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a b s t r a c t

To identify the tradeoffs between efficiency and fault-tolerance in dynamic cooperative computing, we
initiate the study of a task performing problem under dynamic processes’ crashes/restarts and task
injections. The system consists of n message-passing processes which, subject to dynamic crashes and
restarts, cooperate in performing tasks that are continuously and dynamically injected to the system.
Tasks are not known a priori to the processes. This problemabstracts todays Internet-based computations,
such as Grid computing and cloud services, where tasks are generated dynamically and different tasks
may become known to different processes. We measure performance in terms of the number of pending
tasks, and as such it can be directly compared with the optimum number obtained under the same
crash–restart–injection pattern by the best off-line algorithm. Hence, we view the problem as an online
problem and we pursue competitive analysis. We propose several deterministic algorithmic solutions to
the considered problem under different information models and correctness criteria, and we argue that
their performance is close to the best possible offline solutions. We also prove negative results that open
interesting research directions.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Motivation. One of the fundamental problems in distributed com-
puting is to have a collection of processes to collaborate in per-
forming large sets of tasks. For such distributed collaboration to be
effective it must be designed to cope with dynamic perturbations
that occur in the computation medium (e.g., processes or com-
munication failures). For this purpose, a vast amount of research
has been dedicated over the last two decades in developing fault-
tolerant algorithmic solutions and frameworks for various versions
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of such cooperation problems (e.g., [11,12,14,21–23,28,30]) and in
deploying distributed collaborative systems and applications
(e.g., [2,4,15,25,27]).

In order to identify the tradeoffs between efficiency and fault-
tolerance in distributed cooperative computing, much research
was devoted in studying the abstract problem of using n processes
to cooperatively perform m independent tasks in the presence of
failures (see for example [13,21,24]). In this problem, known as
Do-All, the number of tasks m is assumed to be fixed and known
a priori to all processes. Although there are several applications
in which tasks can be known a priori, in todays typical Internet-
based computations, such as Grid computing (e.g., [15]), Cloud
services (e.g., [2]), and master–worker computing (e.g., [25,27]),
tasks are generated dynamically and different tasks may become
known to different processes. As such computations are becoming
very popular, there is a corresponding need to develop efficient and
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fault-tolerant algorithmic solutions that would also be able to cope
with dynamic tasks injections.
Our contributions. In this work, in an attempt to identify the
tradeoffs between efficiency and fault-tolerance in dynamic co-
operative computing, we initiate the study of a task performing
problem in which n message-passing processes, subject to dy-
namic crashes and restarts, cooperate in performing independent
tasks that are continuously and dynamically injected to the system.
Our investigation is based on a simple model of computation that
abstracts key attributes, such as dynamic task arrivals, worst case
occurrences of processes crashes and restarts, and level of infor-
mation given to the processes. Our goal is to provide a rigorous
analysis of the efficiency of algorithmic solutions – i.e., provide
provable efficiency and fault-tolerance guarantees – and identify
limitations even under the simplemodel (lower bound and impos-
sibility results that are valid also in more complex settings). We
believe that our investigation provides new insights on the com-
plexity and fault-tolerance of dynamic task computations, on
which follow up works could build on, either by enhancing the
model to bypass the limitations or focus on extending our positive
results to different (more complex) settings.
Basic framework: The computation is broken into synchronous
rounds, in which each process is allocated tasks, receives mes-
sages sent to it in the prior round, performs local computations
(including performing at most one task), and sends messages (if
any). Unless otherwise stated, we assume that tasks are of unit-
length, that is, it takes one round for a process to perform a task.
This abstracts the situations where tasks consume comparable re-
sources1 and processors are homogeneous (hence one can specify
the notion of a unit-length based on the tasks’ requirements and
processes’ capabilities). An execution of an algorithm is specified
under a crash–restart–injection pattern, that is, a collection of crash,
restart and injection events; in a crash event a process crashes, in a
restart event a crashed process restarts, and in an injection event,
a task in injected in the system (the task is allocated to one or
many processes). Then, the efficiency of an algorithm is measured
in terms of the maximum number of pending tasks at the beginning
of a round of an execution, taken over all rounds and all executions.
This enables us to view the problem as an online problem and pur-
sue competitive analysis [32], that is, compare the efficiency of a
given algorithm with the efficiency of the best offline algorithm
that knows a priori the crash–restart–injection patterns; we refer
to the efficiency of the offline algorithm as OPT. More precisely,
we say that an algorithm has OPT + x pending-tasks competitive-
ness, if the algorithm’smaximumnumber of pending tasks (over all
rounds and executions) is greater than OPT by at most an additive
real number x. (A formal definition is given in Section 2.) Observe
that the comparison to OPT means in fact that we compare our al-
gorithm’s efficiency to the efficiency of all other possible solutions,
for any crash–restart–injection pattern.
Task performance guarantees: We consider two versions of the
problemwith respect to the task performance guarantees required
by algorithmic solutions. The first one, which constitutes the basic
correctness property, requires that no task is lost, that is, a task
is either performed or the information of the task remains in
the system. The second and stronger property, which we call
fairness, requires that all tasks injected in the system are eventually
performed. Aswemention below,we draw a line on the conditions
under which these two properties can be satisfied and with what
cost.

1 We refer the reader to [21] for a discussion on cooperative applications
involving tasks that are independent and consume comparable resources.
Our approach: We deploy an incremental approach in studying the
problem. We first assume that there is a centralized authority,
called central scheduler, that at the beginning of each round informs
the processes (that are currently operational) about the tasks
that are still pending to be performed, including any new tasks
injected to the system in this round. The reason to begin with this
assumption is two-fold: (a) The fact that processes have consistent
information on the number of pending tasks enables us to focus
on identifying the inherent limitations of the problem under
processes failures/restarts and dynamic injection of tasks without
having to implement information sharing amongst processes. The
algorithmic solutions developed under this information model
are used as building blocks in versions of the problem that
deploy weaker information models. Furthermore, lower bound
results developed in this information model are also valid for
weaker information models. (b) Studying the problem under
this assumption has its own independent interest, as the central
scheduler can be viewed as an abstraction of a monitor used
for monitoring the computation progress and providing feedback
to the computing elements. For example it could be viewed as
a master server in Master–Worker Internet-based computations
such as SETI [25] or Pregel [27], or as a resource broker/scheduler
in Computational Grids such as EGEE [15].

We then limit the information provided to the processes. We
consider a weaker centralized authority, called central injector,
which informs processes, at the beginning of each round, only
about the tasks injected to the system in this round and
information about which tasks have been performed only in the
previous round. We show how to transform solutions for the task
performing problem under the model of central scheduler into
solutions for the problem under the model of central injector with
the expense of sending a quadratic number of messages in every
round. It also occurs that a quadratic number of messages must
be sent in some rounds by any correct distributed solution for the
considered problem in the model of central injector.

With the gained knowledge and understanding, we then show
how processes can obtain common knowledge on the set of
pending tasks without the use of a centralized authority. We
now assume the existence of a local injector that allocates tasks
to processes without giving them any global information (for
example, each process may be allocated tasks that no other
process in the system has been allocated, or only a subset of
processes may be allocated the same task). The injector can be
viewed, for example, as a local daemon of a distributed application
that provides local information to the process that is running
on. We show that solutions to this more general setting come
with minimal cost to the competitiveness, provided that reliable
multicast [7] is available.
Our results: We now summarize our results. (All results concern
deterministic solutions.)

(a) Limitations on competitiveness: We first show a lower bound
of OPT + n/3 on the pending-tasks competitiveness of
any deterministic algorithm, even for algorithms that make
use of messages and are designed for restricted forms of
crash–restarts patterns (cf. Section 3). The lower bound is
proved for the model of central scheduler, but since this is the
strongest informationmodel, the result holds also for the other
two weaker information models.

(b) Solutions guaranteeing correctness: Within the model of cen-
tral scheduler we develop the deterministic algorithm AlgCS
that does not make any use of message exchange amongst
processes and achieves OPT + 2n pending-tasks competitive-
ness; in view of the lower bound above, the algorithm is op-
timal within a constant factor on the additive term of the
competitiveness formula. Using a generic transformationweob-
tain algorithm AlgCI for the model with central injector with
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the same competitiveness as algorithm AlgCS. Algorithm Al-
gCI has processes sending messages to each other in every
round. Finally, we develop algorithm AlgLI for the model with
local injector and we show that it achieves OPT + 3n pending-
tasks competitiveness, under the assumption of reliable multi-
cast. These results are presented in Section 4.

(c) Solutions guaranteeing fairness: The issue of fairness is far
more complex than correctness; we show that it is necessary
and sufficient to assume that when a process restarts it does
not fail again in the next at least two consecutive rounds;
under this restriction, called 2-survivability, we develop fair
algorithms AlgCSF, AlgCIF, and AlgLIF in the three considered
information models and show that they ‘‘suffer’’ an additional
additive surplus of n to their competitiveness, comparing to
the algorithms that guarantee only correctness. An interesting
observation is that fairness can only be guaranteed in infinite
executions, otherwise competitive solutions are not possible.
These results are detailed in Section 5.

(d) Bounding communication: We show that in the models of
central injector and local injector, if processes do not send
messages to all other processes, then correctness (and thus also
fairness) cannot be guaranteed, unless stronger restrictions are
imposed on the crash–restart patterns. This result is detailed in
Section 6.1.

(e) Non-unit-length tasks: For the above results we assumed that
tasks are of unit-length, that is, they require one round to be
performed by some process. The situation is even more com-
plex when tasks may not be of unit-length. For the model of
central scheduler, we show that if tasks have uniform length
d ≥ 1, that is, each task requires d consecutive rounds
to be performed by a process, then a variation of algorithm
AlgCS achievesOPT+3npending-tasks competitiveness, under
the correctness requirement. We conjecture that similar tech-
niques can be applied to obtain competitive algorithms in the
other information models and under the fairness requirement.
Then we show that bounded competitiveness is not possible
if tasks have different lengths, even under slightly restricted
crash–restart patterns. These results are given in Section 6.2.

The negative results of (d) and (e) give rise to interesting
research questions and yield interesting future research directions.
These are discussed in Section 7.
Related work. The Do-All problem has been studied in sev-
eral models of computation, including message-passing (e.g.,
[13,18,21]), shared-memory (e.g., [3,8,24,26]), partitionable net-
works (e.g., [20]), in the absence of communication (e.g., [29]) and
under various assumptions on synchrony/asynchrony and failures.
As alreadymentioned, the underlying assumption is that the num-
ber of tasks m is fixed, bounded and known a priori (as well as the
task specifications) by all processes. The Do-All problem is consid-
ered solved when all tasks are performed, provided that at least
one process remains operational in the entire computation (this
can be viewed as a simplified version of our fairness property). The
efficiency ofDo-All algorithms ismeasured either as the total num-
ber of tasks performed—work complexity [13] or as the total num-
ber of available processes steps [24]. Georgiou et al. [19] considered
an iterated version of the problem, where waves of m tasks must
be performed, one after the other. All task waves are assumed to
be known a priori by the processes. Clearly the problem we con-
sider in this work is more general (and harder), as tasks do not
come in waves, are not known a priori, and their number might
not be bounded. Furthermore, we consider processes crashes and
restarts, as opposed to the work in [19] that considers only pro-
cesses crashes. Chlebus et al. in [7] considered the Do-All problem
in the synchronousmessage-passingmodelwith processes crashes
and restarts. In order to obtain a solution for the problem in this
setting, they made two modeling assumptions: (a) Reliable multi-
cast: if a process fails while multicasting a message, then either all
(non-faulty) targeted processes receive the message, or none does,
and (b) There is at least one process alive for k > 1 consecutive
rounds of the computation. In the present paper, as already men-
tioned, we also require reliable multicast in the model with local
injector, and as we discuss in later sections, to guarantee fairness
we require a similar restriction on the process living period. Fi-
nally, in [20], an online version of the Do-All problem is considered
where the network topology changes dynamically and processes
form disjoint communication groups. In this setting the efficiency
(work complexity) of a randomized Do-All algorithm is compared
with the efficiency of an offline algorithm that is aware a priori of
the changes in the network topology. Again, the number of tasks is
fixed, bounded and known a priori to all processes.

The notion of competitiveness was introduced by Sleator and
Tarjan [32] and it was extended for distributed algorithms in
a sequence of papers by Bartal et al. [6], Awerbuch et al. [5],
and Ajtai et al. [1]. Several distributed computing problems have
been modeled as online problems and their competitiveness was
studied. Examples include distributed data management (e.g., [6]),
distributed job scheduling (e.g., [5]), distributed collect (e.g., [9]),
and set-packing (e.g., [14]).

In a sequence of papers [10,11,28] a scheduling theory is
being developed for scheduling computations having intertask
dependencies for Internet-based computing. The objective of the
schedules is to render tasks eligible for execution at the maximum
possible rate and avoid gridlock (although there are available
computing elements, there are no eligible tasks to be performed).
The task dependencies are represented as directed acyclic tasks
and the theory has been extending the families of DAGs that
optimal schedules can be developed. This line of work mainly
focuses on exploiting the properties of DAGs in order to develop
schedules. Our work, although it considers independent tasks,
focuses instead, on the development of distributed fault-tolerant
task performing algorithms and exploring the limitations of online
distributed collaboration.

2. Model

Distributed setting. We consider a distributed system consisting
of n synchronous, fault-prone, message-passing processes, with
unique ids from the set [n] = {1, 2, . . . , n}. We assume that
processes have access to a global clock. We further assume a
fully connected underlying communication medium (that is, each
process can directly communicatewith every other process)where
messages are not lost or corrupted in transit.
Rounds. For a simplicity of algorithm design and analysis, we
assume that a single round is split into four consecutive steps:
(a) Receiving step, in which a process receives messages sent to it
in the previous round; (b) Task injection step, in which new tasks
are allocated to processes, if any; (c) Local computation step, in
which a process performs local computation, including execution
of at most one task; and (d) Sending step, in which a process sends
messages to other processes as scheduled in the local computation
part.
Tasks. Each task specification τ is a tuple (id, ρ, code), where τ .id
is a positive integer that uniquely identifies the task in the system,
τ .ρ corresponds to the round number that the task was first in-
jected to the system (allocated to some process or set of processes),
and τ .code corresponds to the computation that needs to occur so
that the task is considered completed (that is, the computational
part of the task specification that is actually performed).Unless oth-
erwise stated, cf., Sections 6.2 and 7, we assume that it takes one
round for each task to be performed, and it can be performed by
any process which is alive and knows the task specification.



C. Georgiou, D.R. Kowalski / J. Parallel Distrib. Comput. 84 (2015) 94–107 97
Tasks are assumed to be similar, independent and idempotent.
By similarity we mean that the task computations on any process
consume equal or comparable local resources. By independencewe
mean that the completion of any task does not affect any other task,
and any task can be performed concurrently with any other task.
By idempotence we mean that each task can be performed one or
more times to produce the same final result. Several applications
involving tasks with such properties are discussed in [21]. Finally,
we assume that task specifications are of polynomial size in n.
Adversary. We assume an adaptive and omniscient adversary
that can cause crashes, restarts and task injections. We define an
adversarial pattern A as a collection of crash, restart and injection
events caused by the adversary. A crash(r, i) event specifies that
process i is crashed in round r . A restart(r, i) event specifies that
process i is restarted in round r; it is understood that no restart(r, i)
event can take place if there is no preceding crash(r ′, i) event such
that r ′ < r .2 Finally an inject(r, i, τ ) event specifies that process i
is allocated the task specification τ in round r .

We say that a process i is alive in a round r if the process is
operational at the beginning of the round and does not fail by the
end of the round (a process that restarts at a beginning of a round
and does not fail by the end of the round is also considered alive in
that round). We assume that when the adversary injects tasks in a
given round, it injects a finite number of tasks.
Restarts of processes: We assume that a restarted process has
knowledge of only the algorithm being executed and the ids of the
other systemprocesses (but no information onwhich processes are
currently alive). Algorithmically speaking, once a process restarts,
it waits to receive messages or to be injected tasks. Then it knows
that a new round has begun and hence it can smoothly start
actively participating in the algorithm. For the ease of analysis and
better clarity of result exposition we simply assume that processes
are restarted at the beginning of a round — but processes could fail
at any point during a round. We also assume that a process that
restarts in the beginning of round r receives the messages sent to
it (if any) at the end of round r − 1.
Admissibility: We say that an adversarial pattern is admissible, if

(a) in every round there is at least one alive process; in case
of finite executions, all processes alive in the last round are
crashed right after this round (in otherwords, a finite execution
of an algorithm ends when all processes are crashed); and

(b) a task τ that is injected in a given round is allocated to at least
one alive process in that round; that is, the adversary gives
some window of opportunity for task τ to either be performed
in that round or other processes to be informed about this task.

Condition (a) is required to guarantee some progress in the com-
putation. To motivate condition (b), consider the situation where
a process in a given round is allocated a task τ (and this is the
only process being allocated task τ ) and then the process immedi-
ately crashes. Nomatter of the scheduling policy or communication
strategy used, task τ cannot be performed by any algorithm; with
condition (b) we exclude the consideration of such uninteresting
cases; these tasks are not taken into consideration, neither for cor-
rectness, nor for performance issues. From this point onwards we
only consider admissible adversarial patterns.
Restricted classes of adversaries. As we show later, some desired
properties of task performing algorithms, such as fairness, may
not be possible to achieve in general executions under any
admissible adversarial pattern. In such cases, we also consider
a natural property that restricts the power of adversary, called

2 With the exception of a process first entering the computation; not all processes
may be awake at the beginning of the computation.
t-survivability: Every awaken3 process must stay alive for at least t
consecutive rounds, where t ≥ 1 is an integer.
Information models. In regards to the distribution of injected
tasks, as discussed in Section 1, we study three settings:

(i) central scheduler: in the beginning of each round it provides
all operational processes with the current set of unperformed
tasks’ specifications;

(ii) central injector: in the beginning of each round it provides all
operational processes with specifications of all newly injected
tasks, and also confirmation of tasks being performed in the
previous round, i.e., for round r , it informs all operational
processes of the tasks injected in the system in this round and
the tasks that have been successfully performed in round r−1;

(iii) local injector: in the beginning of each round it provides each
operational process with specifications of tasks allocated to
this process; a task may be allocated to many processes in the
same round.

Correctness and fairness. We consider two properties of an
algorithm: correctness and fairness.
Correctness of an algorithm: An algorithm is correct if for any
execution of the algorithm under an admissible adversarial pattern,
for any injected task and any round following the injection
time, there is a process alive in this round that stores the task
specification, unless the task has been already performed. Observe
that this property does not guarantee eventual performance of a
task.
Fairness of an algorithm: We call an infinite execution of an
algorithm under an adversarial pattern fair execution if each task
injected during the execution is eventually performed. We say
that an algorithm is a fair algorithm if every infinite execution
of this algorithm is fair.4 In other words, this property requires
correctness, plus the guarantee that each task is eventually
performed in any infinite execution of an algorithm.
Efficiency measures. Per round pending-tasks complexity: Let Pr
denote the total number of pending tasks at the beginning of
round r , where by pending task we understand a task which has
been already injected to some process (or a set of processes) but
not yet performed by any process.5 Then the per round pending-
tasks complexity is defined as the maximum Pr over all rounds
(supremum in case of infinite computations).

In case of competitive analysis, we say that the competitive
pending-tasks complexity is f (OPT, n), for some function f , if and
only if for every adversarial pattern A and round r the number
of pending task in round r of the execution of the algorithm
against adversarial pattern A is at most f (OPT(A, r), n), where
OPT(A, r) is the minimum number of pending tasks achieved
by an off-line algorithm, knowing A, in round r of its execution
under the adversarial pattern A. In the classical competitiveness
methodology function f needs to be linear with respect to the first
coordinate, however as we will show, sometimes more accurate
functions can be produced for the problem of distributed task
performance.

Observe that the above definition allows for the optimum com-
plexity of two different rounds to bemet by two different optimum

3 This includes restarted processes and processes first entering the computation.
4 It is not difficult to see that the adversary can form finite executions in which

not all tasks can be performed, not even by the offline algorithm.
5 If a task was performed by some process, but the adversary did not provide

the possibility to this process to inform another process or a central authority
(scheduler or injector) – e.g., the process is crashed as soon as it performs the task
– then this task is not considered performed.
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algorithms. However a simple greedy algorithm scheduling differ-
ent pending tasks, giving priority to the ones that have been the
longest in the system, to different alive processes at each round is
optimal from the perspective of any admissible adversarial pattern
A and any round r (recall that to specify the optimumalgorithmwe
can use the knowledge of A); note that in infinite executions, this
greedy algorithm is fair.

For the sake of more sensitive bounds on competitiveness of al-
gorithms, we consider subclasses of adversarial patterns achieving
the same worst-case performance in terms of the optimum solu-
tion. These classes are especially useful for establishing sensitive
lower bounds. We say that an adversarial pattern A is (k, r)-dense
if OPT(A, r) = k. A patternAwhich is (k, r)-dense for some round
r is called k-dense.

In Section6.1wealso study themessage complexity of solutions
to the task performing problem. Specifically we consider per-round
message complexity, defined as the maximum number of point-to-
point messages sent in a single round of an execution of a given
algorithm, over all executions and rounds.

3. A lower bound on competitiveness

We begin the investigation of the complexity of our scheduling
problem with a lower bound result. In particular we show
that all algorithms require a linear additive factor in their
competitive pending-tasks complexity even in the presence of a
restricted adversary satisfying t-survivability, for any t . Our proof
is developed within the model of central scheduler, therefore the
derived lower bound holds for all settings considered in this work,
as the central scheduler is the most restrictive one (i.e., it is the
strongest information model). The result is proved for algorithms
that guarantee the correctness property; since fairness is a stronger
property, this lower bound trivially holds for fair algorithms as
well. Finally note that the lower bound is valid even for algorithms
that exchange messages (and hence information) in every round.

Theorem 3.1. Every algorithm has competitive pending-tasks com-
plexity of at least k + n/3 against some k-dense adversarial pattern
satisfying t-survivability, for every non-negative integers k, t.

Proof. Consider an algorithm Alg; Fix a round r such that all
processes are alive at the beginning of the round and have been
alive for more than t rounds (hence t-survivability is satisfied) and
there are no pending tasks, neither for Alg nor for the optimum
offline solution (for example, the adversary, up to round r > t
failed no processes and was injecting in every round as many
tasks as Alg would be able to perform all of them by the end of
the round). Now consider the following adversarial pattern A for
round r: 2n/3 tasks are injected and n/3 processes are crashed at
the beginning of the round.

Since the optimumoffline solution knows a priori the processes
that will be crashed, it allocates the tasks to the processes that will
not fail. Hence OPT(A, r+1) = 0. Now, it is not difficult to see that
the best allocation that Alg can obtain is to have a different task
to be allocated to 2n/3 processes and each of the remaining n/3
processes being allocated a task that has already been allocated to
another process. It follows that there exist at least n/3 tasks that
are uniquely allocated to a process (that is, at most one process has
been allocated such task). The adversary crashes these processes
and hence Alg(A, r + 1) ≥ n/3.

In round r + 1 the adversary injects 2n/3 + k new tasks, for
some k ∈ Z+. The adversary fails no process. It follows that both
the optimum offline solution and Alg may perform 2n/3 different
tasks (each alive process performs a different task) and hence
OPT(A, r + 2) = k and Alg(A, r + 2) ≥ k + n/3. Observe that
A is k-dense for round r + 2. Hence the result follows.

Finally, observe that even if processes in algorithm Alg ex-
change some information (e.g., regarding their state or knowledge)
amongst them in every round, the described adversarial pattern re-
sults in the same competitiveness, as the arguments above work
under the assumption that processes know the whole execution
in the previous rounds. Hence, message exchange does not help to
improve competitiveness under this adversarial pattern. �

As we will see in Sections 4, 5, and 6, we develop scheduling
algorithms that achieve competitive pending-tasks complexity of
OPT + O(n). Therefore, with respect to the above lower bound,
all these algorithms are optimal within a constant on the additive
term of the competitiveness formula.

4. Solutions guaranteeing correctness

In this section we study the problem focusing on developing
solutions that guarantee correctness, but not necessarily fairness
(this property is studied in Section 5). We consider unit-length
tasks (non-unit-length tasks are discussed in Section 6.2). We
impose no restriction on the number of messages that can be sent
in a given round; for example processes could send a message
to every other processes, in every round (the issue of restricted
communication is studied in Section 6.1).

4.1. Central scheduler

We begin with the strongest information model among the
ones we consider in this work, that of the central scheduler. We
develop a simple algorithm, called algorithm AlgCS and show that
it achieves a competitive pending-tasks complexity of OPT + 2n.
The pseudocode of the algorithm is given below, specified for a
process i and a round r . Observe that the algorithmdoes not require
sending messages between processes.

Algorithm AlgCS(i, r)
• Get set P of pending task specifications from the scheduler.
• Rank the task specifications in incremental order, based on
the task id.
• Perform task with rank i mod |P |.

Theorem 4.1. Algorithm AlgCS achieves competitive pending-tasks
complexity of at most OPT + 2n against any admissible adversary.

Proof. Suppose, to the contrary, that algorithm AlgCS has more
than OPT(A, r∗)+2n pending tasks at the end of some round r∗ of
some execution of the algorithm under some adversarial pattern
A in which the optimum number of pending tasks is OPT(A, r∗).
Without loss of generality, assume that r∗ is the first such round
in the execution under adversarial pattern A. Let r be the largest
round number before r∗ at the end of which there are smaller than
OPT(A, r) + n pending tasks in the algorithm (it is possible that
r is the first round of the execution). Hence, in the time interval
[r + 2, r∗

] the scheduler informs processes about a set of at least
n tasks, the same set for all processes (note that r + 2 ≤ r∗, since
it would take at least two rounds for the competitiveness to grow
by n). Therefore, algorithm AlgCS assures that all alive processes
in a round in this period perform pairwise different tasks, which
means that the number of newly performed tasks is the same as by
any optimum algorithm against A in this round. Observe also that
the difference of performed tasks in round r + 1 by the optimum
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algorithm and algorithm AlgCS is at most n − 1; since there is at
least one alive process (admissibility property) then the optimum
performs at most n different tasks while AlgCS performs at least
one task. These two facts imply that the number of tasks remaining
at the end of round r∗ of the execution of the algorithm is smaller
than

(OPT(A, r) + n) +

OPT(A, r∗) − OPT(A, r + 1)


≤ (OPT(A, r) + n) +


OPT(A, r∗) − (OPT(A, r) − (n − 1))


= OPT(A, r∗) + 2n − 1.

This is a contradiction, which concludes the proof of the
theorem. �

One might wonder whether having the processes exchange
information in every round could improve competitiveness in this
setting. However, since the lower bound of Theorem3.1 holds even
for algorithms that have the processes exchangemessages in every
round, it follows that one cannot hope to achieve much better
competitiveness if algorithmAlgCS (or some other algorithm) uses
the full communication paradigm.

4.2. Central injector

We now relax the information given to the processes in the
beginning of every round by considering the weaker information
model of central injector. We first show how to transform an
algorithm specified for the setting with central scheduler, call it
source algorithm, into an algorithm specified for the setting with
central injector, call it target algorithm.

The main structure of a generic algorithm, call it GenCS,
specified for the setting with central scheduler is as follows (for
a process i and round r):

Source Algorithm GenCS(i, r)
• (stage 1) Get set P of pending task specifications from
the scheduler. Set Pi = P .
• (stage 2) Receive messagemj by each process j that
sent a message in the previous round containing
information xj. I.e.,mj = ⟨xj⟩.
•(stage 3) Based on Pi and each received information xj
deploy the scheduling policy S to perform a task.
• (stage 4) Send a message with information xi to all
other processes.

The transformation, called Tran_CS_to_CI , maintains all local
variables used by the source algorithm and sends the same
messages, but now additional local variables are used and
messages may contain additional information, required by the
processes in the target algorithm in order to obtain the same set
of pending tasks (under the same adversarial pattern) as the one
that the central scheduler provides by default to the processes in
the source algorithm.

We now specify transformation Tran_CS_to_CI for process i and
round r , when given as input algorithm GenCS(i, r).

Transformation Tran_CS_to_CI(i, r)
• Replace stage 1 with: Get set N of specifications of newly
injected tasks and set D of tasks confirmed as done in round
r − 1, from the central injector.
• Amend stage 2:mj = ⟨xj, Pj⟩ and define
R = {j : received a message from j in this round}.
• Insert a new stage: Pi =


j∈R∪{i} Pj ∪ N \ D .

• Keep stage 3 the same.
• Amend stage 4 to also send Pi
We now give the resulting target algorithm GenCI.

Target Algorithm GenCI(i, r)
• (stage 1) Get set N of specifications of newly injected tasks
and set D of tasks confirmed as done in round r − 1, from the
central injector.
• (stage 2) Receive messages by each process j that sent a
message in the previous round containing information xj and
Pj. Let R = {j : received a message from j in this round}.
• (stage 3) Set Pi =


j∈R∪{i} Pj ∪ N \ D .

• (stage 4) Based on Pi and each received information xj
deploy the scheduling policy S to perform a task.
• (stage 5) Send a message with information xi and Pi to all
other processes.

Observe that algorithm GenCI continues to maintain the
variables of GenCS and sends the same messages as algorithm
GenCS (but with more information). What remains to show is that
the set of pending tasks used in the scheduling policy S in a given
round is the same for both algorithms.

Lemma 4.2. For any given round r, the set of pending tasks used in
the scheduling policy S is the same in the executions of algorithms
GenCS and GenCI formed by the same adversarial pattern.
Proof. Consider two parallel executions of the algorithms under
the same adversarial pattern. The proof proceeds by induction on
rounds. Consider the base case (round 1). In algorithm GenCS the
central scheduler provides to all alive processes the set of pending
tasks, which is essentially the number of newly injected tasks. This
information is also provided by the central injector in algorithm
GenCI (P = N and D = ∅). Since no messages are received, the
claim of the lemma holds.

Assume that the claim of the lemma holds for r − 1, we show
that it also holds for round r . (Note that this claim also implies
that the local sets of pending tasks of the processes in algorithm
GenCI are the same, since they are the samewith the ones inGenCS,
which bydefinition are the same.) By inductive hypothesis, the task
chosen to be performed by each process that is alive in the task
performance step of round r − 1 is the same in both algorithms,
as the scheduling policy is applied on the same information. Since
the same adversarial pattern is applied, a process that does not
perform its chosen task in round r −1 of algorithm GenCSwill also
not perform it in round r −1 of algorithm GenCI. Therefore, the set
of tasks performed in round r − 1 is the same for both algorithms.
Furthermore, the processes that manage to send a message at the
end of round r−1 in the one algorithm are the same as in the other
algorithm. The processes in algorithm GenCI send, additionally
to the information x, their set of pending tasks P . By inductive
hypothesis, this set is the same to all processes at the sending
phase of round r − 1 (since it was the same in the task performing
phase and it does not change after that). Due to the admissibility
assumption, there must be at least one process that manages to
send a message to all other processes in round r − 1.

In the beginning of round r , in algorithm GenCS, the central
scheduler provides to all alive processes the set of pending tasks.
This set includes the older tasks that remain pending by the end of
round r−1 and the newly injected tasks. The pending tasks are the
tasks thatwere pending at the scheduling step of round r−1minus
the tasks that were performed during the task performing step of
that round. The set of newly injected tasks (N ) and the set of tasks
that were performed in round r−1 (D) are provided by the central
injector to the processes that are alive at the beginning of round r in
algorithmGenCI. The set of pending tasks of round r−1 is included
in the message sent in round r − 1 by a alive process (per admissi-
bility there is at least one). By induction this set is the same as the
one in algorithmGenCS and hence it follows that in the update step
of algorithm GenCI in round r , the processes will obtain the same
set of pending tasks as the processes in algorithm GenCS. �



100 C. Georgiou, D.R. Kowalski / J. Parallel Distrib. Comput. 84 (2015) 94–107
Consider algorithm AlgCS of Section 4.1. This algorithm is a
specialization of algorithm GenCS where xi’s are null and the
scheduling policy S is simply ranking the tasks inP in incremental
order (based on their ids) and having process i perform task with
rank i mod |P |. Let Algorithm AlgCI be the algorithm resulting
by applying the transformation Tran_CS_to_CI to algorithm AlgCS.
Then, from Lemma 4.2 and Theorem 4.1 we get:

Theorem 4.3. Algorithm AlgCI achieves competitive pending-tasks
complexity of at most OPT + 2n against any admissible adversary.

4.3. Local injector

In this section we consider the local injector model. Consider
algorithm AlgLI, specified below for a process i and a round r . In
each round r , each process i maintains two sets, N and U. Set
N contains all new tasks injected to this process in this round.
Set U contains older tasks that the process knows they have been
injected in the system (not necessarily to this process) but have not
been confirmed as done (i.e., they are still unperformed).

Algorithm AlgLI(i, r)
• Get specifications of newly injected tasks from local
scheduler and store them in set N (remove any older
information from this set).
Receive messages sent (if any) by other processes in round
r − 1.
• Update set U based on received messages: the new set U is
the union of all the received sets U and N minus the tasks that
have been reported in the current round as done in the
previous round.
• Perform a task based on the following scheduling policy: if
set U ≠ ∅ then rank tasks in U incrementally based on their
ids and perform task with rank i mod |U|. Otherwise, and if N
is not empty, then rank the tasks in N incrementally based on
their ids and perform the task with the smallest rank.
• Send to all other processes sets N , U and the task id of the
performed task.

The following lemma states that the information on injected
tasks is not lost, but it is propagated in the system with a round
of delay.

Lemma 4.4. In any execution of algorithm AlgLI, the tasks injected
to the processes in round r are learned by all processes that are alive
at the beginning of round r + 1, under any adversary.

Proof. Fix a round r . Let Lr denote the set of processes that are
alive for the whole of round r; from the definition of admissibility
(clause (b)), from the tasks injected in round r , we only focus on the
tasks injected to the processes in this set. We denote by Ir,i the set
of tasks injected to process i in round r , i ∈ Lr . Then Ir =


i∈Lr

Ir,i
is the set of tasks injected in the system in round r .

Per algorithm AlgLI each process i ∈ Lr sends to all other
processes set Ir,i (along with some other information). Since these
processes are alive in the whole round and there is at least one
live process in round r + 1 (admissibility restriction), at least
one process learns the whole set Ir at the beginning of round
r + 1. Hence, the information on injected tasks is not lost and it
is propagated in the system with a round of delay. This completes
the proof. �

The following lemma shows that at the beginning of each round
processes have consistent information on the set of pending tasks.
Here reliable multicast is assumed [7]: if a process crashes while
multicasting amessage, then either all targeted processes (that are
alive) receive the message or none does.
Lemma 4.5. In any execution of algorithm AlgLI assuming reliable
multicast, the processes that are alive at the beginning of each round
r (before the injection step) have the same information on the set of
pending tasks.

Proof. We proceed by induction on rounds. The base case holds
trivially. Assuming that the claim holds for round r − 1, we show
that it also holds for round r .

By induction hypothesis, all processes that are alive at the
beginning of round r − 1 have the same information on pending
tasks. In particular they have the same setU. From these processes,
the ones that are alive for the whole round may also be injected
new tasks. We denote the set containing these processes by Lr−1.
Also let Ir−1,i be the set of tasks injected to process i ∈ Lr−1 in
round r−1 (Ir−1,i can be empty). Per algorithmAlgLI, the processes
in round r − 1, perform a task (using the specified scheduling
policy) and send their sets N , U, and the task id of the task they
performed in this round (note that for each process i ∈ Lr−1,
N = Ir−1,i).

First we consider the processes in Lr−1. Since these processes
are alive in the whole round, their messages are received by all
processes that are alive at the beginning of round r: let set Live-
BegNextRound denote these processes. Per Lemma 4.4 all processes
in LiveBegNextRound learn all the new tasks injected in the previ-
ous round (and hence, have consistent information with respect to
these tasks). Furthermore, the processes in LiveBegNextRound re-
ceive the sets U from the processes in Lr−1 (they have the same
set U) and the tasks performed by them in round r − 1. Now, con-
sider the processes that were alive at the beginning of round r − 1
but failed during the round (by admissibility, we do not care about
the tasks injected to these processes in round r − 1, unless these
tasks were also injected to processes in Lr−1). These processes
could have performed a task before failing. If such a process fails
before sending a message, then no harm is done. But even if such a
process fails while sending a message, then the reliable multicast
assumption guarantees that the processes in LiveBegNextRound ei-
ther all receive this message (and hence the information that a
task has been performed) or none does. It straightforwardly fol-
lows that when the processes in LiveBegNextRound take the union
of the received sets U and N and remove the tasks reported to be
performed in the previous round they all form the same updated
set U. This completes the proof. �

To show the correctness of algorithm AlgLI it remains to show
that no task is ‘‘lost’’.

Lemma 4.6. In any execution of algorithm AlgLI, assuming reliable
multicast, if a task specification is no longer in the system, then it is
the case that the task has been performed by some process.

Proof. Per Lemma 4.4 we have that information on newly injected
tasks is not lost; it is propagated in the system with a round of
delay. So it remains to show that during the update phase of a
round r , if a process removes a task τ for its local set U, this is
because it has been reported by a process that this task has been
performed in round r − 1. We proceed by induction on rounds.

The base case (round 1) holds trivially, as all processes have
empty sets U. Assume that the claim holds up to round r − 1 and
prove for round r . Fix a process i that is alive at the beginning
of round r and will remain alive through the round (there is at
least one such process due to the admissibility restriction). Per
Lemma 4.5 it is immaterial whether i was alive or not in round
r − 1 (all processes have the same information on pending tasks).
Consider a task τ . We consider two cases:

(a) Task τ was injected to some process(es) in round r − 1.
Hence, τ was included in the set N of the process(es) it was
injected at, and since at least one of these processes were alive, τ is
included in process’ i set U at the beginning of round r . However,
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if i also receives a report that τ was performed then it removes it
from U. Observe that only the process(es) that τ was injected at,
could perform it in round r − 1 (as only these processes are aware
of τ ) and given that processes do not lie, τ was indeed performed. If
i does not receive such report, then τ is included in process’ i set U
in round r , and the existence of τ is propagated (by at least process
i) to the next round.

(b) Task τ is a task injected in a round prior to r − 1. From
Lemmas 4.4 and 4.5 it follows that τ was included in the setU of at
least one process and by inductive hypothesis τ was not performed
until the beginning of round r − 1. Hence τ will be included in
all sets U received by process i at the beginning of round r . And
following the same reasoning as in case (a), we have that i will
remove τ only if it has learned that τ was performed by some
process in round r − 1. This completes the proof. �

We now show the competitiveness of algorithm AlgLI:

Theorem 4.7. Algorithm AlgLI, assuming reliable multicast, is
correct and achieves competitive pending-tasks complexity of at most
OPT + 3n against any adversary.

Proof. Correctness follows directly from Lemma 4.6. The proof of
competitiveness is similar to the proof of Theorem 4.1. The key
difference lies in the fact that under the central scheduler processes
are informed about the newly injected tasks in the same round
as opposed to the local injector that it takes an additional round
(per Lemma 4.4). Note that the optimum offline solution does not
suffer from this delay, as it knows the injection pattern a priori. As
it turns out, this round delay does not affect the competitiveness of
the algorithm by more than an additive factor of n. We begin with
the following claim.

Claim 1. If there are at least n pending tasks in set U at the beginning
of a round r, then in round r all alive processes perform pairwise
different tasks.

Wenowprove Claim 1. From Lemma 4.5we have that all processes
that are alive in round r have the same set U and per the thesis of
the claim, |U| ≥ n. Regardless of whether new tasks are injected
in round r , due to the scheduling policy and common knowledge
ofU, all alive processes perform different tasks. This completes the
proof of the claim.

We now make another claim.

Claim 2. In any round r, the number of pending tasks in set U under
any adversarial pattern A is at most OPT (A, r − 1) + 2n, while
OPT (A, r) contains at least all new tasks pending except at most n
and the algorithm has all new tasks pending.

From Claim 2 it follows that the algorithm has at most
OPT(A, r) + 3n total pending tasks (both old and new together)
and this competitiveness cannot grow any further: in round r + 1
there are more than n pending tasks, so by Claim 1 the algorithm
performs as many task as the optimum offline solution (so the
competitiveness does not increase regardless of the number of
injected tasks); if the number of old pending tasks drops below
OPT(A, r + 1) + 2n, then we go back to the statement of Claim 2
for round r + 1. Therefore it remains to prove Claim 2.

Assume, to arrive at a contradiction, that there is a round r∗ of
an execution of the algorithm under some adversarial pattern A
in which the number of pending tasks in set U by the end of the
round is bigger than OPT(A, r∗) + 2n. Moreover, let r∗ denote the
first such round. Let r be the oldest round before r∗ such that the
number of pending tasks in set U by the end of the round is at
most OPT(A, r) + n (it is possible that r is the first round of the
execution). It follows that in round r + 1 the number of pending
tasks in setU is bigger thanOPT(A, r+1)+n ≥ n and smaller than
OPT(A, r + 1) + 2n− 1, by the fact that the algorithm performs at
least one task (admissibility restriction). It follows that r + 1 < r∗.
Then, in the time interval [r +2, r∗

], containing at least one round,
the number of pending tasks in set U at the end of each round is
bigger than n, and therefore by Claim 1 it follows that the number
of tasks performed by the algorithm is the same as the number of
tasks performed by the optimum offline solution. Thus, at the end
of round r∗ the number of pending tasks in setU is upper bounded
by

(OPT(A, r + 1) + 2n − 1) +

OPT(A, r∗) − OPT(A, r + 1)


= OPT(A, r∗) + 2n − 1,

which contradicts the assumption that this number is bigger than
OPT(A, r∗)+2n. This completes the proof of Claim 2 and the proof
of the theorem. �

5. Solutions guaranteeing fairness

We now turn our attention to the much challenging problem
of guaranteeing fairness. Recall from Section 2 that for fairness we
consider only infinite executions and for such executions there is
always a fair (offline) algorithm.

5.1. Central scheduler

We first demonstrate that the issue of fairness is much more
involved than correctness. Consider the following simple fair
algorithm LIS: each process performs the Longest-In-System task,
and in case of a tie it chooses the one with the smallest task id.

Fact 5.1. Algorithm LIS has unbounded pending-tasks competitive-
ness under any adversary, even for the restricted one satisfying
t-survivability, for any t ≥ 1.

Proof. Consider the following adversarial pattern: all processes
are initially alive and the adversary injects n tasks in every round
and crashes no processes. The optimum offline solution is aware
of this pattern and hence it performs all tasks in every round.
However, algorithm LIS performs exactly one task in every round,
and hence the number of pending tasks increases by n − 1 in
each round, yielding unbounded competitiveness. Note that since
the described adversarial pattern involves no process crashes (or
restarts) the claimed competitiveness holds against any admissible
adversary, even the one satisfying t-survivability, for any t . �

The above shows that a fair algorithm not only needs to have
some provision in eventually performing a specific task but it
also needs to guarantee progress when a large number of tasks
is pending. Furthermore, we show that admissibility alone is not
enough to guarantee both fairness and bounded competitiveness.

Theorem 5.2. For any fair algorithm and any integer y > 0, there
is a round r and an admissible, adversarial pattern A such that the
algorithm has more than y · (OPT (A, r)+1) pending tasks at the end
of round r.

Proof. Fix a fair algorithm Alg . The strategy of the adversary is
to repeat cyclically the following parts: Let x be the number of
tasks that are pending in the execution of the optimum offline
algorithmon the already defined parts of the adversarial pattern. In
the beginning of each round, the adversary chooses somemax{n−

x, 0} non-injected tasks and injects them into the system. In the
first round of the constructed part of the pattern, the adversary
‘‘simulates’’ the algorithm to check which of the pending tasks
(including the newly injected ones) would be performed by each
process if it was alive in this round (under the assumption that it
also knows its own history of the previous parts of the execution
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and receives messages potentially sent in the preceding round, as
well as the feedback from the central scheduler). There are two
cases.
Case 1: If all processes would do the same task, the adversary
awakes/restarts all processes that were not alive in the previous
round, and finishes the construction of the current part of its
pattern.
Case 2: If at least two different tasks would be scheduled, the
adversary chooses the task among these tasks for which the
smallest number of processes could perform it in the current
round;we call it a critical task. The critical task is fixed for thewhole
constructed part of the adversarial pattern. Then the adversary
crashes all processes which were alive in the previous round and
would like to perform the critical task in the current round, while
assuring that all other processes (i.e., processes that do not want
to perform the critical task) are alive (if they are alive it keeps
them alive, if they are crashed, it restarts them). In the next round,
the adversary repeats injecting new tasks according to the rule
specified in the beginning of the construction, and also simulates
the algorithm for each process to check which task would be
scheduled to, assuming the process is alive. Then if all processes
declare to perform the critical task, the adversary applies the same
rule as in Case 1 (i.e., assures that all processes are alive and finishes
the construction of the current part of its pattern). Otherwise, it
assures that all processes that do not want to perform the critical
task are alive (restarts them if they are not), while crashing all that
were alive in the previous round and would like to perform the
critical task. This concludes the construction of a single part of the
adversarial pattern.

First, we argue that there is an infinite number of consecutive
parts. Indeed, observe that each part must have bounded length,
since otherwise the critical task of this part would not be
performed during the execution of the algorithm, contradicting the
fact that the algorithm is fair. Second,we prove that after executing
the algorithm by the end of part j of the constructed adversarial
pattern, the competitiveness is at least OPT + j. To see this, note
that OPT is always at most n, and in each round there is at least as
many pending tasks as the number of alive processes in this round
in the execution of the optimum algorithm, by the rule of injecting
tasks. It follows that in each round of the execution of the optimum
algorithm alive processes perform pairwise different tasks, i.e., no
process step is wasted for idling or performing the same task
twice or more. On the other hand, in each part of the execution
of algorithm Alg corresponding to some part of the adversarial
pattern, there is a round in which at least two processes perform
the same task. These observations imply that the additive overhead
above OPT grows by at least one after each part.

Since for each jwehave a round inwhich the number of pending
tasks is at least OPT + j, and moreover because OPT ≤ n, we get
that for each integer y > 0 there is a round in the execution of
algorithm Alg under the constructed adversarial pattern such that
the number of pending tasks is at least y · (OPT + 1). �

Note that Theorem 5.2 implies that the algorithms presented in
Section 4 are not fair. Therefore, in order to achieve both fairness
and competitiveness, one needs to consider some restrictions
to the adversary. It can be easily verified that the impossibility
statement in Theorem 5.2 holds even if 1-survivability is assumed.
As it turns out, it is enough to assume 2-survivability to be able to
obtain fair and competitive algorithms.

Consider algorithm AlgCSF specified below for process i and
round r . Each process i maintains a variable age that counts the
number of rounds that i has been alive since it last restarted. A
restarted process has age = 0, and it increments it by one at the
end of each local computation part. For simplicity, we say that in
round r process is in age x if it was alive for the whole x rounds,
i.e., its age is x in the beginning of the round. Processes exchange
these variables, so, for reference reasons, we will be denoting by
ager(j) the age that process i knows that j has in round r (in other
words, this is the age j reports to i at the end of round r).

Algorithm AlgCSF (i, r)

• Get pending tasks from central scheduler andmessages sent (if any) in
round r − 1.

• Rank pending tasks lexicographically: first based on their pending
period (older tasks have smaller rank) and then based on their task ids
(incremental order).

• Based on received messages, construct set ASure by including all
processes j with ager (j) = 1. If age = 1, then i includes itself in the
set. /* Processes do not send messages to themselves, but they of course know
the value of their local variable age. */

• If the number of pending tasks is larger than 2n then
– If ASure ≠ ∅ then

∗ If age ≠ 1 then perform task with rank n + i.
∗ Else rank processes in ASure based on their ids and perform task

with rank rank(i)ASure (i.e., ith task in set ASure).
– Else [ASure = ∅]

∗ If age ≠ 0 then construct set Recved by including all processes
from whom a message was received at the beginning of the
round. Process i includes itself in this set. Then rank processes
in set Recved lexicographically, first based on their age and then
based on id (increasing order). If rank(i)Recved = 1 then perform
task with rank 1, otherwise perform task with rank i + 1.

∗ Else perform task with rank i + 1.
Else perform task with rank 1.

• Set age = age + 1.
• Send age to all other processes as the value of variable ager+1(i).

We begin to show that algorithm AlgCSF is fair, under the
assumption of 2-survivability.

Lemma 5.3. If in a given round r, τold is the oldest pending task in the
system (has rank 1) and there is at least one process with ager = 1,
then τold is performed by the end of round r.

Proof. If in round r there are more than 2n pending tasks for
algorithm AlgCSF, then one of the processes in the set ASure (there
is at least one such process by assumption) will perform τold. Note
that processes construct the same set ASure since these processes
were alive in the previous round (otherwise their age would not
be equal to 1 in the beginning of local computation in round r)
and hence their messages is received by all processes alive at the
beginning of round r (this includes the processes in ASure). If there
are at most 2n pending tasks, then all alive processes (there is at
least one — the one with ager = 1) will perform τold. �

Observe that if in round r there is no process with age 1 but
there is at least one with age 0, then even if τold is not performed in
round r , by Lemma 5.3 it will be performed in round r + 1. Hence
it remains to show the following.

Lemma 5.4. If in round r all alive processes are of age > 1 (ASure =

∅) and τold is the oldest task in the system, then τold will be performed
by round r + 2n at the latest.

Proof. If in round r there are atmost 2npending tasks then all alive
processes (there must be at least one per admissibility restriction)
are allocated to perform τold, so it is performed in round r .

So, the adversary must maintain the number of pending tasks
above 2n to prevent the performance of τold. Recall that tasks are
ranked lexicographically, first based on their seniority, so τold has
rank 1. We argue that the adversary cannot delay the performance
of τold by more than 2(n − 1) + 1 consecutive rounds in which
there are more than 2n pending tasks and all alive processes are of
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age > 1. For contradiction, assume that it can. Note that in
this period no process is restarted (otherwise in the next round
of the process’ restart it performs τold and the adversary, due to
2-survivability, it cannot crash this process), and atmost n−1 pro-
cesses may crash. By the pigeonhole principle (applied on number
of rounds andnumber of crashes) there are two consecutive rounds
r ′, r ′

+ 1 in which no process is crashed. It follows that in round
r ′

+ 1 all alive processes have the same list Recved. All processes in
this list are alive in round r ′

+1, hence the first in this list performs
the oldest task. This is a contradiction. �

Lemmas 5.3 and 5.4 yield fairness of algorithm AlgCSF:

Theorem 5.5. Algorithm AlgCSF is a fair algorithm under any
2-survivability adversarial pattern.

It remains to show the competitiveness of algorithm AlgCSF,
and this we show against any admissible adversarial pattern
(unlike fairness, which is guaranteed if the pattern satisfies
2-survivability).

Theorem 5.6. AlgorithmAlgCSF achieves competitive pending-tasks
complexity of at most OPT + 3n against any admissible adversary.

Proof. Note that if there are at most 2n pending tasks in the
beginning of a round r then, by admissibility and algorithm
specification, exactly one task is performed by all alive processes.
We now investigate the situation when there are more than 2n
tasks.

Claim. If there are more than 2n pending tasks in the beginning of a
round r then in round r all alive processes perform pairwise different
tasks.

Weproceed to prove the claim.We first consider the casewhere
set ASure ≠ ∅. The processes with age = 1 form a consistent set
ASure (since theywere all alive in the previous round) and perform
different tasks with ranks in the range [1, n]. The processes that
are alive at the beginning of round r but have age ≠ 1 are aware
that ASure ≠ ∅ (they receive the messages from the processes in
ASure). Hence they perform different tasks with ranks in the range
[n + 1, 2n].

We now consider the case where set ASure = ∅. Note that all
processes that are alive at the beginning of round r are aware that
there is no processwith age = 1 in round r . This follows easily from
the fact that if therewere such a process, call it p, then pwould have
been alive in round r −1 and all processes alive at the beginning of
round r would receive the message from p informing them of his
age. Now, the processes that have restarted in round r (age = 0)
perform pairwise different tasks with ranks in the range [2, n+1].
It remains to consider the processes that are alive in round r and
have age > 1. Since these processes were also alive in round r − 1,
they know each others’ ages in round r . So, although they might
form inconsistent sets Recved (due to failures of processes while
broadcasting in the previous rounds) they will have a consistent
ranking among them. So no two processes that are alive in the
beginning of round r and have age > 1 will consider, each one,
itself as the process with the smallest rank. Their inconsistency
might only be on processes that have failed. As a result, the task
with the smallest rankmight not be performed, but in any case, the
live processes will perform different tasks in the range [1, n + 1]
(and different from the ones with age = 0). This completes the
proof of the claim.

Nowassume, to arrive at a contradiction, that there is a round r∗

in which the number of pending tasks is bigger than OPT(A, r∗) +

3n; moreover, let r∗ denote the first such round. (Here the number
of task is measured at the end of each round.) Let r be the oldest
round before r∗ such that the number of pending tasks is at most
OPT(A, r)+2n. It follows that in round r+1 the number of pending
tasks is bigger than OPT(A, r + 1) + 2n ≥ 2n and smaller than
OPT(A, r + 1) + 3n − 1, by the fact that the algorithm performs
at least one task (due to admissibility and algorithm specification)
while the optimum offline solution performs at most n tasks in
round r+1. It follows that r+1 < r∗. In the time interval [r+2, r∗

],
containing at least one round, the number of pending tasks at the
end of each round is bigger than 2n, and therefore by the Claim
it follows that the number of tasks performed by the algorithm is
the same as the number of tasks performed by the optimum offline
solution. Thus, at the end of round r∗ the number of pending tasks
is upper bounded by

(OPT(A, r + 1) + 3n − 1) +

OPT(A, r∗) − OPT(A, r + 1)


= OPT(A, r∗) + 3n − 1,

which contradicts the assumption that this number is bigger than
OPT(A, r∗) + 3n. �

5.2. Central injector

Recall transformation Tran_CS_to_CI from Section 4.2. It is easy
to see that algorithm AlgCSF is a specialization of the generic al-
gorithm GenCS: information xi is the age of process i. The remain-
ing specification of algorithmAlgCSF (alongwith the required data
structures) is essentially the specification of the scheduling pol-
icy S in the setting with central scheduler. Now, let Algorithm
AlgCIF be the algorithm resulting by applying the transforma-
tion Tran_CS_to_CI to algorithm AlgCSF (it is essentially algorithm
GenCI appended with the scheduling policy of algorithm AlgCSF).
Then, from Lemma 4.2, Theorem 5.5, and Theorem 5.6 we get:

Theorem 5.7. Algorithm AlgCIF is a fair algorithm that achieves
competitive pending-tasks complexity of at most OPT + 3n under
any 2-survivability adversary.

5.3. Local injector

We now consider algorithm AlgLIF. This algorithm combines
the mechanism deployed by algorithm AlgLI for propagating
newly injected tasks with a round of delay and the scheduling
policy of algorithmAlgCSF to guarantee fairness. Reliablemulticast
is again assumed for assuring that processes maintain consistent
sets of pending tasks. See below a full description of algorithm
AlgLIF (it is essentially a combination of the descriptions of the two
above-mentioned algorithms).

Its competitiveness is the same as the competitiveness of
AlgCSF plus an additive factor n coming from the one-round delay
of the propagation of newly injected tasks. Specifically we have
that:

Theorem 5.8. Algorithm AlgLIF, assuming reliable multicast, is a fair
algorithm that achieves competitive pending-tasks complexity of at
most OPT + 4n against any 2-survivability adversary.

6. Extensions and limitations

In this sectionwe consider the impact of restricted communica-
tion and non-unit-length tasks on the competitiveness of the prob-
lem of performing tasks under dynamic crash–restart–injection
patterns.

6.1. Solutions under restricted communication

In view of Theorems 3.1 and 4.1, we argue that exchanging
messages between processes does not help much in the setting
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Algorithm AlgLIF (i, r)

• Get specifications of newly injected tasks from local scheduler and
store them in set N (remove any older information from this set).
Receive messages sent (if any) in round r − 1. (From each process j
process i gets the sets Uj, Nj, task id tj, and ager (j).)

• Based on received messages, construct set ASure by including all
processes j with ager (j) = 1. If age = 1, then i includes itself in the
set.

• Update set U based on received messages: the new set U is the union
of all the received sets U and N minus the tasks that have been
reported in the current round as done in the previous round.

• Rank the tasks in set U lexicographically: first based on their pending
period (older tasks have smaller rank) and then based on their task ids
(incremental order).

• If the number of tasks in U is larger than 2n then
– If ASure ≠ ∅ then

∗ If age ≠ 1 then perform task in U with rank n + i.
∗ Else rank processes in ASure based on their ids and perform task

in U with rank rank(i)ASure.
– Else [ASure = ∅]

∗ If age ≠ 0 then construct set Recved by including all processes
from whom a message was received at the beginning of the
round. Process i includes itself in this set. Then rank processes
in set Recved lexicographically, first based on their age and then
based on id (increasing order). If rank(i)Recved = 1 then perform
the task in U with rank 1, otherwise perform task in U with
rank i + 1.

∗ Else perform task in U with rank i + 1.
• Else [U has fewer than 2n tasks]

– if U = ∅ and if N ≠ ∅ then rank the tasks in N incrementally
based on their ids and perform task in N with the smallest rank.

– Else perform the task in U with rank 1.
• Set age = age + 1.
• Send sets N and U, the task id of the performed task, and value of age

to all other processes.

with central scheduler, in the sense that in the best case it could
slightly increase only the constant in front of the additive linear
part of the formula on the number of pending tasks. In this section
we study the problem of how exchanging messages may influence
the correctness of solutions inmore restricted settings of injectors.
In particular, we show that Ω(n2) per-round message complexity
is inevitable in order to achieve correctness even in the presence
of central injector. On the other hand, recall that O(n2) per-round
message complexity is enough to achieve efficient solutions in
the presence of central injector: algorithm AlgCI from Section 4.2
achieves competitiveness of at most OPT + 2n in this setting, cf.,
Theorem 4.3.

Theorem 6.1. For any correct algorithm and any t ≥ 1, there is an
adversarial pattern satisfying t-survivability such that the execution
of the algorithm under this pattern results in Ω(n2) per-round
message complexity, even in the model with central injector.

Proof. Fix parameter t ≥ 1 and a correct algorithm Alg . Consider
an execution in which the adversary awakes n/2 processes in the
beginning of round 1 (the other processes are not operational yet).
One of these processes, arbitrarily selected, crashes at the end of
round t , while each of the remaining awaken processes stays alive
by the end of round t + 1 (hence t-survivability is not violated).
These processes carry the knowledge of pending tasks (hence basic
correctness holds), and assume that the adversary injects n/2 + 1
new tasks in every round. Hence at the beginning of round t + 2
there are at least 2 pending tasks. We claim that in round t + 2
all the n/2 − 1 alive processes must send a message to each of the
remaining n/2 + 1 processes.

Assume otherwise. Say that only one of these processes, call it i,
does not send amessage to each of the remainingn/2+1processes.
Then the adversary fails all processes but i before the sending part
of round t + 2. Admissibility is not violated since process i is alive.
At the beginning of round t + 3 the adversary crashes process i
and wakes up those processes among the n/2 + 1 processes that
were non-operational so far, to which process i did not send a
message in round t + 2 (these processes will be alive for the next t
rounds, including round t + 3, so neither admissibility is violated
in round t + 3, nor t-survivability). Since restarted processes are
history-oblivious, the only information they get is from the central
injector: new tasks injected and tasks that have been performed in
the previous round. Now, since i was the only operational process
and could perform atmost one task in each round, there are at least
three tasks that were not performed (even if crashed processes
informed the central injector about the performance of their task
before crashing, still at least three tasks would not be allocated
to any process and hence stay unperformed), and since i did not
forward the history it carried to the newly awaken processes, the
information of these tasks is lost, violating basic correctness. �

The above lower bound can also be seen as a restriction,
proved formally in the dynamic model, on the communication
complexity of database transaction schedulers avoiding starvation,
cf., Chapters 15.1 and 17–19 in [31].

6.2. Non-unit-length tasks

We now turn our attention to tasks that are not necessarily
of unit-length, that is, they might take longer than a round to
complete.We consider a persistent setting, inwhich once a process
commits in performing a certain task of length x, it will do so for
x consecutive rounds, until the task is performed. If the process is
crashed before the completion of all x rounds, then the task is not
completed. We assume that processes cannot share information
of partially completed tasks; the task performance is an atomic
operation. In view of these assumptions, the number of pending
tasks remains a sensible performance metric.

First, we consider tasks of the same length d ≥ 1, i.e., each task
takes d rounds to be performed. Consider a variation of algorithm
AlgCS of Section 4.1 that uses the same scheduling policy, but once
a process chooses a task to perform, it spends d consecutive rounds
in doing so; call this AlgCSd. We show the following:

Theorem 6.2. Algorithm AlgCSd, for uniform tasks of length d,
achieves competitive pending-task complexity of at most OPT + 3n
under any admissible adversarial pattern, in the setting with central
scheduler.

Proof. Assume, to arrive at a contradiction, that there is a round r∗

of an execution of the algorithm under some adversarial pattern A
in which the number of pending tasks by the end of the round is
bigger than OPT(A, r∗)+3n. Moreover, let r∗ denote the first such
round. Let r be the oldest round before r∗ such that the number of
pending tasks by the end of this round is at most OPT(A, r) + n.

Consider the time interval (r, r∗
]. Since the number of pending

tasks is at least n in this interval, when a process selects a task to
perform, it will always be a task that has neither been performed
nor is being performed by some other process (here we use the
property that the central scheduler returns all tasks that have not
been confirmed as performed yet). Moreover, as all tasks are of the
same length d, if a process performs i tasks in the considered period
of the execution of AlgCSd, it performs at most i + 1 tasks in any
other execution obtained under the same crash–restart–injection
pattern. The additional summand 1 comes from the fact that if a
process has been alive in round r + 1, it may finish its first task in
this period at most d − 1 rounds later in the execution of AlgCSd,
comparing to the optimum solution; this may result in at most one
more task being performed by the process in the optimum solution



C. Georgiou, D.R. Kowalski / J. Parallel Distrib. Comput. 84 (2015) 94–107 105
until the first crash in this period, but starting from the next restart,
the timing of task completions are the same in both executions,
though the actually performed tasks may be different.

Note also that each first task completed by a process in the
considered period may not be unique (i.e., not attempted to be
done by any other process in parallel, that is, during performance
time), as it might have been selected before the interval started,
and thus the number of pending tasks could have been smaller than
n (i.e., not guarantying no repetition property). Hence, if the total
number of tasks performed by AlgCSd in the considered period
is x, it is at most x + 2n for the optimum algorithm. The first n
comes from the fact that in the execution of AlgCSd the first tasks
completed by processes in the interval (r, r∗

] may not be distinct;
the second n comes from the fact that the optimum solution may
perform one more task per each process.

Therefore, the number of pending tasks OPT(A, r∗) at the end
of round r∗ in the execution of the optimum algorithm is at least
OPT(A, r) + (y − (x + 2n)), where y is the total number of tasks
injected in the interval (r, r∗

]. On the other hand, the number of
pending tasks at the end of round r∗ in the execution of AlgCSd is
at most

(OPT(A, r) + n) + (y − x) ≤ OPT(A, r∗) + 3n,

which is a contradiction. �

We note that the lower bound stated in Theorem 3.1 can be
made to hold also for uniform, non-unit tasks; to see this, consider
the adversarial pattern as described in the proof of Theorem 3.1,
and have each round be ‘‘emulated’’ by d rounds. This suggests that
one cannot hope to obtain better competitiveness in the setting
assumed in Theorem 6.2.

We conjecture that similar techniques would allow to obtain
analogous analyses for the other algorithms developed in this
paper, in the context of the remaining two models of central and
local injectors, and under the fairness requirement.

We now consider the case where tasks could be of different
lengths. It follows that bounded competitiveness is not possible,
even under restricted adversarial patterns, and even in the model
with central scheduler.

Theorem 6.3. For any algorithm, any number n ≥ 2 of processes,
any t ≥ 1 and any upper bound d ≥ 3 on the lengths of tasks,
there is an adversarial pattern satisfying t-survivability such that the
execution of the algorithm under this pattern results in unbounded
competitiveness with respect to the pending task complexity, even in
the model with central scheduler.

Proof. Assume we are given an algorithm Alg. Consider any
integers n ≥ 2, t ≥ 1 and d ≥ 3. The adversary keeps the first
process continuously alive, to guarantee admissibility, and restarts
and crashes the second process in a dynamic way, to be defined
later. The remaining n − 2 processes are kept asleep throughout
the whole execution. The adversary injects only tasks of length 2
and 3 (this is enough to show the negative result).

We specify the crash/restart and task injection pattern for the
second process, depending on the behavior of algorithm Alg and
some offline algorithm OFF. The algorithm OFF does not need to
be optimal for the constructed crash/restart/injection pattern, but
for the purpose of our proof it is enough to show that Alg is worse
than OFF by an arbitrary (unbounded) factor. In the construction,
the adversary emulates Alg round after round and decides when
the next crash takes place in course of the simulation, what tasks
and when to inject, and how OFF schedules these tasks.

In the beginning, the second process is alive and two tasks –
one of length 2 and one of length 3 – are injected into it. The
pattern is partitioned into consecutive phases of length t + 6
each. The number of rounds in a phase, t + 6, is chosen to assure
that the second process could work sufficiently long to fulfill the
t-survivability requirement before it crashes (the first ‘‘t ’’), and in
the second part (of length 6) at least two tasks could be scheduled
by OFF while Alg schedules only one. Phase j lasts from round
j · (t + 6) + 1 till round (j + 1) · (t + 6).

We construct a suitable crash/restart and injection pattern,
as well as a corresponding OFF schedule, recursively phase after
phase. The goal is to satisfy the following invariant in the beginning
of each phase j + 1, for j ≥ 0:

– OFF has exactly one task of length 2 and one task of length 3 in
the queue of the second process.

– Alg has at least one task of length 2 and one task of length 3 in
the queue of the second process, and the total number of tasks
in the queue of the second process is at least ⌊j/3 + 2⌋.

The invariant holds in the beginning of phase 1, by definition.
Assume it holds in the beginning of phase j, we construct the
crash/restart/injection pattern and OFF schedule in phase j so that
the invariant also holds in the beginning of phase j + 1. In the
beginning of the phase both processes one and two are active— the
first one is always active while the adversary restarts the second
one. Whenever the second process is crashed, it remains inactive
by the end of the phase.

First process. The first process is never crashed, and whenever it
starts performing a task of length x, x being 2 or 3, in the
execution of Alg, OFF also schedules a task of length x to
be performed by the first process; at the same time, the
adversary injects a task of length x into the system.

Second process. We now focus on the behavior of the second
process.

• Until round t of phase j: whenever Alg schedules a
task of length x, x being 2 or 3, to the second process,
OFF schedules a task of length x too; at the same time,
the adversary injects a task of length x into the system.

• Let t∗ be the first time after round t of phase j such that
the second process is either idle or starts performing a
task in the execution of Alg. Note that t < t∗ < t + 3
as the longest task performed at round t of the phase
is of length 3.
– If the second process is idle or starts performing a

task of length 3 in round t∗ of the execution of Alg,
then OFF schedules a task of length 2 for the second
process, the adversary injects a task of length 2 in
round t∗ + 1 and crashes the second process at
the end of round t∗. This way the second process
completes one more task (of length 2) in OFF than
in Alg in phase j.

– If the second process starts performing a task of
length 2 in round t∗ of the execution of Alg, then
OFF schedules a task of length 3 for the second
process, the adversary injects a task of length 3
and crashes the second process at the end of round
t∗ + 3.

We stress here that tasks injections defined above are indepen-
dent, in the sense that each injected task is uniquely triggered by
exactly one of the events in the above list.

Before proving the invariant, observe that t-survivability is ful-
filled as the crash of the second process occurs after round t and
by round t∗ + 3 < t + 6; this also proves that the crash occurs be-
fore the end of the phase, and the adversary can restart the second
process in the beginning of the next phase.

Observe that all tasks scheduled by OFF are always successfully
completed, due to the definition of crashes in a phase. Also, when-
ever a process (first or second) performs a task, during its execution
a corresponding task of same length is injected to the system; and
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since each task started to perform by the first process is immedi-
ately replaced (by injection) by another task of the same length,
whenever the second process finishes a task during the execution
of OFF, it can be easily argued (by induction on the completion
times) that there are exactly one task of length 2 and one of length
3 in the system. This justifies the first part of the invariant.

To prove the second part of the invariant, observe that in a
phase, OFF always performs more work, in terms of productive
rounds, than Alg in a phase. Hence, during j consecutive phases,
Alg performed at least j units of work less than OFF. Hence, at the
end of phase j, Alg has at least ⌊j/3⌋ pending tasks more than OFF;
hereweused the fact that the longest task is of length 3. This proves
the second part of the invariant.

It follows from the invariant that OFF has always a constant
number of pending tasks, while the number of tasks queued in the
execution of Alg grows unboundedly; hence the competitiveness
of Alg is unbounded. �

7. Future directions

Several research directions emanate from thiswork.We outline
a few of them below.
Message-related issues. An intriguing question is whether the
assumption of reliable multicast, made in the setting with local
injector, can be removed or replaced by a weaker but still
natural constraint.We conjecture that t-survivability, for a suitable
constant t , could be a good candidate for such replacement.

In view of Theorem 6.1, it is challenging to find a natural
restriction on the adversary such that both efficient performance
and subquadratic communicationwould be achieved in the settings
with injectors. For this purpose a version of the continuous gossip
protocol developed in [17] could be possibly used. For example,
we conjecture that if the execution satisfy t-survivability and
t-continuity properties, for sufficiently large constant t , bounded
competitiveness could be achieved with strictly sub-quadratic
message exchange in every round; we define t-continuity to be the
property that requires each time interval of length t to have at least
one continuously alive processor. In order to save on messages,
a continuous gossip could be applied in place of all-to-all one-
round communication, guarantying that every two processors that
are continuously alive in a time interval of length at least t/2
exchange messages successfully. Equipped with communication
tool of such property and assuming t-continuity, one could argue
that it is possible to maintain a restricted number of temporary
leaders whomay assure lack of redundancy in case a large number
of tasks are already in the system (as in such case bounded delays
in information propagation become negligible).
Different task lengths. Away to overcome the impossibility stated
in Theorem 6.3, as demonstrated in a recent work [16], is to
consider speed-scaling. Processors are given a speedup s ≥ 1
under which they can process a task s times faster than what
is required by its specification. This can be seen as additional
energy (power consumption) that processors can use to expedite
computation. The challenge is to identify necessary and sufficient
conditions on s under which competitiveness is possible. In [16],
such conditions are identified and three different competitive
deterministic algorithms are devised, each working for different
bounds on s.

A different approach for tasks of different lengths would be to
study whether randomization would help in achieving bounded
competitiveness (when analyzing algorithms under oblivious
adversaries), or whether a smoothed or average-case analysis
might result in bounded competitiveness.
Task dependency. Another interesting challenge is to generalize
the considered task specifications to dependent tasks. One
challenge is for the processors to identify the dependency between
tasks. Previous approaches assuming that the task dependency is
given by a DAG do not apply in our case, as tasks are generated ‘‘on
the fly’’ and no a priori information is known.
Alternative measures of complexity. A challenging modeling
extension would involve replacing the fairness property by a more
‘‘sensitive’’ task latency measure. For example, one could seek
solutions inwhich no task is executed aftermore than x rounds; the
challenge here is to identify the conditions under such x-bounded
latency solutions would be possible.
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