
 1/4

An Implementation and Evaluation of WiFi
Positioning Algorithms in Android

Introduction

WiFi access points (deployed throughout our campus) allow laptops,
smartphones, etc to connect to a WLAN infrastructure (e.g., zephyros,
newcampus, etc.) These APs (each uniquely identified by a MAC address)
beam signals that can be intercepted by designated software (coined
Received-Signal-Strength RSS Scanners). If you happen to have an Android
or IPhone smartphone try to download one of these scanners (e.g., “Wifi
Analyzer”).

For this project you will be provided a real HTC Desire Smartphone. The
device can be programmed with eClipse and JAVA (eClipse provides an
emulator that has however no access to GPS, WiFi, etc.). After compiling your
program with eClipse an APK (executable) file will emerge. The file can be
copied and installed on the device (all programming info is here:
http://developer.android.com/sdk/index.html). You will also be provided a
skeleton implementation of an RSS Scanner.

The project aims to develop the following two APKs:

a) RSS Logger (Simple): You are asked to extend the RSS Scanner in a

way that a number of samples (N), which contain the recorded signals
from neighboring APs, are stored in a file along with the respective
Geolocation (GPS) at predefined intervals. In the following example, the
user sets N=3 and indicated twice, i.e. at location (35.131141,
33.362732) and location (35.07356, 33.408394) possibly by clicking
a button, that he/she wants to record the following info to a file (stored on
flash).

rss-log.txt

Timestamp, Longitude, Latitude, MAC Address of AP, RSS
1297874476, 35.131141, 33.362732, 00:0b:fd:4a:71:ab, -96
1297874476, 35.131141, 33.362732, 00:0b:fd:cd:91:28, -91
1297874476, 35.131141, 33.362732, 00:0b:fd:4a:71:d2, -70
1297874476, 35.131141, 33.362732, 00:0b:fd:4a:71:89, -79
1297874476, 35.131141, 33.362732, 36:26:55:8b:65:9b, -73

Timestamp, Longitude, Latitude, MAC Address of AP, RSS
1297874486, 35.131141, 33.362732, 00:0b:fd:4a:71:ab, -95
1297874486, 35.131141, 33.362732, 00:0b:fd:cd:91:28, -92
1297874486, 35.131141, 33.362732, 00:0b:fd:4a:71:d2, -72
1297874486, 35.131141, 33.362732, 00:0b:fd:4a:71:89, -76
1297874486, 35.131141, 33.362732, 36:26:55:8b:65:9b, -75

Timestamp, Longitude, Latitude, MAC Address of AP, RSS

 2/4

1297874496, 35.131141, 33.362732, 00:0b:fd:4a:71:ab, -94
1297874496, 35.131141, 33.362732, 00:0b:fd:cd:91:28, -90
1297874496, 35.131141, 33.362732, 00:0b:fd:4a:71:d2, -71
1297874496, 35.131141, 33.362732, 00:0b:fd:4a:71:89, -79
1297874496, 35.131141, 33.362732, 36:26:55:8b:65:9b, -72

Timestamp, Longitude, Latitude, MAC Address of AP, RSS
1297874507, 35.07356, 33.408394, 00:0b:fd:4a:71:ab, -95
1297874507, 35.07356, 33.408394, 00:0b:fd:cd:91:28, -90
1297874507, 35.07356, 33.408394, 00:0b:fd:4a:71:d2, -69
1297874507, 35.07356, 33.408394, 00:0b:fd:4a:71:89, -88
1297874507, 35.07356, 33.408394, 36:26:55:8b:65:9b, -88
1297874507, 35.07356, 33.408394, 00:1b:11:6a:18:0f, -63

Timestamp, Longitude, Latitude, MAC Address of AP, RSS
1297874517, 35.07356, 33.408394, 00:0b:fd:4a:71:ab, -97
1297874517, 35.07356, 33.408394, 00:0b:fd:cd:91:28, -89
1297874517, 35.07356, 33.408394, 00:0b:fd:4a:71:d2, -68
1297874517, 35.07356, 33.408394, 00:0b:fd:4a:71:89, -85
1297874517, 35.07356, 33.408394, 36:26:55:8b:65:9b, -86
1297874517, 35.07356, 33.408394, 00:1b:11:6a:18:0f, -65

Timestamp, Longitude, Latitude, MAC Address of AP, RSS
1297874527, 35.07356, 33.408394, 00:0b:fd:4a:71:ab, -94
1297874527, 35.07356, 33.408394, 00:0b:fd:cd:91:28, -91
1297874527, 35.07356, 33.408394, 00:0b:fd:4a:71:d2, -71
1297874527, 35.07356, 33.408394, 00:0b:fd:4a:71:89, -86
1297874527, 35.07356, 33.408394, 36:26:55:8b:65:9b, -83
1297874527, 35.07356, 33.408394, 00:1b:11:6a:18:0f, -67

b) Radio Map Constructor (Simple): Build a tool implemented in JAVA,

which will be used to convert rss-log.txt into a radiomap coined
radio-map.txt. The radiomap is a lx(n+2) matrix, where l is the
number of distinct geolocations and n is the total number of APs in the
area (each column contains the signal values of a specific AP and the 2
extra columns contain the longitude and latitude). The detailed procedure
for the radiomap creation is enumerated as follows (example follows):

1. Parse rss-log.txt file to get all different MAC addresses
2. Calculate the average RSS value per MAC address (recall that you

have N(=3) samples for each geolocation). If a MAC address is
missing for a specific geolocation, i.e. the AP is not detected at that
location, you can use a small RSS value, e.g. -110 to indicate this.

3. Record this info in radio-map.txt file in a way that each line
corresponds to the RSS values of a discrete geolocation point and
each column to a discrete MAC address. Each position of this array
matrix contains the averaged RSS value.

radio-map.txt (ignore anything in the parenthis)

(first line) # Longitude, Latitude, 00:0b:fd:4a:71:89, 00:0b:fd:4a:71:ab,
00:0b:fd:4a:71:d2, 00:0b:fd:cd:91:28, 00:1b:11:6a:18:0f, 36:26:55:8b:65:9b
(second line) 35.131141, 33.362732, -78, -95, -71, -91, -110, -73.3

 3/4

(third line) 35.07356, 33.408394, -86.3, -95.3, -69.3, -90, -65, -85.7
...

c) Positioning Algorithm (Moderately Difficult): Implement an Android

Client (referred to as “Client” hereafter) that connects to a C or JAVA
Socket Server (referred to as “Server” hereafter) on a non-IANA reserved
port (e.g., 66000). The Client and Server implement an unencrypted text
protocol to download the radiomap to every interested client. In particular,

-- CLIENT Connects to socket 660000

SERVER: +OK READY

CLIENT: GET radiomap

-- the server now reads radio-map.txt from a file and
sends it over to the client.

SERVER: RADIOMAP firstline | secondline | ... | lastline

-- CLIENT Closes the connection after reading EOF

The Android UI now shows a “Downloading Radiomap Complete” message.
After downloading the radiomap, the client must position itself (possibly by
pressing a “Find me” button) using the currently observed RSS values. First,
the following two positioning algorithms will be used and then variations of
these algorithms (or other algorithms) can also be tested.

Algorithm 1: Nearest Neighbor algorithm

1. Calculate the Euclidean distance (D) between the currently observed
RSS values and the RSS values for each geolocation in the radiomap

2. The geolocation that has the minimum D is returned (and possibly
plotted on Google Maps)

Example

Assume that the currently observed RSS values at the unknown user location
are (-80, -92, -76, -110, -63, -70). Then, for the 2 geolocations in
the radiomap we have

D1 = sqrt((-78-(-80))2+(-95-(-92))2+(-71-(-76))2+(-91-(-110))2+(-110-(-63))2+(-73.3-(-70))2) =
51.1751

D2 = sqrt((-86.3-(-80))2+(-95.3-(-92))2+(-69.3-(-76))2+(-90-(-110))2+(-65-(-63))2+(-85.7-(-70))2)
= 27.3123

Because D2 < D1, the estimated user location is (35.07356, 33.408394).

Algorithm 2: Probabilistic algorithm

 4/4

1. Calculate the probability (P) of the user being at each geolocation
based on the currently observed RSS values and the RSS values for
each geolocation in the radiomap. The probability P is given as the
product of the probabilities pi, i=1,…,n for all APs. Each probability pi is
calculated as an exponential function of the difference between the
currently observed RSS value for an AP and the respective RSS value
for the same AP in the radiomap (see example below).

2. The geolocation that has the maximum P is returned and plotted on
Google Maps (see Android Google Maps API)

Example

Assume that the currently observed RSS values at the unknown user location
are (-80, -92, -76, -110, -63, -70). Then, for the first geolocation in
the radiomap we have:

p1 = exp(-(-78-(-80))2/σ2) = 0.8948 (σ is a user defined parameter and in this
example σ = 6)
p2 = exp(-(-95-(-92))2/σ2) = 0.7788

Similarly, p3 = 0.4994, p4 = 4x10-5, p5 = 2x10-27 and p6 = 0.7390.
So, P1 = p1· p2· p3· p4· p5· p6 = 2.5x10-32

For the second geolocation in the radiomap we have:

p1 = exp(-(-86.3-(-80))2/σ2) = 0.3320
p2 = exp(-(-95.3-(-92))2/σ2) = 0.7390

Similarly, p3 = 0.2874, p4 = 1.5x10-5, p5 = 0.8948 and p6 = 0.0011.
So, P2 = p1· p2· p3· p4· p5· p6 = 1x10-9

Because P2 > P1, the estimated user location is (35.07356, 33.408394)
which is the same as with the Nearest Neighbour algorithm.

Measure and plot respective Excel plots for the following parameters:
• Execution time: Run each positioning algorithm several times (100, 1000

or more) and measure the average time required to perform positioning.
• Power consumption: Download “PowerTutor” from Android Market and

run each positioning algorithm several times to measure the average
amount of power that was consumed to execute the positioning algorithm.

• Positioning error: Run each positioning algorithm several times and
measure the average positioning error, i.e. distance between the location
estimated with the positioning algorithm and the actual user location
(available from GPS). This will give the accuracy of each positioning
algorithm.

Please create an SVN repository for your project (see helpdesk) coined
“AndroidRSS” (see http://helpdesk.cs.ucy.ac.cy/subjectview4.php?
which=6627). Add yourselves, “dzeina” to the requested list and ask your
instructor to acknowledge the request.

