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Abstract 
Nowadays the need for adaptive delivery of media streams over the Internet is of high 
importance because of the unpredictable nature of the heterogeneous environments. 
Compressed video streams exhibit large variations in their data rates something 
which makes their management in a packet-based best-effort network like IP 
extremely difficult. The problem is extenuated when we consider mobile users 
connecting with wireless terminals due to the erroneous and time variant conditions 
of the wireless links. Thus, applications of real-time video streaming in 
heterogeneous networks and computing environments like the Internet need to 
implement highly scalable and adaptive techniques in terms of content encoding and 
transmission rates. Taking all these into consideration it is apparent that designing 
adaptive mechanisms for Internet video transmission poses many challenges. Under 
these circumstances a combination of Content Adaptation Techniques and Network 
Adaptation Techniques is an imperative need. In this deliverable we propose two 
novel feedback algorithms for the increase of the objective quality of the transmitted 
video that involve the aforementioned adaptation techniques. We also propose two 
new algorithms for the control of the congestion in high speed networks. The 
performance of these algorithms will be evaluated through simulations in the next 
deliverable. 
 
Keywords: Network Adaptation Techniques, Content Adaptation Techniques, 
Scalable video, congestion control. 
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1.  Introduction 
Needless to say that video transmission over the wireless networks is considered to be 
the prime candidate for being the next killer application of the Internet. The 
overwhelming majority of today’s mobile devices like mobile phones, PDAs and 
laptops are capable of reproducing video streams either through 3G-enabled networks 
like UMTS or over the Internet using dedicated protocols like 802.11. In this report 
we are going to focus primarily on video transmission over the Internet. 
One of the most significant problems that video communications face is the 
unpredictable nature of the heterogeneous networks like the Internet primarily in 
terms of bandwidth, latency and loss variation. It is beyond any doubt that video 
transmission applications need to implement highly scalable and adaptive techniques 
in terms of content encoding and transmission rates in order to cope with erroneous 
and time variant conditions of such networks.  
For these reasons some adaptive schemes have to be introduced from both the 
network as well as content encoding perspective. Content Adaptive Techniques 
(CATs) deal with adaptation of content to the desirable transmission rate using 
primarily scalable video approaches whereas Network Adaptation Techniques 
(NATs) deal with the end-to-end adaptation of network parameters to the needs of a 
real time multimedia application using algorithms which take into account the state 
and/or load of the network and the type of errors. Many problems in this area remain 
open research issues. Thus in this deliverable initially we investigate, analyze and 
understand the inefficiencies that are associated with the existing adaptation 
techniques in order to be able to contribute to this effort. Section 2 discusses some 
transmission requirements for Internet video streaming while Section 3 describes 
video compression techniques. Moreover Section 4 deals with Content Adaptation 
Techniques whereas in Section 5 we are investigating Network Adaptation 
Techniques based on adaptive control schemes either sender-driven or receiver-driven 
while providing an in depth comparison of the aforementioned schemes. Lastly in 
Section 6 we present and analyze our novel approaches for adaptive video 
transmission and for the control of congestion in high speed networks. 

2. Internet Video Transmission Requirements 
Delivering real-time video over the Internet is an important component of many 
Internet multimedia applications. With respect to the real-time nature of video 
streaming, instable bandwidth, latency (or end to end delay) and packet loss, are all 
problems that can affect video streaming over the Internet.  
It is apparent that the current Internet does not offer any Quality of Service (QoS) 
guarantees to video transmission over the Internet. The Differentiated Services 
(DiffServ) and the Integrated Services (IntServ) as well were models proposed by the 
Internet Engineering Task Force (IETF) to provide QoS guarantees. IntServ is a 
framework developed to provide individualized QoS guarantees to individual 
application sessions. The goal of DiffServ is to provide the ability to handle different 
classes of traffic in different ways within the Internet. However neither IntServ nor 
DiffServ have taken off and found widespread adoption in today’s Internet. 
The important goal of adaptive video streaming is to perform the streaming in a 
manner that a sequence of constraints should be met. Basically the most important 
constraint is the successful delivery of every single frame prior its playback time due 
to the fact that any frame which is either lost in transmission or partially delivered to 
the receiver or even delivered beyond its playback time is considered lost by the 



decoder. The three main factors that influence to a large extend the transmission of a 
video stream over the Internet as well as the quality of the received sequence, are 
thoroughly described below.   
Firstly, the per-node bandwidth constraint is critical for bandwidth-demanding 
applications such as video transmission. In addition there are various bandwidth 
requirements especially if a single sender multicasts video streams to several 
receivers. Although the estimation of the available bandwidth and the adjustment of 
the transmitted video bit rate to the available bandwidth is a time consuming process, 
the estimation of the available bandwidth is an imperative need and it should be done 
in a real time manner either by the receiver or by the sender because traditional 
routers typically do not actively participate in this procedure. Available bandwidth 
has to be carefully estimated due to the fact that an excessive traffic load caused by 
wrong estimations can cause congestion collapse which can further degrade the 
quality of the transmitted video stream. Needless to say that in order to be able to 
achieve an acceptable presentation quality for any user (who is connected either by 
modem or by broadband connection), transmission of real time video typically should 
have a minimum bandwidth requirement of 28Kbps.    
Secondly, end to end delay as well as the variation in end-to-end delay (jitter) can 
affect the quality of streaming video. Even though real time video requires bounded 
end to end delay that is every frame must arrive at the decoder in time to be decoded 
and displayed, the current Internet does not offer such a delay guarantee. If a video 
packet arrives beyond the time constraint it will be considered lost and the user-
perceived quality will degrade. Buffering can partially solve those problems but again 
if video packets do not arrive on time the playback process will pause causing 
annoying interruptions of the video sequence.  
Thirdly, wired network may be affected by entire packet loss; wireless channels are 
afflicted by both bit errors and burst errors. In this way, the bandwidth constraint 
should care about not only the amount of bandwidth but also the consistency and 
quality of this bandwidth. It is beyond any doubt that packet loss ratio is required to 
be kept below a threshold but on the other hand Internet does not provide any loss 
guarantee. 
Sometimes, it is not all about the quality of bandwidth; content creation, serving, 
usability and availability are also challenges that need to be overcome. Quality of 
service (QoS) mechanisms have been the focus because today’s Internet lacks support 
for QoS assurance, which makes the transmission of video more challenging. 
Furthermore, the heterogeneity of the Internet’s transmission resources and end-
systems makes it to support different traffic characteristics among multiple receivers 
of the same video stream. 

3. Video Compression 
To achieve efficiency and to meet bandwidth and delay constraints as well, raw video 
must be compressed before transmission. In other words video compression is done at 
sender’s side in a scalable manner using a predefined standardized coding/decoding 
system. Then at the client side the encoded video layers would be decoded and played 
in a proper way. In this survey we only consider MPEG standards. 
MPEG stands for the Moving Picture Experts Group. MPEG is an ISO/IEC working 
group, established in 1988 to develop standards for digital audio and video formats. 
There are five MPEG standards being used or in development. Each compression 
standard was designed with a specific application and bit rate in mind, although 
MPEG compression scales well with increased bit rates. They include: 



1) MPEG-1. It was designed for up to 1.5 Mbps. It is a standard for the compression 
of moving pictures and audio. This was based on CD-ROM video applications, and is 
a popular standard for video on the Internet, transmitted as .mpg files. In addition, 
level 3 of MPEG-1 is the most popular standard for digital compression of audio, 
known as MP3. MPEG-1 is the standard of compression for VideoCD, the most 
popular video distribution format throughout much of Europe. 
2) MPEG-2. It was designed for between 1.5 and 15 Mbps. It is a standard on which 
Digital Television set top boxes and DVD compression is based. It is based on 
MPEG-1, but designed for the compression and transmission of digital broadcast 
television. The most significant enhancement from MPEG-1 is its ability to efficiently 
compress interlaced video. MPEG-2 scales well to HDTV resolution and bit rates, 
obviating the need for an MPEG-3. 
3) MPEG-4. It is a standard for multimedia and Web compression. MPEG-4 is based 
on object-based compression, similar in nature to the Virtual Reality Modelling 
Language. Individual objects within a scene are tracked separately and compressed 
together to create an MPEG4 file. This results in very efficient compression that is 
very scalable; from low bit rates to very high. It also allows developers to control 
objects independently in a scene, and therefore introduce interactivity. 
4) MPEG-7. This standard, currently under development, is also called the 
Multimedia Content Description Interface. When released, the group hopes the 
standard will provide a framework for multimedia content that will include 
information on content manipulation, filtering and personalization, as well as the 
integrity and security of the content. Contrary to the previous MPEG standards, which 
described actual content, MPEG-7 will represent information about the content. 
5) MPEG-21. Work on this standard, also called the Multimedia Framework, has just 
begun. MPEG-21 will attempt to describe the elements needed to build an 
infrastructure for the delivery and consumption of multimedia content, and how they 
will relate to each other. 

4. Content Adaptation Techniques 
Content Adaptation Techniques (CATs) are methods commonly used for the 
adaptation of content to the desirable rate. Recent studies on CATs reveal that the 
transmission of video streams in multiple layers is feasible without the need for re-
encoding or regeneration of the content. 
Common CATs are primarily based on rate-adaptive video encoding [6] that has been 
studied extensively for various standards and applications, such as video conferencing 
with H.261 and H.263, storage media with MPEG-1 and MPEG-2, real-time 
transmission with MPEG-1 and MPEG-2, and the recent object-based coding with 
MPEG-4. The main objective of a rate-adaptive encoding algorithm is to maximize 
the perceptual quality under a given encoding rate. Such adaptive encoding can be 
achieved by the alteration of the encoder’s quantization parameter (QP) and/or the 
alteration of the video frame rate which are described in more detail below. 
Traditional video encoders (e.g., H.261, MPEG-1/2) typically rely on altering the QP 
of the encoder to achieve rate adaptation. These encoding schemes must perform 
coding with constant frame rates. This is because even a slight reduction in frame rate 
can substantially degrade the perceptual quality at the receiver, especially during a 
dynamic scene change. Since altering the QP is not enough to achieve very low bit 
rate, these encoding schemes may not be suitable for very low bit-rate video 
applications. On the contrary, MPEG-4 and H.263 coding schemes are suitable for 
very low bit-rate video applications since they allow the alteration of the frame rate. 



In fact, the alteration of the frame rate is achieved by frame-skipping. In addition, 
MPEG-4 is the first international standard addressing the coding of video objects 
(VOs). With the flexibility and efficiency provided by coding video objects, MPEG-4 
is capable of addressing interactive content-based video services as well as 
conventional stored and live video.  
From a video source point of view, video compression can be classified into two 
approaches: scalable and non-scalable video coding [1]. CATs are primarily based on 
scalable video approaches. Scalable video encoder compresses a raw video into 
multiple substreams or layers using QP or frame rate alteration techniques. One of 
them is the base substream/layer and others are enhancement substreams/layers. The 
base substream can be independently decoded and provide coarse visual quality; 
enhancement substream is decoded with base substream together to provide enhanced 
video quality. Below we provide some scalable coding schemes that are integrated in 
MPEG-4 standard.  
There are several scalable coding schemes in MPEG-4 as mentioned in [2]: SNR 
scalability, spatial scalability, temporal scalability, fine granularity scalability and 
object-based spatial scalability. The three first aforementioned schemes are illustrated 
in Fig. 1.  
 

       
                            (a) Temporal Scalability.               (b) Spatial Scalability. 

 
             (c) SNR Scalability. 

Fig. 1. Scalable video encoding. 
 
1) Signal to Noise Ratio (SNR) Scalability is a technique to code a video sequence 
into two layers at the same frame rate and the same spatial resolution, but different 
quantization accuracy by altering the quantization parameter. 
2) Spatial Scalability is a technique to code a video sequence into two layers at the 
same frame rate, but different spatial resolutions. The base layer is coded at a lower 
spatial resolution. The reconstructed base-layer picture is up-sampled to form the 
prediction for the high-resolution picture in the enhancement layer. 
3) Temporal Scalability is a technique to code a video sequence into two layers at 
the same spatial resolution, but different frame rates (frame rate alteration). The base 
layer is coded at a lower frame rate. The enhancement layer provides the missing 
frames to form a video with a higher frame rate. Coding efficiency of temporal 
scalability is high and very close to non-scalable coding. Fig. 1(a) shows a structure 
of temporal scalability. Only P-type prediction is used in the base layer. The 
enhancement-layer prediction can be either P-type or B-type from the base layer or -
type from the enhancement layer. 



4) Object-based Spatial Scalability extends the 'conventional' types of scalability 
towards arbitrary shape objects, so that it can be used in conjunction with other 
object-based capabilities. Thus, a very flexible content-based scaling of video 
information can be achieved. This makes it possible to enhance SNR, spatial 
resolution, shape accuracy, etc, only for objects of interest or for a particular region, 
which can be done dynamically at play-time. 
5) Fine Granularity Scalability (FGS) was developed in response to the growing 
need on a video coding standard for streaming video over the Internet as is analysed 
in [3] and [4]. FGS and its combination with temporal scalability address a variety of 
challenging problems in delivering video over the Internet. FGS allows the content 
creator to code a video sequence once and to be delivered through channels with a 
wide range of bitrates. It provides the best user experience under varying channel 
conditions. It overcomes the “digital cut-off” problem associated with digital video. 
In other words, it makes compressed digital video behave similarly to analogue video 
in terms of robustness while maintaining all the advantages of digital video. 
Layered information needs to be adapted for a number of transmission rates. The 
techniques for reducing the transmitted information are primarily based on dropping 
or adding layers. To achieve optimal adaptation to any transmission rate we believe 
that it is necessary to have a large number of layers. However, we need to be aware of 
possible drawbacks of having a large layer number, such as difficulty in 
separating/generating the layers at the source, and find the optimal number for them. 
According to different network conditions, the sender or the receiver selects to send 
or receive respectively different quality levels of video. Scalable video encoding 
provides an alternative solution to meet with heterogeneous demands of clients. 

5. Network Adaptation Techniques 
Designing network adaptation techniques for Internet video transmission poses many 
challenges. In this section, we take a holistic approach to these challenges and present 
solutions primarily from transport perspective focusing on congestion control. In 
particular we classify approaches and summarize representative research work. 
The basic requirements of network adaptation techniques are (1) to provide as 
accurate information as possible for the network load, (2) to distinguish between 
errors originating from congestion at the core routers and errors stemming from the 
wireless medium, and (3) to properly adapt the transmission rate. The qualitative 
differentiation of errors is required so that we reduce the transmission rate only when 
it is justifiable (e.g. when we have heavy core congestion). In order for the 
estimations of network load and the type and quality of errors to be precise we need 
proper feedback from the receiver end of the stream. 
Congestion control combines techniques like rate control and rate-adaptive encoding. 
Bursty losses, excessive end to end delay and delay variation have devastating effects 
on video perceived quality primarily due to network congestion. Thus, congestion 
control is required to reduce packet loss, delay and delay variation as well. One 
congestion control mechanism is rate control [5]. Rate control attempts to minimize 
network congestion and the amount of packet loss by matching the rate of the video 
stream to the available network bandwidth. Therefore, without rate control, the traffic 
exceeding the available bandwidth would be discarded in the network. To force the 
source to send the video stream at the rate dictated by the available bandwidth, rate 
control algorithms should be used in conjunction with rate-adaptive video encoding 
[6] techniques. The main objective of a rate-adaptive encoding technique is to 
maximize the perceptual quality under a given encoding rate. Note that rate control is 



from the transport perspective and belongs to NATs, while rate-adaptive video 
encoding is from the compression perspective and belongs to CATs. 
Except for the aforementioned classification, adaptation to network parameters may 
be sender driven or receiver driven. In a sender-driven algorithm, the source adapts its 
transmission rate in response to congestion feedback from the network and/or the 
receivers. In a receiver-driven algorithm, the source transmits several sessions of data, 
and the receivers adapt to congestion by changing the selection of sessions to which 
they listen.  
The two algorithms that attempt to alleviate the problem of congestion within the 
Internet namely rate control and rate-adaptive video encoding are illustrated in Fig. 2. 
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Fig. 2. Real-time video streaming architecture. 

   
As can be seen from Fig. 2 scalable video encoder compresses the video stream 
(which is depicted with solid arrows) according to rate adaptive encoding algorithm. 
The output bitrate of the scalable encoder based on the rate control algorithm should 
be equal or less than the estimated available network bandwidth. After this stage, the 
compressed video bit stream passes through the application/transport/network layers 
before entering the Internet. The most prevalent protocol used for video streaming 
over the Internet is the Real-time Transport Protocol (RTP) which runs on top of the 
UDP/IP. Video packets may be either dropped by core network routers due to 
congestion or afflicted by both bit errors and burst errors in the wireless last hop link 
of the video stream path. Moreover packets can be considered lost by the receiver if 
the arrive beyond the playback time due to excess delay. Packets that are successfully 
delivered to the receiver first pass through the network/transport/application layers 
before being decoded at the video decoder. 
The quality of service monitor located at the receiver side may reside inside 
application layer or even inside transport layer. For example QoS monitoring in video 
streaming applications regarding today’s Internet can be done with RTCP protocol 
which is part of the RTP protocol. RTCP stands for Real-time Transport Control 
Protocol and maintains network congestion status based on the behaviour of the 
arriving packets, e.g. packet loss, end to end delay and jitter. Such information is used 
by the feedback mechanism (which is either incorporated in the RTP/RTCP protocol 
or it is part of a dedicated feedback protocol) which sends information back to the 
sender (control information is depicted with dashed arrows). Based on such feedback 
information, the rate control algorithm estimates the available network bandwidth and 
conveys the estimated available network bandwidth to the rate adaptive encoder. 
Afterwards the rate adaptive encoder regulates the output rate of the video stream 



according to the estimated available network bandwidth using techniques that will be 
mentioned in Section V. In the rest of this section we are investigating existing 
approaches concerning rate control. 

Rate Control 
It is beyond any doubt that the most prevalent transport protocols used in the today’s 
video streaming over the Internet are either TCP (Transmission Control Protocol) or 
UDP (User Datagram Protocol).  However the overwhelming majority of streaming 
applications predominantly use TCP instead of UDP according to recent research on 
this topic [8].  
Actually TCP is one of the most popular transport protocols for video streaming, even 
though the rate variability of TCP makes it difficult to provide good video quality. On 
the other hand UDP is the alternative to TCP. UDP forsakes TCP's error correction 
and allows packets to drop out if they're late or damaged. Despite the prospect of 
dropouts, this approach is arguably better for continuous media delivery. If 
broadcasting live events, everyone will get the same information simultaneously. One 
disadvantage to the UDP approach is that many network firewalls block UDP 
information. Furthermore UDP is not able to provide congestion control and 
overcome the lack of service guarantees in the Internet. So the existence of a 
mechanism to prevent congestion in a higher layer than UDP is necessary. 
Nevertheless most of the protocols and mechanisms that are presented below which 
are used for real-time streaming, do not address the problem of wireless losses. They 
were designed mostly for wired networks and lack a rate control mechanism that 
handles wireless losses efficiently. 
To sum up there are two types of congestion control used in the Internet. These are 
window-based and rate-based. The first type of control slowly increase the congestion 
window until congestion is detected (losses packets). After that, the protocol reduces 
the congestion window greatly. The latter type of control sets the sending rate based 
on the estimated available bandwidth in the network.  
Moreover three alternative categories of the rate control schemes exist: source-based, 
receiver-based and hybrid which are described in Sections IV-A, IV-B and IV-C 
respectively. We end this Section by summarizing, evaluating and comparing all the 
aforementioned techniques in section IV-D. 

A. Source-Based Rate Control 
In this approach the source (sender) is responsible for adapting the video transmission 
rate. Source-based rate control mechanisms provide feedback information about the 
network state so the sender could adjust the rate of the video stream. The source-
based rate control can be implied to both unicast and multicast approaches. 
As far as the unicast transmission is concerned two approaches exist that are probe-
based and equation-based. The first approach is based on probing experiments. The 
sending rate is regulated by additive increase and multiplicative decrease (AIMD) or 
by multiplicative increase and multiplicative decrease (MIMD) strategies.  The 
increasing or decreasing of the rate depends on whether the packet loss ratio is below 
or above a certain threshold. On the equation-based approach, the sending rate is 
regulated by a throughput equation that takes into consideration the state of the 
transmission path within the network. Usually the sending rate is determined by a 
predefined formula like the one proposed in [13]: 

 
pRTT

MTU
×

×
=

22,1λ   (1),  



where λ is the throughput, p is the packet loss ratio, RTT is the round trip time and 
MTU is the maximum transfer unit of the path. 
Regarding multicast transmission, the sender uses single-channel multicast where 
only the probe-based rate control can be employed. Single-channel multicast is 
efficient since all the receivers share one channel. If multicast video were to be 
delivered through individual unicast streams, the bandwidth efficiency is low but the 
services could be differentiated since each receiver can negotiate the parameters of 
the services with the source. 
In the rest of this section existing source-based protocols are being investigated. 

 
Transmission Control Protocol (TCP) 
TCP congestion control constitutes the most prevalent probe-based rate control 
approach. The idea of TCP congestion control is for each source to determine how 
much capacity is available in the network, so it knows how many packets it can safely 
have in transit. The TCP sender paces data transmissions based on a sliding window 
that depends on both the available buffer space at the receiver and the available 
bandwidth in the network, represented by receiver window and congestion window, 
respectively. A strategy called AIMD (Additive Increase/Multiplicative Decrease) 
regulates the number of packets that are sent at one time. This strategy makes TCP 
inefficient for video streaming applications due to the aperiodic tooth-saw 
transmission rate. Needless to say that TCP assumes every packet loss as congestion-
induced and reacts by cutting the sending rate. To accommodate the variability, video 
streaming applications require receiver-side buffering. TCP will effectively stop 
traffic until either the original packets or backup packets arrive. Hence it's unsuitable 
for video and audio transmission because TCP imposes its own flow control and 
windowing schemes on the data stream, effectively destroying temporal relations 
between video frames and audio packets. Also reliable message delivery is 
unnecessary for video and audio applications due to the fact that losses are tolerable 
and TCP retransmission causes further jitter and skews. In wireless networks were 
packet loss can also be due to signal attenuation, fading, scattering, interference or 
mobility, TCP is known to have reduced efficiency. 

 
Multimedia Transport Protocol (MTP) [10] 
MTP is a probe-based TCP modification that gracefully disables retransmissions, 
while preserving the transmission timings and congestion responsiveness 
characteristics of TCP. MTP performs slow start, congestion avoidance, fast 
retransmission and fast recovery as does TCP, yet offers a UDP-like transparent API 
that enables streaming media applications to make informed media scaling decisions 
and provides UDP packet delivery semantics. In addition MTP does not offer 
guaranteed or in-order packet delivery. Basically MTP keeps the same loss detection 
and recovery mechanisms of TCP but reduces the high delay and jitter characteristics.  
When encountering duplicate acknowledgements, the MTP sender performs 
congestion avoidance, fast retransmission and fast recovery as TCP does, and yields 
identical congestion window movement and packet transmission timings. On 
reception of a triple duplicate acknowledgement instead of a retransmission, the MTP 
sender inflates its transmission window and sends a new packet. When it receives an 
acknowledgment for this new packet it deflates back the inflated transmission 
window. This is done in order not to count the retransmission-replacement packet as a 
new transmission when making the next new packet transmission decision while 
preserving the same transmission behaviour at the network layer as that of TCP.  



On a retransmission timeout, the MTP sender acts in a similar manner as a TCP 
sender performing slow start but it restarts by transmitting a new packet unlike TCP 
which restarts the transmission from one below the highest consecutively 
acknowledged packet sequence number. 
Simulation results as done in [10] showed that MTP video streams inherit the good 
characteristics of both TCP and UDP streams. Also results showed that MTP streams 
are also TCP-Friendly while they can effectively perform media scaling and adapt to 
the available TCP-Friendly bitrate. Furthermore MTP dramatically reduces media 
frame reception jitter from TCP’s reliable in-order packet delivery mechanism, and 
illustrates the potential of MTP as a streaming transport protocol for interactive as 
well as non-interactive applications. 
On the other hand MTP provides a fluctuating transmission rate due to the TCP-like 
congestion avoidance mechanism something that is inefficient for streaming 
applications. MTP is also incapable of transmitting video streams over wireless 
networks because it assumes every packet loss as congestion-induced as TCP does, 
and reacts by cutting the sending rate. For a better evaluation of this protocol, 
researchers in [10] should provide results concerning transmission of video streams 
that correspond to real video traces. 

 
Video Transport Protocol (VTP) [11] 
VTP is a transport protocol based on probing with a new end-to-end rate control 
mechanism which was designed specifically for real-time streaming in wireless 
networks. Its prime goal was to behave well in the wired Internet, to be robust to 
random errors, to provide TCP friendliness and to be deployed with wireless links as 
well.  
VTP combines rate estimation with loss discrimination techniques and consists of two 
important components namely the Achieved Rate (AR) estimation and the Loss 
Discrimination Algorithm (LDA). VTP measures the AR and adapts its sending rate 
accordingly when congestion is detected by the LDA. AR is the rate that the sender 
has successfully pushed through the bottleneck. More specifically is the rate that the 
receiver can measure, plus the fraction corresponding to packet loss at the exit of the 
bottleneck due to random errors. LDA allows VTP to distinguish congestion losses 
from error losses. 
VTP rate control is based on the analysis of TCP instantaneous sending rate. Similar 
to the Additive Increase strategy in TCP, VTP linearly probes the available 
bandwidth until congestion is detected. On congestion detection, the VTP sender 
reduces its sending rate and the video encoding rate to a level the network can 
accommodate by mimicking the TCP behaviour without involving Multiplicative 
Decrease. This enables VTP to deliver a larger portion of the overall video stream and 
to achieve inter-protocol fairness with competing TCP traffic. 
As shown below in Fig. 3 VTP avoids the drastic rate reductions (like cutting the rate 
by half as TCP does) but maintains the same average rate. In contrast to the highly 
fluctuating TCP rate, VTP reduces on average its rate by less but keep it longer 
providing a TCP friendly behaviour. The two shaded areas A1 and A2 represent the 
amount of extra data that the two protocols would be able to transmit if the loss did 
not happen. These areas should be equal in order to make VTP friendly to TCP.  

 



 
Fig. 3. Comparison of the instantaneous sending rate between TCP and VTP. 

 
When VTP has given up the same amount of data transmission as TCP would in the 
same situation, it enters congestion avoidance phase. During this phase VTP matches 
the TCP behaviour.  
An important aspect of VTP is that it is completely end-to-end that performs well in 
the wireless environment without requiring support from lower layer feedback and 
AQM mechanisms. VTP aims to be adaptive and flexible by making minimal 
assumptions about the network and using network feedback as a rough indicator, not 
as rigorous set of input parameters. These principles encompass the motivating 
factors of the VTP design. 
Simulations conducted in [11] reveal that VTP manages to utilize the bandwidth 
efficiently, maintains a smooth rate and reacts to bandwidth changes under different 
error rates very quickly. Moreover VTP seems to be opportunistically friendly to TCP 
but fair enough with flows of the same protocol. Although the results presented in 
[11] reveal that VTP is as robust to random errors as TFRC [9] is, they do not testify 
its superiority and its robustness to wireless losses compared to the TFRC when used 
in wireless environments.    

 
TCP Friendly Rate Control (TFRC) [9] 
TCP Friendly Rate Control is one of the most popular equation-based end-to-end 
streaming algorithms and often used as the reference and benchmark. TFRC is meant 
to serve as a congestion control framework for any application that do not require the 
full reliability of TCP and would benefit form low variation in sending rate. 
In TFRC the data sender sends a stream of data packets to the data receiver at a 
controlled rate given by the following formula: 
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where X is the transmit rate in bytes/second, s is the packet size in bytes, R is the 
round trip time in seconds, p is the loss event rate, between 0 and 1.0, of the number 
of loss events as a fraction of the number of packets transmitted, t_RTO is the TCP 
retransmission timeout value in seconds and b is the number of packets acknowledged 
by a single TCP acknowledgement.  
When a feedback packet is received from the data receiver, the data sender changes 
its sending rate, based on the information contained in the feedback report. If the 
sender does not receive a feedback report for two round trip times, it cuts its sending 
rate in half. This is achieved by means of a timer called the nofeedback timer. When a 
feedback packet is received the following actions should be performed: Calculate a 
new round trip sample, Update the round trip time estimate, Update the timeout 
interval, Update the sending rate and Reset the nofeedback timer. 
The receiver periodically sends feedback messages to the sender. Feedback packets 
should normally be sent at least once per RTT. A feedback packet should also be sent 



whenever a new loss event is detected without waiting for the end of an RTT, and 
whenever an out-of-order data packet is received that removes a loss event from the 
history. If the sender is transmitting many packets per RTT there may be some 
advantages to sending periodic feedback messages more than once per RTT as this 
allows faster response to changing RTT measurements, and more resilience to 
feedback packet loss. However, there is little gain from sending a large number of 
feedback messages per RTT. 
TFRC is designed to respond to a loss event (which may include several packet 
drops) instead of a packet loss. However, with the increasing popularity of wireless 
Internet terminals and the demand for delivering video streaming to mobile users, it is 
necessary for streaming protocols to work efficiently also on wireless links, 
withstanding the high random wireless errors. Legacy TCP does not work well in this 
case; it tends to cut its window by half, leading to a severely degraded performance. 
Since TFRC attempts to faithfully match the throughput of TCP, it suffers the same 
low efficiency in the presence of moderate to high random transient errors. 
 
Stream Control Transport Protocol (SCTP) [16] 
Driven by industry interest and general agreement on the unsuitability of either TCP 
or UDP, the IETF Signalling Transport (SIGTRAN) group was formed in 1999 to 
standardize a suitable transport protocol for signalling traffic over IP. Stream Control 
Transmission Protocol (SCTP) is the result of this work, recently published as RFC 
2960 by The Internet Society. SCTP is the fundamental member of a family of 
protocols being designed by the SIGTRAN group to allow SS7 messages to be 
transported over an IP infrastructure. Furthermore the enhanced capabilities of SCTP 
when compared with traditional Internet transport protocols such as TCP and UDP 
may make it attractive as a transport for a wide range of traditional Internet services 
such as those based on HTTP and SIP. 
The basis of SCTP congestion control is an amalgamation of current best practice for 
TCP implementations with extensions to deal with the multi-homing aspect of SCTP 
and modifications due to the message rather than stream-based nature of the protocol. 
The standard specifies an adaptive sliding window control with adapted versions of 
the well known TCP slow-start, congestion avoidance, fast retransmit and fast 
recovery mechanisms. In addition recent work on TCP, such as congestion window 
validation, is also incorporated. One currently optional mechanism for TCP, the use 
of selective acknowledgements (SACKs) to report out of sequence data arriving at the 
receiver, has been incorporated into SCTP as the baseline for congestion control 
implementation. This is due to the demonstrated superiority of this mechanism to 
earlier TCP congestion control options. Although the possibility to support IP Explicit 
congestion Notification (ECN) has been incorporated into SCTP, this mechanism is 
optional and (as with TCP) a packet loss is the normal method of congestion 
indication. 
The SCTP is designed to accommodate real-time streaming and supports multi-
streaming, where a sender can multiplex several outgoing streams into one 
connection. This can potentially be very advantageous for compressed video formats 
since packets belonging to different parts of the video stream can be treated 
differently with respect to retransmission and order of delivery. The congestion 
control mechanism in SCTP is identical to TCP, where the congestion window is 
reduced by half in the event of packet loss. Like TCP, SCTP employs slow start to 
initially seek out available bandwidth and congestion avoidance to adapt to changing 
path conditions. This results in perfect fairness with TCP, but leads to high variability 



in throughput at the receiver. An investigation of the applicability of SCTP to MPEG-
4 streaming is the subject of [19]. 
Taking all these into consideration we may conclude that this protocol is incapable of 
transmitting video streams over wireless links since it matches TCP congestion 
control and congestion avoidance mechanisms. Even though SCTP offers 
acknowledged error-free non-duplicated transfer of datagrams, these features are not 
required by real-time streaming applications. 
 
Datagram Congestion Control Protocol (DCCP) [17] 
DCCP, the Datagram Congestion Control Protocol, is a new transport protocol in the 
TCP/UDP family that provides a congestion-controlled flow of unreliable datagrams. 
Delay-sensitive applications, such as streaming media and telephony, prefer 
timeliness to reliability. These applications have historically used UDP and 
implemented their own congestion control mechanisms or no congestion control at 
all. DCCP makes it easy to deploy these applications without risking congestion 
collapse. It aims to add to a UDP-like foundation the minimum mechanisms 
necessary to support congestion control, such as possibly-reliable transmission of 
acknowledgement information. This minimal design should make DCCP suitable as a 
building block for more advanced application semantics, such as selective reliability. 
Protocol’s design principles particularly shed light on the ways TCP's reliable byte-
stream semantics influence its implementation of congestion control. 
DCCP provides the following features, among others: (a) an unreliable flow of 
datagrams, with acknowledgements, (b) a reliable handshake for connection setup and 
teardown, (c) reliable negotiation of features, (d) a choice of TCP-friendly congestion 
control mechanisms, including, initially, TCP-like congestion control (CCID 2) and 
TCP-Friendly Rate Control [9] (CCID 3). CCID 2 uses a version of TCP’s congestion 
control mechanisms, and is appropriate for flows that want to quickly take advantage 
of available bandwidth, and can cope with quickly changing send rates; CCID 3 is 
appropriate for flows that require a steadier send rate, (e) options that tell the sender, 
with high reliability, which packets reached the receiver, and whether those packets 
were ECN marked, corrupted, or dropped in the receive buffer, (f) congestion control 
incorporating Explicit Congestion Notification (ECN) and the ECN Nonce, (g) 
mechanisms allowing a server to avoid holding any state for unacknowledged 
connection attempts or already-finished connections and (h) path MTU discovery. 
DCCP is intended for applications which require the flow-based semantics of TCP, 
but have a preference for delivery of timely data over in-order delivery or reliability, 
or which would like different congestion control dynamics than TCP. To date most 
such applications have used either TCP, whose reliability and in-order semantics can 
introduce arbitrary delay, or used UDP and implemented their own congestion control 
mechanisms (or no congestion control at all). DCCP will provide a standard way to 
implement congestion control and congestion control negotiation for such 
applications, and enable the use of ECN, along with conformant end-to-end 
congestion control, for applications that would otherwise be using UDP. Similarly, 
DCCP is intended for applications that do not require features of SCTP [16] such as 
sequenced delivery within multiple streams. 
DCCP like all the aforementioned protocols except for VTP can not be efficiently 
used in video transmission over wireless links due to the fact that it performs poorly 
over links with bit errors. In particular it takes the loss as an indication of congestion 
and it does not include mechanism that handles wireless losses efficiently. 
 



Scalable Streaming Video Protocol (SSVP) [18] 
SSVP is a new probe-based transport protocol which relies on a basic yet efficient 
end-to-end congestion control mechanism. SSVP, in a complementary role, operates 
on top of UDP and is specifically designed to support unicast video streaming 
applications. The main objective of SSVP is to provide efficient and smooth rate 
control while maintaining fairness and friendliness with corporate flows. Moreover it 
incorporates end-to-end congestion control and does not rely on QoS functionality in 
routers, such as Random Early Drop (RED), ECN or other Active Queue 
Management (AQM) mechanisms. 
SSVP is further augmented by a layered adaptation mechanism, where additional 
layers are allocated based on explicit criteria in order to prevent wasteful layer 
transitions that impair perceived video quality. Quantifying the interactions of SSVP 
protocol with the specific adaptation scheme, it was identified that SSVP maintains a 
regular transmission rate, while layered encoding adapts video quality along with 
long-term variations in the available bandwidth. 
SSVP adjusts the sending rate in a TCP-friendly manner, exploiting the feedback of 
reception statistics (control packets). Both binomial and AIMD congestion control are 
implied to achieve TCP-friendliness. Apart from link capacity, the selection of 
increase rate and decrease ratio composes another influencing parameter. Along these 
lines, in order to attain TCP-friendliness, SSVP incorporates AIMD congestion 
control. Let α, β the specific values of additive increase and multiplicative decrease 
rate, respectively. The choice of α and β has a direct impact on protocol 
responsiveness to conditions of increasing contention or bandwidth availability.  

 
Fig. 4. SSVP transmission rate evolution. 

 
Transmission rate is controlled by properly adjusting the inter-packet-gap. In the 
absence of congestion, the transmission rate is periodically increased, until it matches 
the rate intimated by the optimal video quality. Upon detecting congestion, the video 
coder is immediately notified to progressively reduce the coding rate. Based on 
analysis shown in [18] and with respect to the user perception of video quality, the 
final selection of the aforementioned parameters was α=0.2 and β=0.875. This 
selection results in oscillations of a smaller magnitude than standard TCP (having 
α=1 and β=0.5), while per-RTT rate adjustments enforce a relatively responsive 
behaviour. 
SSVP also implements a layered adaptation mechanism that is based on information 
decomposition in one base layer plus one or more enhancement layers which can be 
combined to render the stream high quality. Layered adaptation is performed by 
adding or dropping layers depending on the network dynamics. In order to sustain 
smooth video transmission under awkward conditions, a quality adaptation 
mechanism that resides on server side coarsely adjusts video quality without need to 
implement transcoding. SSVP focus on defining a priori whether a new layer should 
be added under the properties of AIMD congestion control. More precisely a new 



layer is being allocated as soon as the available bandwidth R exceeds the total 
consumption rate of all currently active layers (na) plus the new one, so R>(1+na)C 
where C is the constant consumption rate of each layer.  

 
Fig. 5. Layered adaptation under AIMD. 

 
Furthermore a second rule associated with the amount of buffering required at the 
receiver is applied in order to enable the adaptation mechanism to trade short-term 
improvements for long-term quality smoothing, preventing buffer overflows and 
eventually rapid fluctuations in quality which frustrate the end-users. In addition, a 
more efficient utilization of the available network resources is achieved by properly 
allocating the bandwidth among the active layers.  
We would like to point out that this proposal composes a protocol which is not 
directly comparable with Datagram Congestion Control Protocol (DCCP) [17] 
mentioned in the previous section. Although both DCCP and SSVP emerge from a 
common incentive, SSVP primarily addresses real-time video transmission. For 
example, SSVP segments include header information enabling the manipulation of a 
transmitted video stream (e.g. frame prioritization).  
Since SSVP uses the same congestion avoidance and control scheme as TCP (i.e. 
AIMD), it is insufficient for transporting video streams over wireless environments 
but it provides a simple and yet efficient and-to-end congestion control management 
scheme on top of the lightweight UDP. Thus with a careful selection of protocol 
parameters will be able to deliver smooth video over wired networks in a wide range 
of network dynamics. 
 
Source-Adaptive Multilayered Multicast Algorithms (SAMM) [12] 
In the SAMM algorithms that were proposed for multicast video transmission, the 
source adjusts its encoding parameters, including the number of video and their 
respective rates in response to a continuous flow of congestion feedback from the 
receivers. SAMM algorithms may be network-based or end-to-end based. At the 
network-based congestion is monitored and indicated by network’s intermediate 
nodes. On the other hand, at the end-to-end algorithm the responsibility for 
congestion control resides exclusively at the source and receivers. 
In order to support the above algorithms, network architecture must be defined. Four 
basic components are necessary for the implementation of a video SAMM algorithm. 
These are: adaptive layered video sources, layered video receivers, multicast-capable 
routers, and nodes with feedback merging capability. The adaptive layered video 
source referred to the ability of the source to generate layered video data and the 
layered video receiver referred to the ability of the receiver to receive layered video 
data. Multicast-capable routers must be capable of performing multicast forwarding 
and routing, priority drop preference, flow isolation and congestion control. Router-
based priority dropping and flow isolation is to ensure a lower drop priority to the 
base layer compared to subsequent enhancement layers. To prevent implosion, 



feedback aggregation is done by feedback mergers distributed in the network and 
organized in an overlay network. A receiver sends a feedback to the nearest feedback 
merger after reception of a given number of video packets; feedback mergers then 
convey to the source a list of rates requested by receivers with the associated numbers 
of receivers per rate. 
In case of network-based SAMM algorithm, as mentioned above, the source 
periodically generates and multicasts to receivers a forward feedback packet. When 
the receiver gets the forward feedback packet copies the packet's contents into a 
backward feedback packet and returns it to the source. As forward feedback packets 
travel from the source to the receivers, routers mark them in order to explicitly 
indicate the amount of bandwidth available in the network for the transmission of a 
SAMM video flow. Routers also have to track the number of video multicast flows 
attempting to share the available bandwidth and calculate the fair share of the 
available bandwidth for each video multicast flow competing for the outgoing link 
Network-based SAMM algorithm has some implementation difficulties such as the 
routers involvement and the overhead created by the mark feedback packets. To face 
up these difficulties of network-based algorithm, an end-to-end SAMM algorithm is 
proposed. Congestion control is performed exclusively at the source, the receivers 
and the feedback mergers. The receiver estimates the available bandwidth on the path 
from the source by monitoring its received video rate and periodically returns 
feedback packets toward the source. When congestion is happened, the available 
bandwidth decreases and the arrival rate of video packets at downstream receivers 
changes accordingly. Due to this fact, an estimate of the bandwidth available on the 
path from the source can be obtained by monitoring how fast video packets arrive at 
the receiver. The receiver assumes the available bandwidth is equal to the received 
video rate but the actual available bandwidth may be higher. In order to exploit the 
available bandwidth, the receiver may occasionally report a rate that is higher, by an 
increment, than the observed arrival rate of video packets. The receiver reports a 
higher rate whenever there is a change in the observed arrival rate and no packet 
losses have been recorded in a given interval of time. This allows the source to 
capture newly available bandwidth in an incremental, and therefore, stable manner. 
 
RTP/RTCP [14] 
All the aforementioned protocols and algorithms refer to the transport layer. On the 
contrary Real Time Protocol (RTP) is an Internet-standard protocol that lies on the 
application layer. It deals with end-to-end transport of real-time data, including audio 
and video. It can be used for media-on-demand as well as interactive services such as 
Internet telephony in unicast communication as well as in single-stream video 
multicast approach.  
RTP consists of a data and a control part and is usually implemented within the 
application. RTP can be used over unicast as well as multicast. It typically runs on top 
of UDP to make use of its multiplexing and checksum functions. RTP doesn't 
guarantee timely delivery of packets and it doesn’t keep the packets in sequence and 
gives the responsibility for recovering lost segments and resequencing of the packets 
to the application layer. Therefore RTP does not offer any form if reliability or 
flow/congestion control. It provides timestamps, sequence numbers as hooks for 
adding reliability and flow/congestion control, but their implementation is totally left 
to the application. 
The Real Time Control Protocol (RTCP) is a companion protocol to RTP for 
gathering statistics on a media connection and information such as bytes sent, packets 



sent, lost packets, jitter and round trip delay. Sender, receivers, and third-party 
monitors can use this information to judge the quality of their connections and make 
adjustments as required such as changing from low compression codec to a high 
compression codec. For example, the sender may modify its transmission rate based 
on the feedback (sender-driven-approach); receivers can determine whether problems 
are local, regional or global (receiver-driven approach); network managers may use 
information in the RTCP packets to evaluate the performance of their networks for 
multicast distribution. RTCP provides support for real-time conferencing for large 
groups within an internet, including source identification and support for gateways 
and multicast-to-unicast translators. It also offers quality-of-service feedback from 
receivers to the multicast group as well as support for the synchronization of different 
media streams.  
For security, the RTP/RTCP data can be encrypted to enable improved privacy 
against eavesdropping. 
RTP/RTCP provides functionality and control mechanisms necessary for carrying 
real-time content. But RTP/RTCP itself is not responsible for the higher level tasks 
like assembly and synchronization which have to be done in the application level. 
RTP is a protocol framework that is deliberately not complete. It is open to new 
payload formats and new multimedia software. By adding new profile and payload 
format specifications, one can tailor RTP to new data formats and new applications. 

B. Receiver-Based Rate Control 
The source-based rate-adaptation suffers from poor performance because of the 
different bandwidth requirements of the receivers. The heterogeneity of the network 
environment averts the source to transmit with a single rate. Apart from that there are 
no widely acceptable techniques on how to determine network capacity and how to 
decide the rate. Different approaches have been proposed using the receiver-based 
rate control but the most popular is the approach that combines a layered compression 
algorithm in conjunction with a multicast transmission scheme. The different layers 
of the hierarchical signal are striped across multiple multicast groups and receivers 
adapt to congestion by adding and dropping layers. Receivers implicitly define the 
multicast distribution trees simply by expressing their interest in receiving flows. 
Thus there is no explicit signalling between the receivers and routers or between the 
receivers and source.  
Like the source-based rate control, we categorize the existing receiver-based rate 
control protocols and mechanisms into probe-based approaches and equation-based 
approaches. In probe-based approach the receiver chooses the optimal level of 
subscription and adds layers by joining the corresponding multicast groups until 
congestion occurs. Then it backs off to an operating point below bottleneck. On the 
other hand in equation-based approach the receiver estimates the available bandwidth 
and then decides whether to join or to disjoin a multicast group. 
 
Receiver-driven Layered Multicast (RLM) [15] 
The RLM protocol works within the existing IP model and is assumed only best-
effort multipoint packet delivery, the delivery efficiency of IP Multicast and group-
oriented communication. In the RLM protocol the source encodes its signal into 
layers and transmits each layer on a distinct multicast group. Receivers may join or 
leave groups according to the capacity: if congestion happens then drop a layer or if 
spare capacity exists then add a layer. The receiver searches for the optimal level of 
subscription and according to this scheme the receiver adds layers until congestion 



occurs and backs off to an operating point below bottleneck. The receiver must 
determine its current level of subscription. By definition, the subscription is too high 
if it causes congestion. This is easy to detect because congestion is expressed 
explicitly in the data stream through lost packets and degraded quality. On the other 
hand, when the subscription is too low, there is no equivalent signal. The way to carry 
out this problem is by spontaneously adding layers at “well chosen” times (join-
experiments). If the addition of the layers causes congestion the receiver quickly 
drops the offering layers. If no congestion occurs then the receiver is one step closer 
to the optimal operating point. 
Over the time, through a learning algorithm, each receiver determines the level of 
subscription that causes congestion. There is separate join-timer for each level of 
subscription and applying exponential backoff to problematic layers. In addition to 
join-timer we must know and the detection time which the time that it takes for a 
local layer change to be fully established in the network and for the resulting impact 
to be detected back at the receiver. So if a join-experiment lasts longer than the 
detection-time without congestion occurring, then we deem the experiment successful 
else the experiment failed and increase the join-timer for that layer. The problem with 
the above is that the aggregate frequency of such experiments increases with the 
number of receivers. Since a failed join-experiment could incur congestion to the 
network, an increase of join-experiments could aggravate network congestion.  
To face that problem a shared learning algorithm was proposed. In shared learning 
algorithm each receiver know about the experiments done by others and their results 
because receivers share knowledge of what is going on in the network. The 
mechanism used in the RLM protocol to achieve this goal is multicasting the 
beginning of experiments and the results of experiments to every member of the 
group but this neither scalable nor efficient because (a) every receiver need not know 
about every experiment and/or its result (that is just too much state information) and 
(b) using multicast to distribute control information such as beginning of experiments 
and their results, beyond certain scope is inefficient, because it consumes additional 
bandwidth particularly if every receiver need not know about every experiment 
and/or its results.  
Researchers evaluated RLM for simple scenarios and considered only inter-RLM 
interaction. They found that RLM can result in high inter-RLM unfairness.  Also 
there was an investigation of the relative merits of uniform versus priority dropping 
for the transmission of layered video in [22]. It was revealed that RLM performs 
reasonably well over a broad range of conditions, but performs poorly in extreme 
conditions like bursty traffic. Apart from that in [23] the behavior of RLM for VBR 
traffic was further explored and it was shown that RLM exhibits high instability for 
VBR, has very poor fairness properties in most of the cases and achieves low link 
utilization under VBR traffic scenarios. 
 
Layered Video Multicast Retransmission (LVMR) [20] 
Layered video multicast with retransmissions (LVMR) is a system for distributing 
video using layered coding over the Internet. LVMR addresses the network 
congestion and heterogeneity problem using layered video coding techniques by 
allowing each receiver to subscribe to a subnet of the video layers according to its 
processing power and network bandwidth availability. The two key contributions of 
the system are: (1) improving the quality of reception within each layer by 
retransmitting lost packets given an upper bound on recovery time and applying an 
adaptive playback point scheme to help achieve more successful retransmission, and 



(2) adapting to network congestion and heterogeneity using hierarchical rate control 
mechanism.  
In contrast to the existing sender-based and receiver-based rate control in which the 
entire information about network congestion is either available at the sender (in 
sender-based approach) or replicated at the receivers (in receiver-based approach), the 
hierarchical rate control mechanism distributes the information between the sender, 
receivers, and some agents in the network (for example receivers can ask neighbours 
– designated receivers DR – for lost packets) in such a way that each entity maintains 
only the information relevant to itself. In addition to that, the hierarchical approach 
enables intelligent decisions to be made in terms of conducting concurrent 
experiments and choosing one of several possible experiments at any instant of time 
based on minimal state information at the agents in the network.  
The key to scalability in layered multicast is for the receivers to make a decision on 
their own regarding adding or dropping a layer. However, if these decisions are made 
independent of the results of join/leave experiments done by others, the results can be 
disastrous. Thus it is fundamental for each receiver to know about the experiments 
and their results. LVMR proposes intelligent partitioning of the knowledge base and 
distributes relevant information to the members in an efficient way while trying to 
avoid the drawbacks of the shared learning algorithm proposed by RLM [15]. The 
idea of shared learning, although an improvement to adding and dropping layers 
indiscriminately, requires each receiver to maintain a variety of state information 
which it may or may not require. In addition the use of multicast to exchange control 
information may decrease usable bandwidth on low speed links and lead to lower 
quality for receivers on these links. In LVMR the hierarchical approach used, allows 
receivers to maintain minimal state information and decrease control traffic on the 
multicast session.  
Needless to say that due to the fact that LVMR does not depend on any QoS 
mechanism or other components in the network it can be immediately deployed. On 
the other hand LVMR shows limited scalability. Neighbours may not be necessarily 
available all the time so as to share information between the receivers. Furthermore 
statistically designated receivers and agents makes this approach difficult to deploy 
and quality adaptation and bandwidth adaptation depend on the number of video 
layers. 

C. Hybrid Rate Control 
According to hybrid rate control the receivers adjust the receiving rate of video by 
adding/dropping channels/layers while the sender also adjust the transmission rate of 
the channel based on feedback from the receiver. This scheme combines the 
advantages of sender-driven and receiver-driven approaches resulting in a more 
effective but more complicated adaptation scheme.  
 
Destination Set Group (DSG) [21] 
In order to address the fairness issue in feedback-controlled multicast video 
distribution a protocol called Destination Set Grouping (DSG) was implemented. 
DSG is a replicated stream video multicast scheme where the source keeps a small 
number of video streams carrying the same video but each targeted at receivers with 
different capabilities. Each stream is feedback-controlled within prescribed limits by 
its group of receivers. Receivers may move among the streams as their capabilities or 
the network capabilities change. 



The fundamental design goals of the DSG video multicast protocol are (a) improved 
fairness over a single-group feedback-controlled video multicast scheme and (b) the 
ability to operate efficiently when the number of receivers is large. Fairness is 
achieved in DSG by transmitting video of differing quality and differing data rates on 
different multicast channels and allowing receivers to select the most appropriate one. 
The DSG protocol is highly scalable because the stream change decisions are made 
by receivers. Receivers are provided with the necessary information to make the 
correct stream change decisions. Researchers also use a slightly modified version of 
the probabilistic feedback technique to avoid feedback implosion. 
The DSG protocol has two main components. Firstly, an intra-stream protocol is used 
by receivers listening to the same stream to adjust the data rate of the stream within 
its prescribed limits. An independent feedback control mechanism is used within each 
stream. Each receiver estimates its video reception quality using its packet loss rate. 
Secondly, an inter-stream or stream change protocol used by receivers to change to a 
higher or lower quality stream as their needs change. The inter-stream protocol allows 
a receiver to change to a different stream in situations where they cannot adjust the 
rate of the stream they are currently receiving to their satisfaction. 
The main advantage of this approach is that it is a very scalable solution which deals 
with heterogeneity but on the other hand the network carries redundant information 
because replicated streams are being transmitted.  On the other hand receiver-based 
layered multicast techniques such as LVMR [20] and RLM [15] achieve better 
bandwidth efficiency at the cost of complexity. 

D. Summary and Comments 
Table 1 summarizes all the aforementioned rate control techniques used in today’s 
Internet while categorizes the characteristics of each protocol. 
As can be seen, the overwhelming majority of source-based protocols and techniques 
operate under unicast transmission scheme whereas only SAMM and RTP/RTCP 
enable multicast transmission. This is primarily because the source-based rate control 
works reasonably well for unicast video. On the contrary receiver-based rate control 
systems like RLM and LVMR are targeted at solving the heterogeneity problem in 
the multicast case.  
Moreover we observe that some of the source-based protocols like SCTP, MTP and 
SSVP implement the same congestion avoidance mechanisms (namely AIMD) as 
TCP. Therefore they suffer the same low efficiency in the presence of moderate to 
high random transient errors due to the fact that they take the loss as an indication of 
congestion. 
It is beyond any doubt that most of the protocols and techniques presented in this 
survey, do not address the problem of wireless losses because they were designed 
mostly for wired networks and lack a rate control mechanism that handles wireless 
losses efficiently. As mentioned in [24] current transport protocols perform poorly 
over links with bit errors and the recommended approach has been for link layers to 
incorporate link-level mechanisms like FEC or link-level retransmission to deal with 
corrupted packets. If mechanisms were available for explicit corruption notification 
from the link layer to the transport end nodes, transport protocols could correctly 
interpret the loss as corruption instead of congestion and respond appropriately. 
We would like to mention that sender-based protocols and techniques are more 
flexible and can be deployed with less effort than receiver-based ones. Needless to 
say that in a sender-base scheme only the sender has the authority to alter the rate 
(and as a consequence the quality) of the transmitted stream according to network 



dynamics. Apparently receiver-based techniques maximize the delivered user 
perceived quality as every receiver has the opportunity to adjust the quality of the 
received video stream according to its needs and capabilities. However the main issue 
in the deployment of receiver-base rate control protocols is the effect of misbehaving 
receivers. To cope with these issues senders ought to develop mechanisms to detect 
misbehaving receivers. 
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UDP - - Unicast Transport No 

TCP Probe Window Unicast Transport No 

TFRC Equation Rate Unicast Transport No 

SCTP Probe Window Unicast Transport No 

DCCP Equation/Prob
e 

Rate/Window Unicast Transport No 

SSVP Probe Rate Unicast Transport No 

MTP Probe Window Unicast Transport No 

VTP Probe Window Unicast Transport Yes 

SAMM - Rate Multicast - No 
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RTP/RTCP - - Uni./Multi. Application No 

RLM Probe - Multicast Transport/ 
Application 

No 
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LVMR - - Multicast Transport/ 
Application 

No 
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d DSG - - Multicast Transport/ 
Application 

No 

Table 1. Comparison amongst the different rate control techniques. 

6. Proposed Feedback Algorithms 

6.1 Adaptive Feedback Algorithm for Internet Video Streaming 
based on Fuzzy Control (ADIVIS) 
In this Section we propose a new feedback technique in conjunction with a decision 
algorithm for improving the quality of wireless Internet video streaming applications.  
One of the most significant problems that video communications face is the 
unpredictable nature of the Internet primarily in terms of bandwidth, end-to-end delay 
and loss variation. Video streaming applications need to implement highly scalable 
and adaptive techniques in terms of content encoding and transmission rates in order 
to cope with the erroneous and time variant conditions of the network. 
Content Adaptation Techniques (CATs) deal with adaptation of content to the 
desirable transmission rate using primarily scalable video approaches whereas 
Network Adaptation Techniques (NATs) deal with the end-to-end adaptation of real 
time multimedia application needs to the network parameters using algorithms which 
take into account the state and/or load of the network and the type of errors. 
Our approach aims at combining Network Adaptation Techniques with Content 
Adaptation Techniques in order to finely adapt the video stream bitrate to the 



dynamically changing network parameters. In this section, we propose a new 
feedback mechanism that works in co-operation with an adaptation decision 
algorithm. From content adaptation point of view, our system involves video streams 
encoded in a layered manner. 
ADIVIS involves an adaptive feedback mechanism for Internet video streaming and a 
fuzzy decision algorithm. We assume that each video stream is encoded in multiple 
layers stored at the sender side. The layered video content is transmitted over an RTP 
connection.  
The feedback mechanism combines receiver's critical information on the perceived 
quality as well as measurements obtained by the core network in order to evaluate the 
available bandwidth of the network path. The estimated available bandwidth is then 
fed into the decision algorithm which decides in a fuzzy manner the optimal number 
of layers that should be sent by adding or dropping layers. 
We present the implementation of our rate adaptation heuristic in an MPEG-4 
streaming system depicted in the following Fig. 6.  
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Fig. 6. ADIVIS scheme. 

 
The above diagram illustrates a unicast-oriented ADIVIS-based system. The two 
outlined components, namely, feedback mechanism and decision algorithm, focus on 
the adaptation of the layered video content to the available network bandwidth.  
Dashed arrows track the path of control packets (RTCP) whereas solid arrows track 
the path of video data packets (RTP). 
The feedback mechanism collects QoS information like loss rate and jitter from both 
the core network and the receiver that will be used for the evaluation of the available 
bandwidth of the path between the sender and a receiver. The decision algorithm 
which is implemented at the sender side processes the feedback information and 
decides the optimum number of layers that will be sent. 
The role of the feedback and adaptation components is to link the quality demand of 
video-enabled applications to the underlying network leading to network adaptation. 
Network adaptation should be assisted by a proper content adaptation technique 
which is carried out by layered video encoding. 
The rest of this Section is organized as follows. Section 6.1.1 deals with the layered 
encoding whereas in Section 6.1.2 the feedback mechanism is further analyzed. 
Section 6.1.3 mentions the fuzzy decision algorithm. 

6.1.1 Layered Encoding 
Layered encoding is suitable for adapting the quantity of data transmitted by a video 
server to the capacity of a given network path. Video streams are encoded in a layered 



manner in a way that every additional layer increases the perceived quality of the 
stream. Usually a layered video stream consists of a base layer and several additional 
enhancement layers. Base layers should be encoded in a very low rate so as to 
accommodate for a large variety of mobile handheld devices as well as terminals 
connected to the Internet through low bandwidth modem connections. Additional 
enhancement layers are added, or dropped, in order to adapt the content rate to the 
desirable transmission rate derived from the feedback mechanism. 

6.1.2 Feedback Mechanism 
As mentioned before, the feedback mechanism collects information from both the 
core network and the receiver in order to evaluate the available bandwidth of the 
network path from the video streaming server to the wireless receiver.  
Each receiver sends reception statistics using RTCP packets. In particular special 
RTCP packets called RR (Receiver Report) packets are being sent carrying a variety 
of control information. RR packets are primarily used for reception statistics from 
participants that are not active senders. RRs provide (a) loss fraction (since the 
previous Sender Report or Receiver Report packet was sent) which denotes the recent 
quality of the distribution, (b) cumulative number of packet lost (CNPL), (c) highest 
sequence number received (EHSR) and (d) inter-arrival jitter (which gives an 
estimation of playout buffer delay at the receiver). As mentioned in [25] using RTCP-
RR feedback reports we can evaluate: 

a) Number of lost packets during an interval (between 2 successive RTCP 
feedback reports). The difference in the cumulative number of packet lost 
gives the number lost during that interval. (loss rate can be used to select 
amount of FEC to employ), 

b) Number of packets expected during the interval. The difference in the 
extended last sequence number received gives the number of packets expected 
during that interval, 

c) The ratio of the two aforementioned metrics is the packet loss fraction over 
the interval, 

d) The loss rate per second can be obtained by dividing the loss fraction by the 
difference in NTP timestamps, expressed in seconds and 

e) Round Trip Time. 
The difference between the last two reports received can be used to estimate the 
recent quality of the distribution. In particular the difference between two consecutive 
values of loss rate per second (LRPS) can be used in order to track the increasing or 
decreasing trend of packet loss percentage.  
In addition to the notifications provided by the receiver, important information 
regarding the current status of the congestion within the core network can be 
efficiently used for the evaluation of the available bandwidth. The Explicit 
Congestion Notification (ECN) [26], [27] mechanism is used for the notification of 
congestion to the end nodes in order to prevent unnecessary packet drops. ECN 
option allows active queue management (AQM) mechanisms such as RED [28] to 
probabilistically mark (rather than drop) packets. The number of marked packets 
within a given period may derive a meaningful deduction about the congestion status. 
This proposal supports ECN scheme in conjunction with UDP transport protocol. 
Instead of having ACK packets for providing feedback information, RTCP packets 
can inform the data sender when a congestion experienced (CE) packet has been 
received at the receiver. These data can be incorporated inside a dedicate field of the 
RR packet. 



6.1.3 Fuzzy Decision Algorithm 
Fuzzy control may be viewed as a way of designing feedback controllers in situations 
where rigorous control theoretic approaches can not be applied due to difficulties in 
obtaining formal analytical models. 
Linguistic variables are a key concept of fuzzy logic control. They take on linguistic 
values which are words (linguistic terms) that are used to describe characteristics of 
the variables. Our fuzzy control system is based on two linguistic input variables and 
one linguistic output variable. All quantities in our system are considered at the 
discrete instant kT, with T the decision period. 
Our first linguistic input variable involves the LRPS parameter. LRPS(kT) is the loss 
rate per second at each decision period and LRPS(kT-T) is the loss rate per second 
with a delay T. The linguistic variable DLRPS(kT) gives the increasing or decreasing 
trend of the LRPS and can be evaluated by: 
 
DLRPS(kT) = LRPS(kT) – LRPS(kT-T)              (3) 
 
The LRPS parameter is lower and upper bounded by 0 and 1 respectively. 
Consequently, DLRPS(kT) ranges from -1 to +1. 
For the second input linguistic variable we use the number of packets that have the 
ECN bit set within a period, as a strong indication for congestion. The receiver 
calculates periodically this number called NECN(kT). The sender extracts this value 
from an RR packet and calculates a scaled parameter, NECNsc(kT), which ranges from 
0 to +1, and represents the percentage of packets marked within this period. Eq. 4 is 
used to obtain the scaled parameter NECNsc(kT): 
 

NECNsc(kT) = ( )kTN
kTN

ps

ECN )(
                 (4) 

 
Where Nps(kT) is the number of packets sent within the same period. Therefore, we 
calculate the parameter DNECNsc(kT), which gives the increasing or decreasing trend 
of the number of marked packets. The DNECNsc(kT) is upper and lower bounded by 
+1 and -1 respectively, and can be evaluated by: 
 
DNECNsc(kT) = NECNsc(kT) – NECNsc(kT-T)              (5) 
 
Our linguistic output variable, a(kT), is defined for every possible combination of 
inputs. The defuzzified crisp values of a(kT) can be used by the decision algorithm 
for the evaluation of the available bandwidth using the following formula: 
 
Available_bandwidth(kT) = α(kT) * Available_bandwidth(kT-T)          (6) 
 
The defuzzified output value is selected to range from 0.5 to 1.5. Thus a 'gradual' 
increase is allowed when there is available bandwidth and reduced congestion, 
whereas quick action is taken to reduce the rate to half in case of severe congestion. 
The output of the fuzzy system could have been a discrete value indicating directly 
the number of layers that should be sent. Instead, we chose to obtain a crisp value 
because we wanted our algorithm to be applicable not only in cases where the video 
streams are not encoded in a coarse grained manner but also when fine grained 
scalability encoding techniques are applied. 



The following table involves if-then rule statements which are used to formulate the 
conditional statements that comprise fuzzy logic. 
 

∆ΝECNsc(kT) α(kT) 
NVB NB NS Z PS PB PVB 

NVB H H B B Z S VS 
NB H VB Z Z Z S VS 
NS B Z B Z Z S VS 
Z B Z Z B Z S VS 
PS Z Z Z Z S S VS 
PB Z Z Z Z S S VS 

 
 
 
∆LRPS(kT) 

PVB VS VS VS VS VS VS VS 
Table 2. Table content notations: Negative/Positive Very Big (NVB, PVB), Negative/Positive Big 
(NB, PB), Negative/Positive Small (NS, PS), Zero (Z), Very Small/Big (VS, VB), Small/Big (S, B),  
Medium (M), Huge (H). 
 
The derived membership functions are illustrated in the figures above. 
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Fig. 7. Membership functions. 
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Fig. 8. Decision surface of the fuzzy inference engine shaped by the rule base and the linguistic 

variables. 
 
Our algorithm has to decide which layers should be sent according to the available 
network bandwidth, based on a non aggressive layer selection approach. The server 
will host an appropriate number of layers where each layer corresponds to a different 
transmission rate. To avoid ping-pong effects there should not be a transition to an 
upper level layer every time the available bandwidth exceeds the threshold of a 
specific transmission rate that corresponds to a higher video layer. Instead, a time 
hysteresis is introduced in order to avoid frequent transitions from one layer to 
another which may cause instability.  In the case of a transition to a lower layer, the 



effect is immediate, as we seek quick relief from possible congestion. This is shown 
in the pseudo-code of the decision algorithm below: 
 
For all layers j up to MAX_LAYER 
 if Available_bandwidth < BitRate(j) and hysteresis = false 
 begin 
  If layer(j) = current_layer 
   break; 
  hysteresis = true; 
  selected_layer = layer(j);  
 end 
 else if Available_bandwidth < BitRate(j) 
 begin 
  hysteresis = false; 
  if selected_layer < layer(j) 
  begin 
   current_layer = selected_layer; 
   break; 
  end 
  else  
  begin 
   current_layer = layer(j);                        
                                    break;  
  end 
 end 

Fig. 9. Pseudocode of the fuzzy decision algorithm. 
 
The time hysteresis is equal to the time interval between the reception of two 
successive RR packets. If the available bandwidth exceeds the threshold of a specific 
transmission rate that corresponds to an upper level layer, then the hysteresis variable 
is set. When a new RR packet arrives, if the available bandwidth is still at the same 
levels, a transition occurs. 

6.2 Receiver-driven Adaptive Feedback algorithm (RAF) 
In this section we analyze a novel receiver-driven feedback algorithm for the increase 
of the objective as well as user-perceived quality of the transmitted video stream. The 
proposed algorithm tries to identify and analyze the different parameters that 
influence the quality of the video streams while are being transmitted over the 
Internet. In particular this algorithm adapts these parameters accordingly in order to 
provide a sufficient user-perceived video quality. 
These parameters are adjusted according to their significance and the decision of each 
individual user. The proposed algorithm adjusts the possible values or the 
combination of these parameters in such a way in order to guarantee an adequate 
video quality.  
Moreover the objective quality which is adjusted by these parameters is associated 
with the subjective (user-perceived) quality. In this way we can assure that our 
algorithm can be successfully applied in several streaming applications. 
In addition our algorithm uses the Goddard Streaming Application that was designed 
in [29] for layered video transmission. We modified this software to evaluate the 
performance of our algorithm as will be presented in the next deliverable. Goddard 
will be further analyzed in the next deliverable too. 
The rest of this Section is organized as follows. Section 6.2.1 deals with the 
aforementioned parameters that influence the quality of the transmitted video stream 
whereas in Section 6.2.2 the algorithm is further analyzed. 



6.2.1 Parameters 
In this section we will investigate the basic parameters that can be adjusted according 
to user needs and the unpredictable conditions of the Internet.  
 
Bits Per Pixel (Bpp) 
Colour depth is a computer graphics term describing the number of bits used to 
represent the colour of a single pixel in a bitmapped image or video frame buffer. 
This concept is also known as bits per pixel (Bpp), particularly when specified along 
with the number of bits used. Higher colour depth gives a broader range of distinct 
colours. For example in an 8-bpp video stream, each pixel is depicted using 8 bits, 
thus we can have 28 different colours for each pixel. As the number of bpp is getting 
larger the perceived quality and the size of the video stream are increased too. 
In this project we use a specific scale for the bpp parameter and every step 
corresponds to a different user perceived quality. This scale is calibrated in 4 different 
categories as shown in Table 3. The values shown in Table 3 are given by the 
helixcommunitty.org [30] and refer to high mobility video streams. The values shown 
in this table are negative because they refer to compressed video streams.  

 
Bpp Description 

>= 0.225 Very Good Quality
>= 0.175 Good Quality 
>= 0.125 Medium Quality 
<= 0.125 Low Quality 

Table 3. Values of Bpp parameter in conjunction with the user perceived quality. 
 
As we can see the bigger the bpp value the better the perceived quality of the video 
stream. 
 
max_scale 
This parameter represents the maximum number of encoding layers that a video 
streaming server can support. It can be combined with the parameter bitrate_#_ which 
is presented below. This parameter can be adjusted by the user who defines the 
maximum number of layers that can be transmitted during a session. According to 
user decision and based on the conditions of the network, our algorithm dynamically 
adapts the number of layers that should be transmitted every time. 
 
bitrate_#_ 
This parameter shows the bit rate of every layer that the video streaming server 
transmits and depends on the max_scale parameter. The symbol # takes several 
different values from 0 up to the max_scale minus 1. For example parameter 
bitrate_3_ corresponds to the bit rate of the third layer.  
 
colour_standard_NTSC_PAL 
This parameter represents the colour prototype of the video transmission that can be 
set by the user. We have two different prototypes; the American standard NTSC 
operates in 30 frames per second (fps) and the European standard PAL operates in 25 
fps. In our algorithm this parameter takes the value 0 for NTSC transmission and 1 
for PAL transmission. 
 
fps (frames per second) 



Frame rate, or frame frequency, is the measurement of how quickly an imaging 
device produces unique consecutive images/frames. Frame rate is most often 
expressed in frames per second or simply, hertz (Hz). This parameter can be set by 
the user and it is independent of the colour standard that will be used during the 
transmission. If the user does not set this parameter then it takes its default value 
according to the colour standard. 
 
aspect_ratio 
The aspect ratio of a two-dimensional frame is the ratio of its longer dimension to its 
shorter dimension. Our algorithm supports only two values for these parameters; 16:9 
and 4:3. 
 
frm_width 
This parameter corresponds to the width of the frame quoted in pixels. The height of 
the frame can be evaluated using the aspect_ratio parameter mentioned above. 
 
max_bitrate     
A user is connected to the network via a dedicated link. Thus the max_bitrate 
parameter is equal to the bandwidth of this connection. This value can be altered 
during the video transmission. Our algorithm has the ability to adapt the bit rate of the 
transmitted video stream according to the value of this parameter. 
 
avail_bandwidth 
The available bandwidth of the link between the user (video client) and the video 
streaming server is very fluctuating as well as dynamic changing parameter that 
depends on the variable environment of the network. It is an important parameter that 
influences the dynamic adaptation of the transmitted video bit rate.  
 
Synopsis 
All the aforementioned parameters are depicted in Table 4, where we present the 
initial values of each parameter. Any user may set anyone of them according to 
his/her needs or based on the capabilities of his/her (fixed/mobile) terminal 
equipment in the quest for a better perceived quality. The values of these parameters 
are dynamically set by the algorithm during the transmission according to the 
changing conditions of the network. 
 

Parameter Short Description 
max_scale_ = 5  Represents the maximum number of layers that 

a video streaming server can handle i.e 5. 
bitrate_0_ = 56000 
bitrate_1_ = 128000 
bitrate_2_ = 256000 
bitrate_3_ = 512000 
bitrate_4_ = 768000 

Represent the bit rate of each individual layer. 
Values are measured in bits per second (bps). 

colour_standard_NTSC_PAL_ = 0 The colour standard of the video stream that 
will be transmitted. NTSC (30fps) corresponds 
to 0 whereas PAL (25fps) corresponds to 1. 

fps_ = 10 The number of frames per second that will be 
used for the encoding of the video stream. 

aspect_ratio_ = 1.33333333 The aspect ratio of the image/frame. The values 



that this parameter can take are shown below:  
 1.33333333 for aspect ratio 4:3 
 1.77777777 for aspect ratio 16:9 

frm_width_ = 180 This parameter refers to the width of the frame 
measured in pixels. Our algorithm can evaluate 
the height of the frame using the aspect_ratio_ 
parameter. 

bpp_quality_ = 0.2 The quality of a frame is measured in bits per 
pixels as shown below: 
 >=0.225 Very Good quality 
 >=0.175 Good quality 
 >=0.125 Medium quality 
 < 0.125 Low quality 

max_bitrate_ = 56000 ** This parameter declares the connection 
bandwidth of the user. The values are 
measured in bits per second (bps). For example 
the max_bitrate_ parameter for a 56K-modem 
user takes the value of 56000. 

avail_bandwidth_ = 56000 ** This parameter declares the available 
bandwidth in bits per second (bps). 

** This parameter can be dynamically altered by our algorithm during the 
transmission of the video stream. The values shown above are initially declared prior 
the establishment of the connection. 

Table 4. Initial values of the aforementioned parameters. 

6.2.2 Description of the algorithm 
The aforementioned initial values of the parameter are fed into the proposed 
algorithm which is trying to adapt the transmitted video stream according to them. 
Prior the adaptation many issues must be taken into consideration in order to end up 
with the best calibration that results to a high quality perceived video stream at the 
end user. The operations that take place prior the transmission are thoroughly 
described below while the key points that influence the decisions taken by the 
algorithm. 
 
Maximum possible transmission rate 
The available bandwidth of a connection fluctuates due to the unpredictable 
conditions within the network. Our algorithm must decide whether the number of the 
transmitted layer will be increased or decreased. Moreover some parameters like the 
bitrate, the size and the quality of the frame have to be set a priori. 
Based on the available bandwidth of the network, the algorithm must decide the bit 
rate of the transmitted video stream according to the capabilities of the video 
streaming server and the access bandwidth of the user. These three parameters depend 
on each other. Thus the transmission bit rate takes the lowest value amongst the three 
parameters (available network bandwidth, access bandwidth, and the maximum 
bandwidth that the video streaming server can support). 
 
Quality Table and Mean Opinion Score (MOS) 
After evaluating the maximum transmission bit rate of the video stream, our 
algorithm creates a table that includes all the possible combinations between the 
parameters frames per second (fps), and bits per second (bpp). We consider that the 



dimensions of a frame (W x H) remain constant and that there is no loss of frames 
that may deteriorate the quality. 
This table takes into consideration the colour standards NTSC and PAL. It has been 
mentioned that NTSC runs on 30 fps (precisely on 29.97fps) and the corresponding 
value for PAL is 25 fps. Beyond those values the perceived quality of the video 
stream remains unchangeable. Furthermore [30] suggests that for 0.225 bpp the 
quality of video stream is high. So if we multiply these values (bpp x fps) we get an 
indicative value (6.75) for high quality video. This product does not strictly describe 
the maximum perceived quality as we may have higher values for bpp. 
Nevertheless in order to make a reduction to the 100% we multiply this indicative 
value by 14 resulting to 94.5%. The resulting number represents the relative 
perceived quality or Mean Opinion Score (MOS). The same procedure is followed by 
our algorithm in order to create the Table 5. As can be seen the table is sorted by the 
product fps x bpp x 14. 
 

fps x bpp x 14 fps bpp MOS 
94.5 30 0.225 

84 30 0.2 
Very Good Quality 

78.75 25 0.225 

73.5 30 0.175 

70 25 0.2 

63 20 0.225 

61.25 25 0.175 

Good Quality, without 

artefacts. 

56 20 0.2 

52.5 30 0.125 

49 20 0.175 

47.25 15 0.225 

43.75 25 0.125 

42 15 0.2 

42 30 0.1 

Medium Quality, with little 

artefacts. 

36.75 15 0.175 

35 25 0.1 

35 20 0.125 

31.5 10 0.225 

28 10 0.2 

28 20 0.1 

26.25 15 0.125 

24.5 10 0.175 

21 15 0.1 

Poor Quality, with 

perceived artefacts. 

17.5 10 0.125 

14 10 0.1 

Bad Quality with many 

artefacts. 

Table 5. Quality Table. 
 



We could possibly correlate the product shown in the first column (fps x bpp x 14) 
with the MOS measurements that are presented in [31] and in Table 6. This 
correlation is shown in the last column of the Table 5. 
We have not confirmed the validity of the relationships that are shown in Table 5. 
The relationship MOS = bpp x fps x 14 is based on the assumption that given a 
perfect video stream transmission the only parameters that influence the perceived 
quality are the bits per pixel and the frames per second. We would like to mention 
that the delay, delay variation and packet loss are not taken into consideration in 
perceived quality evaluations. If we consider these parameters in a forthcoming stage, 
we may have some changes in the values shown in Table 5 but they will not influence 
the operation of the generic algorithm we present here. 
 

PSNR (dB) MOS Quality 
> 37 81 – 100 Very Good

31 – 37 61 – 80 Good 
25 – 31 41 – 60 Medium 
20 – 25 21 – 40 Poor 

< 20 0 – 20 Bad 
Table 6. PSNR versus MOS. 

 
Relationships between parameters 
Using the following mathematical equations we can evaluate the value of a missing 
parameter. A basic equation that extracted from [30] is shown below: 
 

BPP = BitRate x 1/FPS x 1/(W x H)              (7) 
 
This equation can be solved accordingly in order to determine anyone of these 
parameters as shown below: 
 

BitRate = BPP x FPS x W x H  (8) 
 

W x H = BitRate / (BPP x FPS)  (9) 
 

FPS = BitRate / (BPP x W x H)  (10) 
 
We can also use the Aspect Ratio (AR) notation: 
 

AR = W / H                          (11) 
 
If we import this equation in the previous (7)-(10) we get: 
 

H = Sqrt ( BitRate / (BPP x FPS x AR) ) (12) 
 

W = AR x H                (13) 
 
where AR has a decimal value that comes out from equation (11).  
 
Frame Loss Rate 
Our algorithm guarantees sufficient user perceived quality under variable network 
conditions where the core network suffers from congestion. In particular, our system 



collects statistical data concerning the number of received or lost frames. The 
algorithm uses the Goddard [29] and the equation (13) in order to evaluate the frame 
loss rate. 
 

Frame Loss Rate = # of lost frames / # of total number of frames        (14) 
 
where: 

# of total number of frames = # of lost frames + # of received frames 
 
If the evaluated percentage of lost frames is over 10% then the algorithm uses Table 5 
in order to determine which combination uses more fps. The main aim of the 
algorithm is to send more frames per second than the requested fps. In this way the 
user will receive the requested quality. The following equation calculates the number 
of frames per second that should be sent: 
 

# of frames should be sent = 
(100 x # of frames requested) / (100 – percentage of frames lost)      (15) 

 
For example if a user requests for 20 fps and the percentage of frames lost due to 
congestion is 30% then the algorithm decides that should transmits ( 100 x 20 ) /        
( 100 – 30 ) = 28.57 fps. In this way the user will receive 20 fps ( 28.57 x 30% = 20 ). 
It is beyond any doubt that the streaming server will not transmit 28.57 fps but it will 
round this value to the nearest upper multiple of 5; that is 30. In case the colour 
standard is not NTSC but PAL, the video streaming server will transmit 25 fps. 

6.3 Adaptive Congestion Control (ACP) 

6.3.1 Introduction 
We develop ACP (Adaptive Congestion Protocol) which is a new congestion control 
protocol with learning capability. This learning capability enables the protocol to 
adapt to dynamically changing network conditions and maintain stability. ACP can be 
characterized as a dual protocol where intelligent decisions are taken within the 
network. The main control architecture is in the same spirit as the one used by the 
ABR service in ATM networks. Each link calculates at regular time intervals a value 
which represents the sending rate it desires from all users traversing the link. A 
packet as it traverses from source to destination it  accumulates, in a designated field 
in the packet header, the minimum of the desired sending rates it encounters in its 
path. This information is communicated to the user which has generated the packet 
through an acknowledgement mechanism. The user side algorithm then gradually 
modifies its congestion window in order to match its sending rate with the value 
received from the network. The user side algorithm also incorporates a delayed 
increase policy in the presence of congestion to avoid excessive queue sizes and 
reduce packet drops.  
At each link, the desired sending rate is calculated using both queue length and rate 
information. The algorithm does not require maintenance of per flow states within the 
network. Previous experience in the design of such link algorithms ([32] ,[33], [34], 
[35], [36]) has shown that in order to maintain stability in the presence of delays, the 
control parameters of the algorithm need to be normalized with the number of users 
utilizing the network. This is an unknown time varying parameter. Algorithms which 
have been proposed to estimate this parameter are based on point wise division in 



time ([37], [38], [39]). This approach, however, is known to lack robustness and lead 
to erroneous estimates. In this work, we use on-line parameter identification 
techniques to derive an estimation algorithm which is shown through analysis and 
simulations to work effectively.  
We will evaluate the performance of the proposed protocol in the next deliverable 
using simulations. Extensive simulations indicate that the proposed protocol satisfies 
all the design objectives. The scheme guides the network to a stable equilibrium 
which is characterized by high network utilization, max-min fairness, small queue 
sizes and almost no packet drops. It is scalable with respect to changing delays, 
bandwidths and number of users utilizing the network. It also exhibits nice dynamical 
properties such as smooth responses and fast convergence. In our simulations we will 
use realistic traffic patterns which include both bulk data transfers and short lived 
flows. Finally, we address stability issues of the ACP protocol by using phase plane 
analysis.  
We use a non-linear network model to generate phase portraits which demonstrate 
that ACP is stable for all delays.  

6.3.2 Design guidelines 
Our objective has been to design an effective window based congestion control 
protocol assuming availability of a feedback mechanism which allows the explicit 
exchange of information between the end users and the network. An effective 
congestion control protocol must satisfy some basic requirements. It must guide the 
system to a stable equilibrium point which is characterized by high network 
utilization, max-min fairness, small queue sizes and no packet drops ([41]). It also 
needs to be scalable with respect to changing bandwidths, delays, and number of 
users. Finally, it must exhibit nice dynamical properties such as smooth responses 
with fast convergence and no overshoot.  
XCP [40] constitutes the most notable attempt to fulfil the above objectives. The 
protocol achieves most of the specifications but fails to achieve max-min fairness at 
equilibrium in the case of multiple congested links ([42]). XCP has been shown in 
[40] to outperform all other TCP proposals so our objective has been to develop a 
protocol which outperforms XCP.  
At each link in the network, XCP tries to match the input data rate to the link capacity 
and at the same time maintain small queue sizes. It achieves this by explicitly 
dictating to each user utilizing the link the amount by which the congestion window 
must be increased. However, this does not guarantee that all users utilizing the link 
will share the same sending rate. XCP addresses this problem by implementing a  
fairness controller which, however, proves to be ineffective in the case of multiple 
congested nodes. In order to fix this problem ACP adopts a different design approach. 
Each link in the network, instead of calculating desired increments of the sending rate 
of the users traversing the link, it calculates the desired sending rate of the users 
directly. In a way similar to XCP, the desired sending rate is made available to  
the end users through an explicit feedback mechanism. A packet as it traverses from 
source to destination it accumulates, in a designated field in the packet header, the 
minimum of the desired sending rates it encounters in its path. This information is 
communicated to the user which has generated the packet through an 
acknowledgement mechanism. The user then gradually modifies its congestion 
window in order to match its sending rate with the value received from the network. 
Since the above mechanism guarantees that all users bottlenecked at a particular link 
share the same sending rate, fairness is achieved automatically.  



Having decided on the control architecture the next step is to design the algorithm 
which calculates the desired sending at each link. At each link, the objective is to 
match the input data rate to the link capacity and to maintain small queue sizes. So, 
the algorithm which updates the desired sending rate must use both queue length and 
rate information. Pure rate information does not guarantee bounded queue sizes and 
pure queue length information offers a limited control space and thus leads to 
oscillations in environments with high bandwidth delay products. Ignoring a 
projection operator which imposes hard bounds on the desired sending rate a 
continuous time version of the link algorithm is the following:  
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where p is the desired sending rate, C is the link capacity, y is the input data rate, q is 
the queue size, ki and kq are design parameters, d is the calculated average 
propagation delay and N is an estimate of the number of users traversing the link. The 
main idea is to integrate the excess capacity and add a queue length factor in order to 
ensure that at equilibrium the queue size converges to zero. Similar ideas have been 
used in previous attempts to design congestion control schemes ([43], [40], [44]). The 
main novelty of our approach is the way with which we estimate the number of flows 
online in order to maintain stability. We use online parameter identification 
techniques to derive the estimation algorithm and we implement a certainty 
equivalent controller ([26]).  
Equation (1) is a continuous time representation of the algorithm. In practice, each 
link updates the desired sending rate every control period. The choice of this period 
needs careful consideration as it affects the stability and transient properties of the 
congestion control protocol. ACP chooses its control period using the same 
mechanism as XCP. Each user utilizes a designated field in the packet header to 
inform the routers of its current round trip time estimate. Each router then calculates 
the average round trip time over all packets traversing the link and sets the control 
period equal to this value. We choose this particular control period to counter the 
destabilizing effect of delays. Based on fundamental control theory principles, as 
delays increase within the network we slow down the response time of our controllers 
in order to maintain stability.  
However, simply by choosing the control period as described above, we cannot 
guarantee stability in the presence of delays. Previous work ([40]) has shown that in 
order to maintain stability the excess capacity term must be divided with the time 
delay and the queue size term must be divided with the square of the propagation 
delay as shown in equation (1). Note that, in a discrete time implementation of the 
algorithm since we use a varying control period which is equal to the delay we only 
need to divide the queue term with the delay to maintain stability.  
Previous experience in the design of explicit rate based schemes has also shown that 
in order to maintain stability in the presence of delays, the control parameters need to 
be normalized with the number of users utilizing the network. This is an unknown 
time varying parameter which needs to be estimated. Many estimation algorithms 
have been proposed in literature with different degrees of implementation complexity. 
Algorithms which do not require maintenance of per flow states within the network 
are based on point-wise division in time. Assuming that all users traversing the link, 
send data with the desired sending rate p, the input data rate y satisfies the following 
relationship:  



y = Np           (2) 
 
where N is the number of flows traversing the link. Since both y and p are known at 
the link, N can be estimated by dividing y with p. However, such a point-wise 
division in time is known to lack robustness and can lead to erroneous estimates. In 
this work, we treat (2) as a linear parametric model of the unknown parameter N and 
we use online parameter identification techniques to derive an estimation algorithm 
which is shown through analysis and simulations to work effectively.  
As described earlier, each user in the network receives, through explicit feedback, the 
minimum of the desired sending rates a packet encounters in its path. Since we aim at 
implementing a window based protocol the rate information must be transformed into 
window information. We do this by multiplying the desired sending rate with a 
measure of the propagation delay. Such a measure is obtained by calculating the 
minimum of the round trip time estimates observed throughout the session. In order to 
avoid the generation of bursty traffic we do not immediately change the congestion 
window to the desired value calculated. Instead, we make this change gradually in 
one round trip time by means of a first order filter.  
Even with such a gradual increase policy, excessive queue sizes and packet losses 
may be observed during transients. The problem arises when a particular link is 
congested (the input data rate is close to the link capacity) and new users traversing 
the link enter the network. In this case, the new users adopt the desired sending rate of 
the link in one round trip time. If the desired sending rate is large, the net effect is a 
sudden increase in the input data rate at the link. Since, the link is already congested, 
this increase can lead to large instantaneous queue sizes and packet drops. To 
alleviate this problem we apply a delayed increase policy at the source in the case of 
congestion. When a link is congested it sets a designated bit in the header of all 
incoming packets. In this way the users traversing the link are notified of the presence 
of congestion and react by applying a delayed increase policy. When they have to 
increase their congestion window they decrease the smoothing gain of the first order 
filter by a factor of 10 so that they increase at a much slower rate, thus giving time to 
the link to detect the new users, adapt its desired sending rate and avoid packet losses.  

6.3.3 The protocol 
A. The packet header 

H_rtt (sender’s rtt estimate 
H_feedback (desired sending rate) 
H_congestion (congestion bit) 

Fig. 10. ACP Header. 
 
In a way similar to XCP the ACP packet carries a congestion header which consists of 
3 fields as shown in Fig. 10. The H_rtt field carries the current round trip time 
estimate of the source which has generated the packet. The field is set by the user and 
is never modified in transit. It is read by each router and is used to calculate the 
control period. The H_feedback field carries the sending rate which the network 
requests from the user which has generated the packet. This field is initiated with the 
user’s desired rate and is then updated by each link the packet encounters in its path. 
At each link, the value in the field is compared with the desired sending rate value 
and the smallest value is stored in the H_feedback field. In this way, a packet as it 
traverses from source to destination it accumulates the minimum sending rate it 
encounters in its path. The H_congestion bit is a single bit which is initialized by the 



user with a zero value and is set by a link if the input data rate at that link is more that 
95% of the link capacity. In this way, the link informs its users that it is on the verge 
of becoming congested so that they can apply a delayed increase policy and avoid 
excessive instantaneous queue sizes and packet losses.  
 
B. The ACP Sender 
As in TCP, ACP maintains a congestion window cwnd which represents the number 
of outstanding packets and an estimate of the current round trip time rtt. In addition to 
these variables ACP calculates the minimum of the round trip time estimates which 
have been recorded, mrtt. This is a good measure of the propagation delay of the 
source destination path and is used to transform the rate information reaching the 
sender to window information.  
The initial congestion window value is set to 1 and is never allowed to become less 
than this value because this would cause the source to stop sending data. On packet 
departure, the H_feedback field in the packet header is initialized with the desired 
sending rate of the application and the H_rtt field stores the current estimate of the 
round trip time. If the source does not have a valid estimate of the round trip time the 
H_rtt field is set to zero.  
The congestion window is updated every time the sender receives an 
acknowledgement. When a new acknowledgement is received, the value in the 
H_feedback field, which represents the sending rate requested by the network in bytes 
per second, is read and is used to calculate the desired congestion window as follows: 
 

size
mrttfeedbackHwindowdesired ×

=
__           (3) 

 
where size is the packet size in bytes. We multiply with the mrtt to transform the rate 
information into window information and we divide by the packet size to change the 
units from bytes to packets. The desired window is the new congestion window 
requested by the network. We do not immediately set the cwnd equal to the desired 
congestion window because this abrupt change may lead to bursty traffic. 
Instead we choose to gradually make this change by means of a first order filter. The 
smoothing gain of this filter depends on the state of the H congestion bit in the 
acknowledgement received. If this is equal to 1, which indicates congestion in the 
source destination path, we apply a less aggressive increase policy. The congestion 
window is updated according to the following equation: 
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where the projection operator Pr[.] is defined as follows: 
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The projection operator guarantees that the congestion window does not become less 
than 1. 



 
C. The ACP Receiver 
The ACP receiver is identical to the XCP receiver. When it receives a packet it 
generates an acknowledgement in which it copies the congestion header of the packet.  
 
D. The ACP router  
At each output queue of the router, the objective is to match the input data rate y to 
the link capacity C and at the same time maintain small queue sizes. To achieve this 
objective the router maintains for each link, a value which represents the sending rate 
it desires from all users traversing the link. The desired sending rate is denoted by p 
and is updated every control period. The router implements a per link control timer. 
The desired sending rate and other statistics are updated every time the timer expires. 
The control period is set equal to the average round trip time d. The average round 
trip time is initialized with a value of 0.05 and is updated every control period. On 
packet arrival the router reads the H rtt field in the packet header and updates the 
variables which are used to calculate the average round trip time.  
The router calculates at each output queue the input data rate y. For each link, the 
router maintains a variable which denotes the number of received bytes. This variable 
is incremented with the packet size every time the queue associated with the link 
receives a packet. When the control timer expires, the link calculates the input data 
rate by dividing the received number of bytes with the control period. It then resets, 
the received number of bytes.  
The router also maintains at each output queue the persistent queue size q. The q is 
computed by taking the minimum queue seen by the arriving packets during the last 
propagation delay. The propagation delay is unknown at the router and is thus 
estimated by subtracting the local queueing delay from the average RTT. The local 
queueing delay is calculated by dividing the instantaneous queue size with the link 
capacity.  
The above variables are used to calculate the desired rate p every control period using 
the following iterative algorithm: 
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where ki and kq are design parameters, N
^

 represents an estimate of the number of 
users utilizing the link and the projection operator is defined as follows: 
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The projection operator guarantees that the desired sending rate is non-negative and 
smaller than the link capacity. Values outside this range are not feasible. The design 
parameters ki and kq are chosen to be 0.1587 and 0.3175 respectively. There are 
several things to note about the link algorithm (6). The basic idea is to integrate the 
excess capacity and to add a queue size term to guarantee that at equilibrium the 



queue size converges to zero. Previous work has shown that in a continuous time 
representation of the algorithm, in order to maintain stability, the excess capacity term 
must be divided with the time delay and the queue size term must be divided with the 
square of the propagation delay. However, when transforming the continuous time 
representation to the discrete time representation of equation (6), we multiply both 
terms with the time delay and so we end up dividing only the queue term with the 
delay to maintain stability. Note also that we slightly underutilize the link at 
equilibrium by setting the virtual capacity equal to 99% of the true link capacity. We 
do this to reserve bandwidth resources which can be used to accommodate statistical 
fluctuations of the bursty network traffic. This prevents excessive instantaneous 
queue sizes.  
Previous experience in the design of link algorithms for congestion control has shown 
that to maintain stability we need to normalize the control parameters with the 
number of users utilizing the network. A novel part of this work is that we use online 
parameter identification techniques to derive an algorithm which estimates the 
unknown parameter online. The derivation is based on a fluid flow model of the 
network and is presented in Appendix A together with the properties of the algorithm. 
Here we present a discrete time implementation of the algorithm. 
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where the projection operator Pr[.], is defined as follows: 
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The projection operator guarantees that the number of flows traversing the link is 
never allowed to be less than 1. Values less than one are obviously not feasible. γ is a 
design parameter which affects the convergence properties of the algorithm. We 
choose γ to be equal to 0.1. Note that the initial value of the estimated number of 

flows N
^

 is equal to 10. We choose this value to ensure a relatively conservative 
policy when initially updating the desired sending rate.  
The desired sending rate calculated at each link is used to update the H_feedback 
field in the packet header. On packet departure, the router compares the desired 
sending rate with the value stored in the H_feedback field and updates the field with 
the minimum value. In this way, a packet as it traverses from source to destination it 
accumulates the minimum of the desired sending rates it encounters in its path.  
The last function performed by the router at each link is to notify the users traversing 
the link of the presence of congestion so that they can apply a delayed increase 
policy. On packet departure the link checks whether the input data rate is larger than 
0.95 the link capacity. In this case it deduces that the link is congested and sets the 
H_congestion bit in the packet header.  



6.4 Queue Length Based Internet Congestion Control protocol 
In this section, we present a new, queue length based Internet congestion control 
protocol. The proposed protocol utilizes an explicit multi-bit feedback scheme similar 
to the one in [40] and does not require maintenance of per flow states within the 
network. It implements at each link a certainty equivalent, proportional controller 
which utilizes estimates of the effective number of users utilizing the link. These 
estimates are generated online using a novel estimation algorithm which is presented 
in detail in [45] and is based on online parameter identification techniques. 

6.4.1 The Protocol 
In this section, we describe the main features of the protocol. Some of the 
functionalities of the protocol are inspired from the work in [40]. 
A. The packet header 
The packet carries a congestion header which consists of 3 fields as shown in Fig. 11. 
The H_rtt field carries the current round trip time estimate of the source which has 
generated the packet. The field is set by the user and is never modified in transit. It is 
read by each router and is used to calculate the control period. The H_feedback field 
carries the sending rate which the network requests from the user which has generated 
the packet. This field is initiated with the user’s desired rate and is then updated by 
each link the packet encounters in its path. At each link, the value in the field is 
compared with the desired sending rate value and the smallest value is stored in the 
H_feedback field. In this way, a packet as it traverses from source to destination it 
accumulates the minimum sending rate it encounters in its path. The H_congestion bit 
is a single bit which is initialized by the user with a zero value and is set by a link if 
the input data rate at that link is more that 95% of the link capacity. In this way, the 
link informs its users that it is on the verge of becoming congested so that they can 
apply a delayed increase policy and avoid excessive instantaneous queue sizes and 
packet losses. 

H_rtt (sender’s rtt estimate 
H_feedback (desired sending rate) 
H_congestion (congestion bit) 

Fig. 11. Congestion Header. 
 
B. The sender 
As in TCP, each link maintains a congestion window cwnd which represents the 
number of outstanding packets and a smoothed estimate of the current round trip time 
srtt which is calculated using an exponentially weighted moving average filter. 
The initial congestion window value is set to 1 and is never allowed to become less 
than this value because this would cause the source to stop sending data. On packet 
departure, the H_feedback field in the packet header is initialized with the desired 
sending rate of the application and the H_rtt field stores the current estimate of the 
round trip time. If the source does not have a valid estimate of the round trip time the 
H_rtt field is set to zero. 
The congestion window is updated every time the sender receives an 
acknowledgement. When a new acknowledgement is received, the value in the 
H_feedback field, which represents the sending rate requested by the network in bytes 
per second, is read and is used to calculate the desired congestion window as follows: 
 



size
mrttfeedbackHwindowdesired ×

=
__           (10) 

 
where size is the packet size in bytes. We multiply with the srtt to transform the rate 
information into window information and we divide by the packet size to change the 
units from bytes to packets. The desired window is the new congestion window 
requested by the network. We do not immediately set the cwnd equal to the desired 
congestion window because this abrupt change may lead to bursty traffic. Instead we 
choose to gradually make this change by means of a first order filter. The smoothing 
gain of this filter depends on the state of the H_congestion bit in the 
acknowledgement received. If this is equal to 1, which indicates congestion in the 
source destination path, we apply a less aggressive increase policy. The congestion 
window is updated according to the following equation: 
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where the projection operator Pr[.] is defined as follows: 
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The projection operator guarantees that the congestion window does not become less 
than 1. 
 
C. The receiver 
The receiver is identical to the XCP receiver. When it receives a packet it generates 
an acknowledgement in which it copies the congestion header of the packet. 
 
D. The router 
The router maintains at each output queue a value p, which represents the sending 
rate it desires from all users traversing the link. The desired rate is updated every time 
a control timer expires. The timer is set to to expire every average round trip time d. 
The average round trip time is initiated with a value of 0.05 and is also updated every 
time the control timer expires. To calculate the average round trip time, the router 
records upon packet arrival, the value stored in the H_rtt field of the packet header 
and divides the sum of the values recorded in one control period with the period. 
In order to calculate the desired sending rate, the router requires two more variables at 
each output queue: the persistent queue size q and the rate of incoming packets y. The 
persistent queue size q is computed by taking the minimum queue seen by the 
arriving packets during the last propagation delay. The propagation delay is unknown 
at the router and is thus estimated by subtracting the local queueing delay from the 
average RTT. The local queueing delay is calculated by dividing the instantaneous 
queue size with the link capacity. 
The rate of incoming packets y, is equal to the number of packets entering the queue 
in one control period divided by the control period. To calculate the number of 
received packets, the router maintains a variable which is incremented with the packet 



size every time the queue receives a packet. When the control timer expires, the link 
calculates y by adding the received number of packets and then dividing with the 
control period. It then resets the received number of bytes. The above variables are 
used to calculate the desired rate p every control period. At each link, the objective is 
to regulate the queue size q so that it tracks a reference queue size qref chosen by the 
designer. To achieve the latter, we calculate the desired sending rate p using a 
modified version of the algorithm proposed in ([46]). The algorithm is as follows: 
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where N
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 represents an estimate of the number of users utilizing the link and the 
projection operator is defined as follows: 
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It guarantees that the desired sending rate is greater than 1 and smaller than the link 
capacity. The lower bound is imposed since we know priori that the protocol will 
send a packet, only if it has at least one byte to send. Values greater than the link 
capacity are not feasible. The control algorithm (13) basically applies proportional 
action. The delay term d(k) is added to maintain stability in the presence of delays. A 
novel part of the proposed scheme is that at each link, the estimate of the number of 

users utilizing the link )(
^

kN  is generated online using an algorithm which is 
presented in detail in [45] and is based on online parameter identification techniques. 
The estimation algorithm is as follows: 
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The projection operator Pr[.] is defined in (12). The projection operator guarantees 
that the number of flows traversing the link is never allowed to be less than 1. Values 
less than one are obviously not feasible. γ is a design parameter which affects the 
convergence properties of the algorithm. We choose γ to be equal to 0.1. Note that the 

initial value of the estimated number of flows N
^

 is equal to 10. We choose this 
value to ensure a relatively conservative policy when initially updating the desired 



sending rate. The desired sending rate calculated at each link is used to update the 
H_feedback field in the packet header. On packet departure, the router compares the 
desired sending rate with the value stored in the H_feedback field and updates the 
field with the minimum value. In this way, a packet as it traverses from source to 
destination it accumulates the minimum of the desired sending rates it encounters in 
its path. 
The last function performed by the router at each link is to notify the users traversing 
the link of the presence of congestion so that they can apply a delayed increase 
policy. On packet departure the link checks whether the input data rate is larger than 
0.95 the link capacity. In this case it deduces that the link is congested and sets the 
H_congestion bit in the packet header. 

7. Conclusions 
In this deliverable we showed that designing Network Adaptation Techniques for 
Internet video transmission poses many challenges. In addition we took a holistic 
approach to these challenges namely Internet video transmission requirements and we 
presented some of the existing solutions regarding network adaptation techniques 
primarily from transport perspective (focusing on congestion control) that are used 
for the improvement of the perceived quality.  
The content adaptation techniques which are methods commonly used for the 
adaptation of content to the desirable transmission rate working in cooperation with 
the network adaptation techniques must be able to adapt the content to the necessary 
transmission rate without having to regenerate the information. Transmitting the 
information in multiple layers which are decoded together at the receiving end is 
deemed the most appropriate for cases of extreme conditions. 
Moreover we presented two novel feedback techniques for the increase of the user 
perceived quality. ADIVIS is a sender-driven approach. The video streaming server 
first codes the video sequence into multiple data streams (called layers) and then 
sends each stream/layer to each receiver. Each receiver establishes a new connection 
with the streaming server. The server uses its feedback mechanism and its decision 
algorithm in order to calibrate the transmission bit rate through this connection. 
During the transmission the user cannot change any parameter of the video stream; 
only the server has the right to do this.  
On the other hand the second algorithm (RAF) is merely uses a receiver-driven 
technique as the user has the ability to set some transmission parameters according to 
his/her needs and the capabilities of his/her terminal equipment.  
Furthermore we proposed two novel congestion control protocols for high speed 
networks. Adaptive Congestion control Protocol (ACP) is a window based protocol 
which does not require maintenance pf per flow states within the network. It utilizes 
an explicit multi-bit feedback signalling scheme to convey congestion information 
from the network to the end users and vice versa. A distinct feature of the protocol is 
the implementation at each link of an estimation algorithm which is derived using on 
line parameter identification techniques. The algorithm generates estimates of the 
number of users utilizing the link which are used to tune the control parameters in 
order to maintain stability. This feature, enables the protocol to adapt to dynamically 
changing network conditions. 
We also present a new Internet congestion control protocol whose objective is to 
regulate the queue size at each link so that it tracks a reference queue size chosen by 
the designer. 
 



The performance evaluation of all the algorithms as well as the pros and the cons of 
each approach will be presented through simulations that will be conducted and 
presented in the next deliverable. 
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