
EPL646 – Advanced Topics in Databases

Apache Flink

http://www.cs.ucy.ac.cy/~dzeina/courses/epl646/labs/lab.html

Introduction to Apache Flink

Apache Flink is the next generation Big Data
tool also known as 4G of Big Data.
• It is the true stream processing framework

• doesn’t cut stream into micro-batches

•Flink’s kernel (core) is a streaming runtime
which also provides distributed processing,
fault tolerance, etc.
•Flink processes events at a consistently high
speed with low latency
• It processes the data at lightning fast speed
• It is the large-scale data processing framework

which can process data generated at very high
velocity

EPL646 – Advanced Topics in Databases 2

Introduction to Apache Flink

•Flink is an alternative to MapReduce, it
processes data more than 100 times
faster than MapReduce

•It is independent of Hadoop but it can
use HDFS to read, write, store, process
the data

•Flink does not provide its own data
storage system. It takes data from
distributed storage

EPL646 – Advanced Topics in Databases 3

Flink’s Ecosystem

EPL646 – Advanced Topics in Databases 4

DataSet API

•Handles the data at the rest

•Allows the user to implement
operations like map, filter, join, group,
etc. on the dataset

•Mainly used for distributed processing

•It is a special case of Stream processing
where we have a finite data source
•The batch application is also executed on
the streaming runtime

EPL646 – Advanced Topics in Databases 5

DataStream API

•Handles a continuous stream of the data
•To process live data stream it provides
various operations like map, filter, update
states, window, aggregate, etc.

•Can consume the data from the various
streaming source and can write the data
to different sinks

•Supports both Java and Scala.

EPL646 – Advanced Topics in Databases 6

Domain Specific Library Tool’s

• Table
• Enables users to perform ad-hoc analysis using SQL like

expression language for relational stream and batch processing
• Can be embedded in DataSet and DataStream APIs
• Saves users from writing complex code to process the data

instead allows them to run SQL queries on the top of Flink

• Gelly
• Graph processing engine which allows users to run set of

operations to create, transform and process the graph
• Provides a library to simplify the development of graph

applications
• Available in Java and Scala.

• FlinkML
• A machine learning library which provides intuitive APIs and an

efficient algorithm to handle machine learning applications
• Available in Scala.

EPL646 – Advanced Topics in Databases 7

Flink Architecture

EPL646 – Advanced Topics in Databases 8

Flink Features

•Streaming & Stream
processing
•High performance
•Low latency
•Event Time and Out-of-

Order Events
•Lightning fast speed
•Fault Tolerance
•Memory management
•Broad integration
•Program optimizer
•Scalable

•Rich set of operators
•Exactly-once Semantics
•Highly flexible Streaming
Windows
•Continuous streaming
model with backpressure
•One Runtime for
Streaming and Batch
Processing
•Easy and understandable
Programmable APIs
•Little tuning required

EPL646 – Advanced Topics in Databases 9

Core API Concepts

• Every Flink program performs transformations on
distributed collections of data
• A variety of functions for transforming data are provided,

including filtering, mapping, joining, grouping, and aggregating

• A sink operation in Flink triggers the execution of a stream
to produce the desired result of the program
• such as saving the result to the file system or printing it to the

standard output

• Flink transformations are lazy
• they are not executed until a sink operation is invoked

• The Apache Flink API supports two modes of operations:
batch and real-time.
• If you are dealing with a limited data source that can be

processed in batch mode, you will use the DataSet API
• Should you want to process unbounded streams of data in real

time, you would need to use the DataStream API

EPL646 – Advanced Topics in Databases 10

DataSet API Transformations

•The entry point to the Flink program is an
instance of the ExecutionEnvironment
class
•defines the context in which a program is
executed

ExecutionEnvironment env =

ExecutionEnvironment.getExecutionEnvironment();

EPL646 – Advanced Topics in Databases 11

https://ci.apache.org/projects/flink/flink-docs-release-1.2/api/java/org/apache/flink/api/scala/ExecutionEnvironment.html

Creating a DataSet

•To start performing data transformations,
we need to supply our program with the
data

DataSet<Integer> amounts =

env.fromElements(1, 29, 40, 50);

•You can create a DataSet from multiple
sources, such as Apache Kafka, a CSV, a file
or virtually any other data source

EPL646 – Advanced Topics in Databases 12

Filter and Reduce

• Once you create an instance of the DataSet class, you can
apply transformations to it

• Let’s say that you want to filter numbers that are above a
certain threshold and next sum them all. You can use the
filter() and reduce() transformations to achieve this:

int threshold = 30;

List<Integer> collect = amounts

.filter(a -> a > threshold)

.reduce((integer, t1) -> integer + t1)

.collect();

• Note that the collect() method is a sink operation that
triggers the actual data transformations

EPL646 – Advanced Topics in Databases 13

Map

• Let’s say that you have a DataSet of Person objects:
private static class Person {

private int age;

private String name;

// standard constructors/getters/setters

}

• Next, let’s create a DataSet of these objects:
DataSet<Person> personDataSource = env.fromCollection(

Arrays.asList(

new Person(23, "Tom"),

new Person(75, "Michael")));

• Suppose that you want to extract only the age field from every
object of the collection. You can use the map() transformation
to get only a specific field of the Person class:

List<Integer> ages = personDataSource

.map(p -> p.age)

.collect();

EPL646 – Advanced Topics in Databases 14

Join

• When you have two datasets, you may want to join them on some id
field
• use the join() transformation

• Let’s create collections of transactions and addresses of a user:
Tuple3<Integer, String, String> address =

new Tuple3<>(1, "5th Avenue", "London");

DataSet<Tuple3<Integer, String, String>> addresses =

env.fromElements(address);

Tuple2<Integer, String> firstTransaction =

new Tuple2<>(1, "Transaction_1");

DataSet<Tuple2<Integer, String>> transactions =

env.fromElements(firstTransaction,

new Tuple2<>(12, "Transaction_2"));

• The first field in both tuples is of an Integer type, and this is an id field
on which we want to join both data sets.

EPL646 – Advanced Topics in Databases 15

Join

• To perform the actual joining logic, we need to implement a KeySelector interface
for address and transaction:

private static class IdKeySelectorTransaction

implements KeySelector<Tuple2<Integer, String>, Integer> {

@Override

public Integer getKey(Tuple2<Integer, String> value) {

return value.f0;

}

}

private static class IdKeySelectorAddress

implements KeySelector<Tuple3<Integer, String, String>, Integer> {

@Override

public Integer getKey(Tuple3<Integer, String, String> value) {

return value.f0;

}

}

• Each selector is only returning the field on which the join should be performed
• Unfortunately, it’s not possible to use lambda expressions here because Flink

needs generic type info.

EPL646 – Advanced Topics in Databases 16

https://ci.apache.org/projects/flink/flink-docs-release-1.2/api/java/org/apache/flink/api/java/functions/KeySelector.html

Join

•Next, let’s implement merging logic using
those selectors:

List<Tuple2<Tuple2<Integer, String>,

Tuple3<Integer, String, String>>> joined

= transactions.join(addresses)

.where(new IdKeySelectorTransaction())

.equalTo(new IdKeySelectorAddress())

.collect();

EPL646 – Advanced Topics in Databases 17

Sort

• Let’s say that you have the following collection of Tuple2:

Tuple2<Integer, String> secondPerson = new Tuple2<>(4, "Tom");

Tuple2<Integer, String> thirdPerson = new Tuple2<>(5, "Scott");

Tuple2<Integer, String> fourthPerson = new Tuple2<>(200, "Michael");

Tuple2<Integer, String> firstPerson = new Tuple2<>(1, "Jack");

DataSet<Tuple2<Integer, String>> transactions =

env.fromElements(fourthPerson, secondPerson, thirdPerson,

firstPerson);

• If you want to sort this collection by the first field of the tuple,
you can use the sortPartitions() transformation:

List<Tuple2<Integer, String>> sorted = transactions

.sortPartition(new IdKeySelectorTransaction(), Order.ASCENDING)

.collect();

EPL646 – Advanced Topics in Databases 18

Word Count
public class LineSplitter implements FlatMapFunction<String, Tuple2<String, Integer>> {

@Override

public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {

Stream.of(value.toLowerCase().split("\\W+"))

.filter(t -> t.length() > 0)

.forEach(token -> out.collect(new Tuple2<>(token, 1)));

}

}

public static DataSet<Tuple2<String, Integer>> startWordCount(

ExecutionEnvironment env, List<String> lines) throws Exception {

DataSet<String> text = env.fromCollection(lines);

return text.flatMap(new LineSplitter())

.groupBy(0)

.aggregate(Aggregations.SUM, 1);

}

List<String> lines = Arrays.asList(

"This is a first sentence",

"This is a second sentence with a one word");

DataSet<Tuple2<String, Integer>> result = WordCount.startWordCount(env, lines);

List<Tuple2<String, Integer>> collect = result.collect();

EPL646 – Advanced Topics in Databases 19

DataStream API
• Creating a DataStream

• If we want to start consuming events, we first need to use the StreamExecutionEnvironment class:

StreamExecutionEnvironment executionEnvironment =

StreamExecutionEnvironment.getExecutionEnvironment();

• We can create a stream of events using the executionEnvironment from a variety of sources

• It could be some message bus like Apache Kafka, but in this example, we will simply create a source
from a couple of string elements:

DataStream<String> dataStream = executionEnvironment.fromElements(

"This is a first sentence",

"This is a second sentence with a one word");

• We can apply transformations to every element of the DataStream like in the
normal DataSet class:

SingleOutputStreamOperator<String> upperCase = text.map(String::toUpperCase);

• To trigger the execution, we need to invoke a sink operation such as print() that will just print
the result of transformations to the standard output, followed with the execute() method on
the StreamExecutionEnvironment class:

upperCase.print();

env.execute();

• It will produce the following output:
1> THIS IS A FIRST SENTENCE

2> THIS IS A SECOND SENTENCE WITH A ONE WORD

EPL646 – Advanced Topics in Databases 20

Windowing of Events
• When processing a stream of events in real-time, you may sometimes need to group events

together and apply some computation on a window of those events

• Suppose we have a stream of events
• each event is a pair consisting of the event number and the timestamp when the event was sent to

our system

• we can tolerate events that are out-of-order but only if they are no more than twenty seconds late

• Let’s first create a stream simulating two events that are several minutes apart and define a
timestamp extractor that specifies our lateness threshold:

SingleOutputStreamOperator<Tuple2<Integer, Long>> windowed =

env.fromElements(

new Tuple2<>(16, ZonedDateTime.now().plusMinutes(25).toInstant().getEpochSecond()),

new Tuple2<>(15, ZonedDateTime.now().plusMinutes(2).toInstant().getEpochSecond()))

.assignTimestampsAndWatermarks(

new BoundedOutOfOrdernessTimestampExtractor

<Tuple2<Integer, Long>>(Time.seconds(20)) {

@Override

public long extractTimestamp(Tuple2<Integer, Long> element) {

return element.f1 * 1000;

}

});

EPL646 – Advanced Topics in Databases 21

Windowing of Events

•Next, let’s define a window operation to group our

events into five-second windows and apply a

transformation on those events:
SingleOutputStreamOperator<Tuple2<Integer, Long>> reduced = windowed

.windowAll(TumblingEventTimeWindows.of(Time.seconds(5)))

.maxBy(0, true);

reduced.print();

• It will get the last element of every five-second

window, so it prints out:
1> (15,1491221519)

•Note that we do not see the second event because it

arrived later than the specified lateness threshold.
EPL646 – Advanced Topics in Databases 22

Questions?

http://www.cs.ucy.ac.cy/~dzeina/courses/epl646/labs/lab.html

