buffer pages. An-

swer the following questions for each of these scenarios, assuming that our most general external
sorting algorithm is used:
i. A file with 10,000 pages and three available buffer pages.
ii. A file with 20,000 pages and five available buffer pages.
iii. A file with 2,000,000 pages and 17 available buffer pages.

Questions
i. How many runs will you produce in the first pass?
ii. How many passes will it take to sort the file completely?
iii. What is the total I/O cost of sorting the file?
iv. How many buffer pages do you need to sort the file completely in just two passes?

Answer:
i. In the first pass (Pass 0), ⌈𝑁/𝐵⌉ runs of B pages each are produced, where N is the number

of file pages and B is the number of available buffer pages:
a. ⌈10000/3⌉ = 3334 sorted runs.
b. ⌈20000/5⌉ = 4000 sorted runs.
c. ⌈2000000/17⌉ = 117648 sorted runs.

ii. The number of passes required to sort the file completely, including the initial sorting pass, is
⌈𝑙𝑙𝑙𝐵−1𝑁1⌉ + 1, where 𝑁1 = ⌈𝑁/𝐵⌉ is the number of runs produced by Pass 0:
a. ⌈𝑙𝑙𝑙23334⌉ + 1 = 13 passes.
b. ⌈𝑙𝑙𝑙44000⌉ + 1 = 7 passes.
c. ⌈𝑙𝑙𝑙16117648⌉ + 1 = 6 passes

iii. Since each page is read and written once per pass, the total number of page I/Os for sorting
the file is 2 ∗ N ∗ (#passes):
a. 2*10000*13 = 260000.
b. 2*20000*7 = 280000.
c. 2*2000000*6 = 24000000.

iv. In Pass 0, ⌈𝑁/𝐵⌉ runs are produced. In Pass 1, we must be able to merge this many runs; i.e.,
B − 1 ≥ ⌈𝑁/𝐵⌉ This implies that B must at least be large enough to satisfy B ∗ (B − 1) ≥ N;
this can be used to guess at B, and the guess must be validated by checking the first inequali-
ty. Thus:
a. With 10000 pages in the file, B = 101 satisfies both inequalities, B = 100 does not, so we

need 101 buffer pages.
b. With 20000 pages in the file, B = 142 satisfies both inequalities, B = 141 does not, so we

need 142 buffer pages.
c. With 2000000 pages in the file, B = 1415 satisfies both inequalities, B = 1414 does not,

so we need 1415 buffer pages..

ΕΠΛ 646: Προχωρημένα Θέματα Βάσεων Δεδομένων – ΕΡΓΑΣΤΗΡΙΟ #5, Εαρινό Εξάμηνο 2019
Υπεύθυνος Εργαστηρίων: Χριστόφορος Παναγιώτου

2. (Exercise 14.3) Consider processing the following SQL projection query:

SELECT DISTINCT E.title, E.ename FROM Executives E

You are given the following information:
Executives has attributes ename, title, dname, and address; all are string fields of the same length.
The ename attribute is a candidate key.
The relation contains 10,000 pages.
There are 10 buffer pages.

Consider the optimized version of the sorting-based projection algorithm: The initial sorting pass
reads the input relation and creates sorted runs of tuples containing only attributes ename and ti-
tle. Subsequent merging passes eliminate duplicates while merging the initial runs to obtain a
single sorted result (as opposed to doing a separate pass to eliminate duplicates from a sorted re-
sult containing duplicates).

i. How many sorted runs are produced in the first pass? What is the average length of these
runs? (Assume that memory is utilized well and any available optimization to increase run
size is used.) What is the I/O cost of this sorting pass?

ii. How many additional merge passes are required to compute the final result of the projec-
tion query? What is the I/O cost of these additional passes?

iii.
a. Suppose that a clustered B+ tree index on title is available. Is this index likely to offer a

cheaper alternative to sorting? Would your answer change if the index were unclustered?
Would your answer change if the index were a hash index?

b. Suppose that a clustered B+ tree index on ename is available. Is this index likely to offer
a cheaper alternative to sorting? Would your answer change if the index were unclus-
tered? Would your answer change if the index were a hash index?

c. Suppose that a clustered B+ tree index on <ename, title> is available. Is this index likely
to offer a cheaper alternative to sorting? Would your answer change if the index were
unclustered? Would your answer change if the index were a hash index?

iv. Suppose that the query is as follows:
SELECT E.title, E.ename FROM Executives E
That is, you are not required to do duplicate elimination. How would your answers to the
previous questions change?

Answer:
i. The first pass will produce 250 sorted runs of 20 pages each, costing 15000 I/Os. Note: the sort-

ed records have half the size of the original records!
ii. To merge the produced runs we need �𝑙𝑙𝑙𝐵−1⌈𝑁/𝐵⌉� = ⌈𝑙𝑙𝑙9500⌉ = 3 more passes that cost

2*3*5000 = 30000 I/Os.
iii.

a. Using a clustered B+ tree index on title would reduce the cost to single scan, or 12,500 I/Os.
An unclustered index could potentially cost more than 2500+100,000 (2500 from scanning
the B+ tree, and 10000 * tuples per page, which I just assumed to be 10). Thus, an unclus-
tered index would not be cheaper. Whether or not to use a hash index would depend on
whether the index is clustered. If so, the hash index would probably be cheaper.

b. Using the clustered B+ tree on ename would be cheaper than sorting, in that the cost of us-
ing the B+ tree would be 12,500 I/Os. Since ename is a candidate key, no duplicate checking
need be done for < title,ename > pairs. An unclustered index would require 2500 (scan of
index) + 10000 * tuples per page I/Os and thus probably be more expensive than sorting.

ΕΠΛ 646: Προχωρημένα Θέματα Βάσεων Δεδομένων – ΕΡΓΑΣΤΗΡΙΟ #5, Εαρινό Εξάμηνο 2019
Υπεύθυνος Εργαστηρίων: Χριστόφορος Παναγιώτου

c. Using a clustered B+ tree index on < ename,title > would also be more cost-effective than
sorting. An unclustered B+ tree over the same attributes would allow an index-only scan,
and would thus be just as economical as the clustered index. This method (both by clustered
and unclustered) would cost around 5000 I/O’s.

iv. Knowing that duplicate elimination is not required, we can simply scan the relation and discard
unwanted fields for each tuple. This is the best strategy except in the case that an index (clus-
tered or unclustered) on < ename, title> is available; in this case, we can do an index-only scan.
(Note that even with DISTINCT specified, no duplicates are actually present int he answer be-
cause ename is a candidate key. However, a typical optimizer is not likely to recognize this and
omit the duplicate elimination step.)

