
EPL646 – Advanced Topics in Databases
Minibase

Christoforos Panayiotou
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646/labs/lab.html

 History
 The Minibase Distribution
 minibase_globals
 Storage Manager
 Buffer Manager
 Heap File
 Error Protocol
 Declaring Errors
 Posting Errors
 Handling Errors

Overview

EPL646 – Advanced Topics in Databases

History

• Minibase is a database management system
intended for educational use.

• It is based on Minirel, a small DBMS developed
in UW, Madison.

• Evolved through many undergraduate and
graduate course projects.

EPL646 – Advanced Topics in Databases

The Minibase Distribution

• It has a parser, optimizer, buffer pool manager,
storage mechanisms (heap files, B+-trees as
secondary indexes), and a disk space
management system.

• Besides the DBMS, Minibase contains also a
graphical user interface and other graphical
tools for studying some DBMS issues.

EPL646 – Advanced Topics in Databases

The Minibase Distribution (2)

Parser and Optimizer: These modules take an SQL query
and find the best plan for evaluating it. The optimizer is
similar to the one used in System R. In optimizing a query,
the optimizer considers information in the catalog about
relations and indexes. It can read catalog information from
a Unix file.
Execution Planner: This module takes the plan tree
produced by the optimizer, and creates a run-time data
structure. This structure is essentially a tree of iterators.
Execution is triggered by “pulling” on the root of the tree
with a get-next-tuple() call.

EPL646 – Advanced Topics in Databases

The Minibase Distribution (3)

EPL646 – Advanced Topics in Databases

Iterators: A “get-next-tuple” interface for file scans, index scans and
joins.
Join Methods: Nested loops, sort-merge and hash joins are
supported.
Heap Files: All data records are stored in heap files, which are files of
unordered pages implemented on top of the DB class.
Access Methods: Currently only a single access method is supported,
B+-trees. The access method in Minibase is dense, unclustered, and
store key/rid-of-data-record pairs. Data records are always stored in
heap files, as noted above, and access methods are implemented (like
heap files) as files on top of the DB class.
Buffer Manager: The buffer manager swaps pages in and out of the
(main memory) buffer pool in response to requests from access
method and the heap file component.
Storage Manager: A database is a fixed size Unix file, and pages (in
the file) on disk are managed by the storage manager.

The Minibase Distribution (4)

EPL646 – Advanced Topics in Databases

• The object minibase_globals is responsible for creating all its
constituent objects to create or open a Minibase database, and for
destroying them or to close it again. A database is opened by
creating a SystemDefs object and assigning it to minibase_globals.
A database is closed by deleting minibase_globals.

• The minibase_globals variable is a pointer to a SystemDefs object.

• The SystemDefs class has public data members for the various
components of the system. These are referred to throughout the
Minibase code by C preprocessor macros declared in
system_defs.h (MINIBASE_BM for the buffer manager,
MINIBASE_DB for the storage manager).

minibase_globals

EPL646 – Advanced Topics in Databases

• The Storage Manager is the component of Minibase that takes care
of the allocation and deallocation of pages within a database. It also
performs reads and writes of pages to and from disk, and provides a
logical file layer within the context of a database management
system.

• The abstraction of a page is provided by the Page class. Higher
layers impose their own structure on pages simply by casting page
pointers to their own record types. The data part of a page is
guaranteed to start at the beginning of the block.

• The DB class provides the abstraction of a single database stored
on disk. It shields the rest of the software from the fact that the
database is implemented as a single Unix file. It provides methods
for allocating additional pages (from the underlying Unix file) for use
in the database and deallocating pages (which may then be re-used
in response to subsequent allocation requests).

Storage Manager

EPL646 – Advanced Topics in Databases

• The Buffer Manager reads disk pages into a main
memory page as needed.

• The collection of main memory pages (called frames) used by
the buffer manager for this purpose is called the buffer pool.

• The Buffer Manager is used by access methods, heap files,
and relational operators to read / write /allocate / de-allocate
pages.

• It makes calls to the underlying DB class object, which
actually performs these functions on disk pages.

• Replacement policies can be changed easily at compile time.

Buffer Manager

EPL646 – Advanced Topics in Databases

• A Heap File is an unordered set of records. The following
operations are supported:
• Heap files can be created and destroyed.
• Existing heap files can be opened and closed.
• Records can be inserted and deleted.
• Records are uniquely identified by a record id (rid).

• The main kind of page structure used in the Heap File is HFPage,
and this is viewed as a Page object by lower-level code. The
HFPage class uses a slotted page structure with a slot directory
that contains (slot offset, slot length) pairs. The page number and
slot number are used together to uniquely identify a record.

Heap File

EPL646 – Advanced Topics in Databases

• Every subsystem creates error messages that
describe the possible errors that will result.

• Each subsystem has its own set of error
numbers.

• Each new error is added to the global queue.
• If the caller cannot recover from the error, it must

append a new error to the global queue.

Error Protocol

EPL646 – Advanced Topics in Databases

• Error numbers
Provide an enumeration
enum bufErrCodes { HASHTBLERROR,

HASHNOTFOUND,
BUFFEREXCEEDED, ... };

• Error messages
static const char* bufErrMsgs[] = { "hash table error",

"hash entry not found",
"buffer pool full", ... };

• Register errors
static error_string_table bufTable(BUFMGR, bufErrMsgs);

Declaring Errors

EPL646 – Advanced Topics in Databases

• Add first error
MINIBASE_FIRST_ERROR(BUFMGR, BUFFEREXCEEDED);

• Add chained error
Status status = MINIBASE_DB‐>write_page(...);

if (status != OK)
return MINIBASE_CHAIN_ERROR(BUFMGR, status);

• Add first error produced by a previous one
Status status = MINIBASE_DB‐>write_page(...);

if (status != OK)
return MINIBASE_RESULTING_ERROR(BUFMGR, status,

BUFFEREXCEEDED);

Posting Errors

EPL646 – Advanced Topics in Databases

• Check the return value, which is of type Status, of a
method.

• If OK, then no error was produced, otherwise handle
error

Handling Errors

EPL646 – Advanced Topics in Databases

Minibase Homepage

http://www.cs.wisc.edu/coral/minibase/minibase.html

More Information

EPL646 – Advanced Topics in Databases

• Η δομή ενός Αρχείου Βάσης
Δεδομένων το οποίο
χρησιμοποιείται σε Αρχεία
Σωρού (Heapfiles). Η διπλή
γραμμή δείχνει το πλαίσιο αυτής
της εργασίας το οποίο είναι η
υλοποίηση της Σελίδας
(HeapPage) ενός HeapFile και όχι
του ιδίου του Heapfile.

EPL646 – Advanced Topics in Databases

Assignment 2

• Δείτε το αρχείο hfpage.h του
καταλόγου include/. Περιέχει τη
διεπαφή (interface) για την
κατηγορία HFPage. Αυτή η
κατηγορία υλοποιεί ένα
αντικείμενο «σελίδα αρχείου
σωρού» (“heap‐file page”).
Σημειώστε ότι τα
προστατευμένα πεδία μέλη
(member fields) της σελίδας
σας δίνονται. Το μόνο που
πρέπει να πρέπει για να κάνετε
είναι να υλοποιήσετε τις
δημόσιες μεθόδους. Πρέπει να
βάλετε τον κώδικά σας στο
αρχείο src/hfpage.C.

EPL646 – Advanced Topics in Databases

Assignment 2:HFPage

Questions?

http://www.cs.ucy.ac.cy/~dzeina/courses/epl646/labs/lab.html

