Data-Driven Multithreading
Programming Tool-chain

Andreas Diavastos
George Matheou
Paraskevas Evripidou
Pedro Trancoso

TR-17-3 September 2017

University of Cyprus

Technical Report

Data-Driven Multithreading Programming Tool-chain

Andreas Diavastos, George Matheou, Paraskevas Evripidou and
Pedro Trancoso

UCY-CS-TR-17-3

September 2017

Table of Contents

1 Introductionl 1
2 Data-Driven Multithreading Architectures| 2

T Do Drivon VAN R VRrm M oo
13 Tool-chain Programming Directives| 5
4 Eclipse Plug-in Suite] 7

41 The Content Assistantl L 8

42 The Side Panell 8
[6Case Study] 9
6 Conclusions and Future Workl 13
|Acknowledgments| 14

[References| 14

Abstract

The increasing parallelism offered by the parallel architectures introduced by processor vendors,
coupled with the need to extract more parallelism out of the applications, has led the community to
examine more efficient programming and ezecution models. The Dataflow Multithreading model is
known to be the model that can exploit the most parallelism out of a wide range of applications. The
Dataflow Multithreading model is not new to the community and one of the main reasons it wasn’t
widely spread among the user community is the programming effort it requires in order to exploit
the maximum parallelism out of a Dataflow implementation. The wide spread of parallel machines
today though has led many researchers to re-examine its applicability. In this work we explore the
programmability of the Data-Driven Multithreading (DDM) model, a non-blocking execution model
that applies the principles of Dataflow execution at a coarser granularity, that of sequence of in-
structions. In this paper we present a tool-chain that promises to ease the effort needed by the
programmers to write efficient DDM applications that exploit the Dataflow execution model and in
particular two implementations of the DDM model, the TFlux Architecture and the Data-Driven
Multithreading Virtual Machine (DDM-VM). The tool-chain includes a set of programming direc-
tives, developed under the DDM C' Preprocessor project and an Eclipse Plug-in suite that enables
content assist while integrating directives in applications, a side panel with the available directives,
their arguments and explanation for each one. Finally, the preprocessing procedure is integrated in
the Eclipse editor to enable easy DDM application development regardless of the platform used.

Index terms— dataflow; programming model; Data-Driven Multithreading;

1 Introduction

Unsustainable power consumption and ever-increasing design and verification complexity have
driven the microprocessor industry to the multicore architectures as an architectural solution, sus-
taining Moores’ law [8]. Researchers and processor vendors are investigating architectures, compil-
ers, and programming models for manycore processors with hundreds or even thousands of cores
on a single platform. The major challenge today is to find programming and execution models
that will efficiently keep all the available resources busy while maintaining a high level of energy
efficiency.

The Dataflow model was proposed by Jack Dennis in the early 70s [9] [10] as an alternative to
the control-flow (or von Neumann) model of execution. In Dataflow the instructions can only be
executed when all of their input operands are available, as in an asynchronous model. Moreover,
computations has no side-effects, which makes Dataflow a functional model. A Dataflow program
is compiled into a Dataflow graph, that is a data dependency graph representing the order of
execution imposed by data dependencies. A Dataflow graph specifies only a partial order for
the execution of instructions and thus provides opportunities for parallel and pipelined execution
at the level of individual instructions. The main advantage of the Dataflow model is its ability
to expose the maximum amount of parallelism to the hardware since the only condition for an
instruction to start executing is the availability of its input data. Also a Dataflow program works in
a distributed concurrency control, due to the fact that there is no central point of control (no need for
Program Counter). These advantages allow Dataflow architectures to tolerate the synchronization
and memory latencies and extract more parallelism compared to traditional control-flow models.
As such, the Dataflow model is suitable for multicore and manycore systems.

The Data-Driven Multithreading (DDM) model of execution is a non-blocking multithreading
model that was inspired by the Dataflow and the Decoupled Data Driven (D?) models of execu-
tion. The DDM model decouples the synchronization from the computation portions of a program
allowing them to execute asynchronously in a Dataflow manner. This is achieved by scheduling a
thread for execution only when its input data have been produced. As such, it exploits the benefits
of the Dataflow model and no synchronization or communication latencies are experienced after a
thread begins execution. Moreover, the DDM exploits the sequential processing of the commodity

microprocessors due to the fact that instructions within a thread are fetched by the CPU sequen-
tially in a control-flow order. Hence, the CPU can exploit the advantages of pipelining, branch
prediction and out-of-order execution.

The sequence by which the processors execute the threads is defined either statically or dynami-
cally using a specialized module called Thread Scheduling Unit (TSU). The TSU is responsible for
scheduling the threads for execution based on data availability. Effectively, scheduling based on data
availability can tolerate synchronization and communication latencies. The synchronization infor-
mation, i.e. the information regarding the data dependencies among the threads, is stored into the
TSU at compile time. The dependencies among the threads are expressed via producer-consumer
relationships. Hence, a thread can be scheduled for execution only when all of its producers have
completed their execution. Additionally, the DDM model currently has three implementations: the
Data-Driven Network of Workstations (D2NOW) [3], the Thread Flux platform (TFlux) [I] and
the Data-Driven Multithreading Virtual Machine (DDM-VM) [2].

The threads definition, the scheduling policy that the execution will follow, the producer-
consumer relationships among threads and all the synchronization information in any programming
paradigm that follows the Dataflow scheduling must be explicitly defined by the user. Different
implementations also have different interfaces, which means that the user must be familiar with all
implementations in order to parallelize an application using Dataflow principles. The lack though
of programming tools that can effectively help the user, makes the programming of Dataflow ap-
plications preventive.

In this work we present a single tool-chain that promises to ease the effort of the user community
in developing Dataflow applications that follow different platforms of the DDM model of execution.
This tool-chain supports the different implementations of the TFlux and the DDM-VM platforms.
Programming an application using this tool-chain we can produce, from a single program, parallel
code for the hardware implementation of TFlux (TFluzHard) as well as for the software implemen-
tation of TFlux (TFluzSoft). Using the tool-chain to write a single program, we can also produce
code for the software implementation of DDM-VM, the DDM-VMs and also its hardware implemen-
tation. This tool-chain consists of a set of programming directives that can be used to define the
Dataflow principles in a DDM program and a DDM C Preprocessor that, based on the directives
inserted and the target platform chosen, will produce the appropriate DDM parallel code. Finally,
it introduces an Eclipse Plug-in suite that provides an easier way for the programmer to integrate
the programming directives and a one-step generation of DDM executables.

The rest of the paper is organized as follows. Section [2| present the DDM model and the two
platforms we are studying in this work (TFlux and DDM-VM). Section [3{describes the most impor-
tant directives of the tool-chain presented. In Section [d] we describe the Eclipse Plug-in suite and
its different modules introduced in this paper. In Section [5| we give an incremental development of
a DDM application using the directives and the Eclipse Plug-in. Finally, in Section [6] we conclude
with the main contributions of this work and what is our plan for the future regarding the further
development of the tool-chain.

2 Data-Driven Multithreading Architectures

In this work we focus on two Dataflow Multithreading approaches that implement the DDM
model. The TFlux architecture [I] and the DDM-VM [2]. In order to overcome some of the limit-
ing overheads of the Dataflow Multithreading these architectures follow a coarse-grain granularity
approach, applying the Dataflow principles on sequence of instructions, called Dataflow Threads
(DThreads). Both these architectures schedule the DThreads in a dataflow-like way based on the
data availability of each DThread.

2.1 TFlux Architecture

The TFlux architecture serves as a virtualization platform for the execution of DDM programs on
top of any commodity multicore computer system. Its objective is to offer the DDM programming

C & DDM directives]

[TFlux Preprocessor]

Unmodified C Compiler

[Runtime Support

[Kernel 1][Kernel 2][Kernel 3]

TSU Group
[TSU1 TSU 2 [TSU3 ... [Tsun

Unmodified Operating System

Unmodified ISA Hardware

Figure 1: The layered design of the TFlux architecture [I].

model to any system architecture by virtualizing the details of the underlying system. In particular,
it implements a runtime support system that is build on top of a commodity Operating System
with a software or hardware TSU responsible for scheduling the DThreads.

In Figure[I] we present the different modules of the TFlux system in a layered design. A DDM bi-
nary executable of the application also invokes the TFlux Runtime Support allowing the application
to execute under the DDM model. The Runtime support hides all DDM-specific implementation
and execution details from the programmer. The primary responsibility of the runtime is to dy-
namically load the application DThreads into the scheduling unit and invoke the TSU scheduling
operations that will eventually allow the DDM execution of the application. The runtime of the
TFlux architecture also provides a mechanism for the DDM application DThreads to access the
shared data in the producer-consumer relationships characterizing a Dataflow-like application and
also provides an efficient communication layer between the application and the TSU.

The scheduling unit in the TFlux architecture is also called a TSU Group. The reason is that,
unlike the previous implementation of the DDM (D2NOW) [3]) that required each processor (which
was an independent machine) to have its own TSU, in TFlux, these TSUs were grouped in a single
unit (TSU Group) with their operations split in two categories; Those that are common to all
CPUs and those that only correspond to each CPU serving a TSU. This reduced the overhead of
the T'SU-to-TSU communication since now all the communication operations are handled internally
and, even more importantly, this allowed the implementation of the scheduling unit in software,
by emulating the TSU functionality, thus allowing a multiprocessor implementation of the TFlux
architecture.

As a proof-of-concept the TFlux architecture was implemented both in hardware and software.
The hardware implementation (TFlurHard) was tested on a Simics-based full-system simulator
using a Sparc multicore system. TFlux has also two software implementations, the (TFluzSoft)
that can be used on any commodity x86 homogeneous multicore system and the TFluzSCC that
runs on a 48-core Intel Single-chip Cloud Computer [12].

2.2 Data-Driven Multithreading Virtual Machine

The DDM-VM is a virtual machine that supports the DDM model of execution on homogeneous
and heterogenous multicore systems. It virtualizes the resources of an underlying parallel system
and uses a general, unified representation for DDM programs. The DDM-VM runtime system,

SPE1 SPE 2 SPE 8

SPU SPU SPU
DDM-VMc DDM-VMc DDM-VMc
SPE Runtime SPE Runtime SPE Runtime
DDM DDM DDM
Thread Thread Thread

Execution Execution Execution

LS ‘ LS ‘ LS
A A A
v v v
‘ BUS ‘
" A
PPE v v v
DDM-VMc PPE Runtime ||| Main Memory ‘ -
TSU Memory :
Structures
TSU + S-CachFlow Network
Execution Program ¢
Data
Other
Nodes

Figure 2: The Cell/BE implementation of the DDM-VM [2].

mainly composed of the TSU, handles the tasks of thread scheduling, execution instantiation and
data prefetching implicitly.

The scheduling of threads is orchestrated by the TSU, which is implemented as a software mod-
ule running on one of the cores. The TSU is aided by the runtime that supports DDM execution
on the rest of the cores. The DDM-VM implementation uses a cache management policy, called
CacheFlow [2], that ensures that all data that a thread needs for execution is in the cache before
the thread is scheduled for execution. This technique helps improve the performance of DDM appli-
cations running under the DDM-VM implementation. CacheFlow is a fully automated prefetching
software cache with variable block sizes that is extended with many optimizations like adaptive
multi-buffering, data re-use and reference-counting.

Using specialised I-Structures [I1], the DDM-VM supports parallel execution of code that con-
tains producer-consumer dependencies that are only resolved at runtime while utilizing compile-time
resolution at the same time. This takes advantage of the strengths of both approaches and expands
the class of programs that can be mapped to the DDM model to a wider range. It also has the po-
tential to improve the programmability and optimize the compilation methods generating Dataflow
code.

There are two versions of the DDM-VM implementation, one that is optimised for homogeneous
symmetric multiprocessors and one that is tailored for the Cell Broadband Engine [4]. The latter
version was developed for heterogeneous multicore architectures with a host/accelerator organiza-
tion and a software-managed memory hierarchy. It provides a fully-automated software prefetching
cache with variable cache block sizes and explicit data locality optimizations for handling explicitly-
managed memory hierarchies. As seen on Figure [2], the T'SU responsible for scheduling threads at
run-time is implemented as a software module running primarily on the Power Architecture based
(Power Processor Element - PPE) which is a two-way multithreaded core, while the execution of
the threads takes place on the eight fully-functional SIMD co-processors (Synergistic Processing
Elements - SPE). This mapping is an efficient utilization of the Cell heterogeneous resources; as
the code of the TSU that heavily uses branches and control-flow structures, is more suited to run

CPU1 CPU2 CPUnN
DDM-VMs DDM-VMs
DDM-VMs Runtime Runtime
Runtime
TsU DDM Thread DDM Thread
Execution Execution
+ CacheFlow
L2 Cache L2 Cache L2 Cache
. v v
‘ Bus ‘
A A
v v
Main Memory Vo
TSU Memory
Structures :
Network
Program :
Data
Other
Nodes

Figure 3: The Symmetric implementation of the DDM-VM [2].

on the general purpose PPE core originally designed for control tasks, while the threads are more
suited to run on the SIMD SPE cores optimized for computational loads. In Figure 3| we depict the
second version of the DDM-VM implementation, that supports symmetric multi-processors. The
TSU in this case does not utilise special hardware to execute and uses any processor to aid its tasks
and uses the shared memory architecture to control the execution.

3 Tool-chain Programming Directives

In this section we present the programming style of the DDM implementations of TFlux and
DDM-VM. As discussed later, programming a parallel application using the Dataflow principles
requires significant effort and expertise from the programmer, regardless of the implementation
used. To ease the effort of the programmer and remove any unnecessary implementation specific
details from the programming level we use programming directives along with the DDM C Pre-
Processor (DDMCPP) [5]. The objective of the directives is to allow the programmer to define the
boundaries, the type and the dependencies among the application DThreads. In this section we
present the most significant directives and explain their usage.

In Table [1f we show the most relevant directives that allow the programmer to define a set of
instructions either as a simple DThread or as a Loop DThread for the TFlux implementation.
For the DDM-VM implementation though some parameters of the directives from Table [1| have a
different structure. In Table Pl we describe these differences in the structure of the directives as
well as any new parameters that we introduced in order to fully support the new operations of the
DDM-VM implementation through the DDM C Preprocessor.

A simple DThread is defined by enclosing its code in a #pragma ddm thread and a #pragma
ddm endthread. These directives mark the start and the end of a DThread and also define the
unique identifier of each DThread (DThread ID). Currently the TFlux implementation supports
a static scheduling technique, thus the programmer must also define the Kernel that the declared
DThread will execute on. In the case of the DDM-VM implementation the Kernel parameter is a
pair of numbers that defines the scheduling policy the programmer wants to use on that specific

Table 1: DDM pragma directives.

#pragna ddm startprogran Define the start and the end of a DDM program

#pragma ddm endprogram

#pragma ddm block ID Define the start and the end of a block of threads with
#pragma ddm endblock identifier ID

#pragma ddm thread ID kernel NUMBER import (TYPE | Define the boundaries of a DDM thread with identifier /D
NAME) export (NAME) and the kernel NUMBER to execute on and the data to
#pragma ddm endthread import/export

#pragma ddm for thread ID ilc Define the boundaries of a DDM loop thread with

[NUM, NUM, NUM, NUM,NUM,NUM] depends (ID) identifier ID, its consumers with #lc and its producers with
#pragma ddm endfor the depends

#pragma ddm kernel NUMBER Declare the number of kernels to be used

#pragma ddm var TYPE NAME Declare a shared variable with NAMFE and TYPE
#pragma ddm private var TYPE NAME Declare a private variable with NAME and TYPE

Table 2: New parameters for DDM-VM support.

kernel (SCHEDULING_-POLICY : SCHEDULING-VALUE) Define the scheduling policy that the specified DThread will
follow

arity NUMBER Define the number of nested loops that a DThread repre-
sents

readycount NUMBER Explicitly define the number of consumers of DThread

update (THREAD_ID : START : END) Update the ending threads’ consumers

import (address : size : flag : expression : Define the variables that will be imported in the specified

reference variable) DThread

export (address : size : flag : expression : Define the variables that will be exported by the specified

reference variable) DThread

DThread and a value that might be needed, depending on the scheduling policy the user chooses
(see Table [2).

The definition of loops is supported in a similar way. By enclosing the code of a for loop in
#pragma ddm for and #pragma ddm endfor directives, we define a Loop DThread, that
all its iterations will be executed in parallel. In the case of the TFlux implementation, the kernel
statement, that defines where each DThread will be executed, is not necessary as the loop iterations
will be evenly distributed to all kernels automatically by the preprocessor. In the case of the DDM-
VM implementation though the kernel statement is needed as to define the scheduling policy that the
user wishes to apply on the execution of the loop iterations. For the DDM-VM implementation we
also use the arity parameter that describes the depth of the nested loops that are to be parallelized.
Currently this is used on the declaration of a simple DThread while the user removes the for loop
statements from the code and only keeps the body of the loop. This parameter is used to expand
the parallelism to the internal loops in the case of nested loops.

In order for the runtime system to know when a DThread is ready for execution a counter
value is kept that denotes the number of consumers a DThread is waiting upon being scheduled
for execution. This counter is called readycount. Note that for the TFlux implementation this
field is not mandatory, thus it does not appear in Table [I| as the number of consumers will be
automatically inferred by the declaration of the explicit dependencies we will discuss later in this
section.

In the TFlux implementation a different approach is pursued. The preprocessor allows depen-
dencies between loop iterations of different Loop DThreads using the ilc statement. As depicted
in Table [I] the ilc statement is a six-tuple entity of a type, the consumer loop identifier, three
numeric values and a value indicating the scheduling type (Chunk or Round-Robin scheduling) of
the consumer and producer loops. The type and the three numeric values are used to calculate the
iteration of the consumer loop based on the iteration id of the producer Loop DThread. In this case
the readycount statement must be used to explicitly define the Ready Count value of the consumer
Loop DThread.

To define the producer/consumer relationships between the DThreads in a DDM application we
need to consider the data that the DThreads consume and produce. Using the import and export
statements on a DThread directive the preprocessor will know which variables each DThread will
consume and produce. Thus, it will automatically create a dependence between the DThread that
produced that specific variable and the DThread that will eventually consume it. In some cases
expressing the data dependencies through the produced and consumed data is not possible. For
example, when we have arrays as produced or consumed data. To explicitly define dependencies be-
tween DThreads in TFlux we use the depends statement that denotes the producers of a DThreads.
Note that for a Loop DThread in TFlux only the depends statement can be used to define the
producers of that loop.

In the case of the DDM-VM implementation though, instead of the producers, we denote the
consumers of a specific DThread (either simple or loop) by using the update statement on the
#pragma ddm endthread and the pragma ddm endfor directives as described in Table The
START and END will be used in the case we want to update multiple iterations of the consumer
loop.

Any type of DThread in a DDM program must be enclosed in a DDM block at all times. This
can be done by enclosing the definitions of DThreads in a set of #pragma ddm block and
#pragma ddm endblock directives. Any number of blocks can be used. The DThreads within
a block will be executed in parallel as long as the dependencies among them allow it but blocks are
strictly executed sequentially between them. To define a complete DDM program enclose all DDM
blocks in a set of #pragma ddm startprogram and #pragma ddm endprogram directives.
These directives define the complete DDM application. Finally, before executing the Preprocessor
to create the DDM application, the user must also define the number of kernels that will be used
in the execution using the #pragma ddm kernel directive.

4 Eclipse Plug-in Suite

Apart from the significant programming effort needed to develop Dataflow applications today,
we also consider the lack of programming tools that help the users develop such applications. In this
section, we present a plug-in suite for the Eclipse platform that provides significant help in using
the DDM programming directives presented in Section [3} The plug-in provides support for both
DDM implementations presented in this paper. The main purpose of this plug-in is to give an easier
way to the programmers to use the DDM directives and a one-step generation of DDM executables.
When creating a new DDM application in Eclipse, the user will be prompt to choose the target
implementation, between TFlux and DDM-VM as shown in Figure[d] This will automatically load
the modules of the chosen implementation and provide the necessary information concerning the
syntax of the directives to be used. Also, by choosing the target platform the preprocessor will also
add all the necessary initializations each platform needs.

The DDM Eclipse plug-in is composed of three modules:

1. The Content Assistant, that provides a drop-down list of the available directives while the
user is coding;

2. The Side Panel, that displays a side panel next to the code that shows the available directives
and their arguments;

3. The Pre-processor integration, that calls the DDM C Pre-processor through a button at the
top of the tools bar. This process will produce the DDM executable based on target platform
chosen when creating the project;

The DDM directives are mostly start-end directives. Thus, the user must define the start and the
end of a code that will be enclosed in a DDM directive. For this reason, the plug-in also provides
an auto-closing functionality that will auto-close an open directive when pressing the ENTER key
at the end of the corresponding start directive.

C+r+ iject —

Project name must be specified

Project name:

Use default location

Location: | C:\Users\andreas\workspace Browse...
Project type: Toclchains:
4 = Executable Cross GCC
@ Empty Project Microsoft Visual C++
@ Hello World C++ Project KL C/C++ Tool Chain

@ Cross-Compile Project
@ Hello World UPC Project
@ TFLUX Project
& DDMVYM Project
s = Shared Library
> (= Static Library
» Executable (XL C/C++)
4> Static Library(XL C/C++)
> Shared Library (XL C/C++)
4 Executable (XL UPC)
€ Static Library(XL UPC)
<» Shared Library (XL UPC)
s = Makefile project

Show project types and toolchains only if they are supported on the platform

@ < Back Mext > Finish

Figure 4: Create a new DDM project window in Eclipse.

4.1 The Content Assistant

Figure [5] illustrates the basic functionality of the content assistant module. When pressing the
CTRL+SPACE keys at any point of writing a directive, a proposal window will appear with all
the possible arguments that specific directive has. By selecting one of the possible arguments the
module will automatically insert it at the end of the current directive.

The content assistant module also provides all the predefined arguments for any directive. An
example is the scheduling policy options the implementation supports, as seen in Figure [0}

4.2 The Side Panel

Figure [7] shows the DDM side panel module. This module consists of two lists, the Sample View
list and the Property list. The Sample View contains the directives that are available to the user.
A user can insert into the code a specific directive by just clicking on a directive from the Sample
View list. The Property list, as the name suggests, contains the properties of each directive along
with the available parameter values. Using the Property list the user can define the parameter
values without having to hand-code them. Also, if the user moves the cursor an already complete
directive, the values of the parameters for the directive will appear in the Property list.

#pragma ddm thread 1 kernel 1

depends(THREAD_ID)
export(VAR_TYPE VAR_NAME]
import(VAR_NAMETHREAD_ID)

Press 'Ctrl+Space’ to show DDM Pragmas Proposal Computer

Figure 5: The content assistant module listing the available parameters of a DDM directive.

#pragma ddm thread 1 kernel(m,value) readycount 1

CUSTOM
DYMNAMIC
MODULAR
RROEBIN
#F STATIC

Press 'Ctrl+Space’ to show DDM Pragmas Proposal Computer

Figure 6: The content assistant module listing the available predefined argument parameters.

5 Case Study

In this section we will show the benefits of using the programming directives through the Eclipse
platform, going through a step-by-step development of a simple DDM application for both the
TFlux and the DDM-VM implementations. We will use Eclipse screenshots as a proof of concept
of our implementation and show that using the DDM programming tool-chain can make easier and
less time consuming the programming of DDM applications for a wide range of architectures.

The first step and the only one that the user will have to do by hand is identifying the potentially
parallel sections of the sequential code and insert the appropriate directives. As a sequential code,
we will use the Matrix Multiplication paradigm, where we will use one DThread for the initialization
of the input data and one Loop DThread that will execute the parallel loop of the application.

In Figure |8] we depict the syntax of a TFlux DThread where we declare the boundaries of the
DThread, the identity number of the specific DThread and the kernel it will execute on. Notice
that we use neither the import/export, nor the depends statements on this DThread. Being the first
DThread in the application means that it has no producers, thus this DThread will be executed
first.

In Figure[9|we depict the syntax of a DDM-VM DThread. The difference with the previous TFlux
example is that we declare the scheduling policy that this DThread will follow upon execution and we
explicitly define its readycount value. As mentioned before, in contrast to the TFlux implementation
where we declare the producers of the thread, in the DDM-VM we declare its consumers. Thus, at
the #pragma ddm endthread directive we use the update statement to define that at the end of this

EE Outline | (@ Make Target u DDM Sidepanel =0

&
L

Kernel

Start Program
End Program
Private Variable
Block

End Block
Thread

End Thread
For Reduction
For Thread
End For
Update Thread
Function

m

Property Value

Thread Mumber
Scheduling Mode
Scheduling Value
Ready count

DYMAMIC

Arity
Import {Click to add)
Export {Click to add)

Import and Export

{Click to add)

»

m

Figure 7: The side panel module providing all necessary information about the arguments of all

the directives and their values.

#pragma ddm thread 1 kernel 1

F/INITIALIZE ARRAYS
for{i=08;i<NROW;i++)

1

¥

for({j=8;j<NCOoL; j++)

inputaArrayA[i][§]=
inputArrayB[i][j]=

#pragma ddm endthread

i*NCOL+j;
F*NCOL+i;

Figure 8: Example of a TFlux DThread declaration.

DThread, DThread with identity 2 (THREAD_2) must by updated. As we show later, THREAD_ 2
is a Loop DThread and multiple iterations of that DThread must be updated after THREAD_1
finish. For this reason, we use the extra fields of START and END that are defined as the first and
last iterations of the loop respectively. The reason we use the first and last iterations of the loop is
that the loop iterations have no dependencies between them. In any other case we would use the
only the iterations that were ready for execution.

10

#pragma ddm thread 1 kernel (MODULAR,MASK INDX)} readycount 1

J/INITIALIZE ARRAYS
for(i=8;i<NROW;i++)

1
for(j=8; j<NCOL;j++)

1
inputArrayA[i][j]= 1*NCOL+];
inputArrayB[i][j]= J*NCOL+1i;
¥
#pragma ddm endthread update (THREAD 2 : START : END)

Figure 9: Example of a DDM-VM DThread declaration.

[<] ddm ddmvm [E ddm.ddm &2 = 8 = DDMSidepanel &2 B =
i “int main(int argc, char* argv[]) ~ Kernel
[Start Program
int 1,3,k evI,cvd, cvl, gsum; End Program
double sum=0; Private Variable
#pragma ddm private var int cvI Shared Variable
#pragma ddm private var int cvd Black
#pragma ddm private var int gsum End Block
. o scars Thread
ragma startprogram
pragm prog End Thread
#pragma ddm kernel 4 ForReduction
#pragma ddm var int cutputhrrayC 4096 For Thread
End For
/ACTURL CALCULATION
#pragma ddm block 1
#pragma ddm ad 1 kernel 1
INITL Property Value
for (i=0
1
for (3=0; J<NCOL; j++)
i
inputArrayA[i] [j]= Li*NCOL+3:
inputArrayB[i] [j]= J*NCOL+i:
#pragma ddm endthread
#pragma ddm for thread 2 depends (1)
for(1 =0 ; 1 < 4096 ; i++)
1
cvI=i>>SHIFT_I;
cvJ=igMASK J:
gsum=0;
For (k=0; k<NROW; k++)
t
gsum+=inputArrayA[cvI] [k] *inputArrayB[k] [cv]];
* (outputArrayC+i)=gsum;
< >

#pragma dim endfor
#pragma ddm endblock
#pragma ddm endprogram

return 0;

Figure 10: Matrix Multiplication using the directives for the TFlux Implementation.

Figure [[1]shows the next DThread in our example for the TFlux implementation. This is a Loop
DThread, thus we use the pragma ddm for directive to define its boundaries. As this loop will use
data from the previous DThread, we have to declare its dependence on the corresponding DThread.
The use of the depends statement shows that the execution of the current DThread will start after
the execution of the DThread with identity 1 (depends(1)) finishes. In the case of a Loop DThread,
the outer-most loop is the one to be parallelized. This suggests that the outer-most loop iterations
will be evenly shared to all executing kernels.

11

#pragma ddm for thread 2 depends (1)

for(1 =8 ; i < 4896 ; i++)
1
cvI=i>>SHIFT I;
cvI=1&MASK_J;

Esum=8;
for (k=08; k<NROW; k++)
1

¥

*{outputhArrayC+i)=gsum;

gsumt=inputhrrayA[cvI][k]*inputlrrayB[k][cv]];

1

#pragma ddm endfor

Figure 11: Example of a TFlux Loop DThread declaration.

€] gam.ddmvm 27 | [€] ddm.ddm = 0 | =DDMSidepanel 3% Bo=7F
~ Kermel
. ©1int main(int arge, char **argv) Start Program
1 End Program
int 1,3,k cvl,cvd, cvl, gsum; Private Varichle
dotble sum=0: Block
) End Block
#pragma ddm private var int ovl Thread
#pragma ddm private var int cvd End Thread
#pragma ddm private var int gsum For Reduction
#pragma ddm starcprogram ?;T;"“d
#pragma ddm kernel 4 nd For
#pragma ddm var int OUTPUTATTayC 4096 Update Thread
Function
#pragma ddm block 1 End Function
#pragma ddm thread 1 kernel (MODULAR,MASK INDX) readyeount 1
T E ARRAYS Property Value
for (1=0; 1<NROW; 1++) Thread Number 1
i Scheduling Mode MODULAR
for (3=0; 3<NCOL; j++) Scheduling Value MASK_INDX
N Ready count 1
inputhrrayAl[i] [3]= 1#NCOL+3; Aty
inputArrayB(i] [31= J*NCOL+i; Import (Click to add)
R ! Export (Click to a0d)
#pragma ddm endthread update (THREAD_2 : START : END) Import and Export (Click to ada)
#pragma ddm for thread 2 kernel (MODULAR,MASK CNTX) readycount 1 arity 1
for(i =0 ; 1 < NROWANCOL ; i++)
t
cwI=i>>SHIFT_I;
cwI=1&MASE_J;
gsum=0;
For (k=0; k<NROW; k+4)
[
gsum:=inputhrrayh [cvI] [k] *inputArrayB[k] [cvd] :
1
* (outputArrayC+i)=gsum: G >

)
#pragma ddm endthread

#pragma dim endblock

#pragma ddam update (THREAD_1)

#pragma ddm endprogram v

Figure 12: Matrix Multiplication using the directives for the DDM-VM Implementation.

12

For the DDM-VM implementation, as in the DThread example, we must declare the scheduling
policy that the loop iterations will follow during the execution, the number of producers the current
thread has (readycount) and since it is a Loop DThread, the number of nested loops that are to be
parallelized (arity). In this example we are only parallelizing the outer-most loop so the value for
the arity is 1. The declaration of the Loop DThread for the DDM-VM implementation is depicted

in Figure [T3]

#pragma ddm for thread 2 kernel (MODULAR,MASK_CNTX) readycount 1 arity 1

for{ 1 = @ ; 1 < NROW*NCOL ; i++)
{

cvI=i»>5HIFT_I;

cvl=18MASK_J;

gsum=a;
for(k=8; k<NROW; k++)
1

}

*loutputhArrayC+i)=gsum;

gsum+=inputArrayA[cvI][k]*inputArrayB[k][cv]];

}

#pragma ddm endfor

Figure 13: Example of a DDM-VM Loop DThread declaration.

In Figures [10| and we show a screenshot of the complete applications implemented with the
directives using the Eclipse Platform and the DDM Plug-in.

The second step in the process of developing a DDM application is using the preprocessor. The
C code augmented with the directives cannot be directly compiled with a compiler as the directives
don’t mean anything for a commodity C compiler. The DDM C Preprocessor will transform the
code with the directives into a pure parallel C code that can then be compiled. Thus, produce the
final DDM executable code.

To show the benefits of the tool-chain we compare the number of code lines of the implementa-
tions. We selected two applications, both implemented with directives for both the DDM imple-
mentations. In Figure [14] we demonstrate the lines of code (LOC) a user would have to write either
using C augmented with DDM directives or natively write DDM parallel code. The number of
code lines that have to written using the directives is significantly smaller compared to the output
code of the preprocessor for both implementations. For the DDM-VM the code lines are also less
than those of the TFlux implementations. This is mostly due to the code inserted to application,
that will communicate with the runtime system and mainly the scheduling unit. It is only an
implementation issue.

6 Conclusions and Future Work

In this paper we presented a programming tool-chain for Dataflow Multithreading and specifically
for the DDM model that follows the principles of Dataflow at a coarser granularity. This tool-chain
invokes a set of programming directives with which the user can expose the available parallelism
by expressing the data dependencies among the different DThreads in an application. To translate
these directives into usable parallel code we presented the DDM C Preprocessor that will transform
the C code augmented with the DDM directives into DDM parallel code that can later be compiled
to a binary executable using any commodity C compiler. Using this tool-chain, we can produce

13

1000

900

800

600

B C+Directives
500

LoC

B TFlux
400 -

DDM-VM
300 —

200 —

100 + —

Matrix Multiplication Trapez

Figure 14: Lines of code using the DDM directives compared to the output of the preprocessor for
two distinct applications.

dataflow parallel code for different platforms, in this paper the TFlux Platform and the DDM-VM,
while significantly reduce the programming effort.

As future work we aim to support more platforms and different parallel architectures through
this tool-chain. The architecture followed to build the tool-chain and the DDM C Preprocessor
enables the support of new Dataflow platforms with changes only to the back-end of the platform,
that is the produced parallel code. The front-end, that is the DDM directives, is not necessary to be
changed in the case of a new platform. We also consider the possibility of translating OpenMP [7]
directives to DDM directives, thus translating OpenMP code to Dataflow code.

References

[1] Stavrou, Kyriakos, et al., TFluz: A portable platform for data-driven multithreading on com-
modity multicore systems., Parallel Processing, 2008. ICPP’08. 37th International Conference
on. IEEE, 2008.

[2] Arandi, Samer, and Paraskevas, Evripidou, Programming multi-core architectures using data-
flow techniques., SAMOS’10: Proceedings of the 10th International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation, 2010.

[3] Kyriacou, Costas and Paraskevas, Evripidou, and Pedro, Trancoso, Data-driven multithreading
using conventional microprocessors., Parallel and Distributed Systems, IEEE Transactions on
17.10 (2006): 1176-1188.

[4] Chen, Thomas, et al., Cell broadband engine architecture and its first implementationa perfor-
mance view., IBM Journal of Research and Development 51.5 (2007): 559-572.

[5] Trancoso, Pedro and Kyriakos, Stavrou and Paraskevas, Evripidou, DDMCPP: The data-driven
multithreading C pre-processor., The 11th Workshop on Interaction between Compilers and
Computer Architectures, 2007.

[6] Kyriakos, Stavrou, The TFlux Platform: Dataflow Multithreading Ezecution on Commodity
Multiprocessor Systems., PhD Dissertation, University of Cyprus, 2009.

[7] Dagum, Leonardo, and Ramesh, Menon, OpenMP: an industry standard API for shared-memory
programming., Computational Science & Engineering, IEEE 5.1 (1998): 46-55.

[8] Moore, Gordon E., Cramming more components onto integrated circuits., Proceedings of the

IEEE 86.1 (1998): 82-85.

14

[9] Dennis, Jack B. and David, P. Misunas, A preliminary architecture for a basic data-flow pro-
cessor., ACM SIGARCH Computer Architecture News 3.4 (1974): 126-132.

[10] Dennis, Jack., First version of a data flow procedure language., Programming Symposium,
Springer Berlin/Heidelberg, 1974.

[11] Nikhil, Rishiyur S., and Keshav, K. Pingali., I-structures: Data structures for parallel com-
puting., ACM Transactions on Programming Languages and Systems (TOPLAS) 11.4 (1989):
598-632.

[12] J. Howard and et al., A 48-core ia-32 message-passing processor with dufs in 45nm cmos.,
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International,
pages 108 —109, Feb. 2010.

15

	Introduction
	Data-Driven Multithreading Architectures
	TFlux Architecture
	Data-Driven Multithreading Virtual Machine

	Tool-chain Programming Directives
	Eclipse Plug-in Suite
	The Content Assistant
	The Side Panel

	Case Study
	Conclusions and Future Work
	Acknowledgments
	References

