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It is known that probabilistic flooding in mobile ad hoc networks is characterized by phase transition phenomena

[1], similar to the ones observed in the context of random graphs and percolation theory [2], which suggest the

existence of a critical rebroadcast probability value beyond which high reachability is achieved with high probability.

The phenomenon has been recently observed in the context of Vehicular Ad Hoc Netwoks [3] which constitute

a subclass of MANETs with, however, special characteristics such as the confined network topology. It is thus

important to verify the existence of such phase transition phenomena anlytically in the context of VANETs. In this

technical report we first utilize a simple mathematical model of a vehicular network on a single lane road to derive

a difference equation which can be used to find numerical values of the probability of all vehicles receiving the

critical message as a function of the retransmission probability. The solution of this difference equation is shown

to exhibit phase transition phenomena similar to the ones observed using simulations. We then extend our analysis

to a two lane road and we derive a lower bound on the probabability of all vehicles receiving the message. It is

worth noting that the analysis reveals the inherent existence of recursion in the analysis of probabilistic flooding

schemes.

A. One Lane Analysis

We assume a straight line roadway section on which n equidistant vehicles move along a straight line. The vehicles

have a common transmission range and the distance between the vehicles is set to half the transmission range.

The latter implies that when a vehicle transmits a critical message, four vehicles in the vicinity of the transmitter

can receive the message, two in front and two at the back. The vehicles are indexed by integers {1, 2, 3, ..., n}

in ascending order from left to right, with vehicle 1, denoted by v1 being the left most vehicle. Without loss of
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generality we also assume that vehicle 1 is the initiator node which generates the critical message and broadcasts

it for the first time. The rest of the vehicles employ probabilistic flooding in order to disseminate the message to

all vehicles. So, a vehicle, upon receiving the critical message for the first time decides to rebroadcast the message

with probability p and decides not to rebroadcast the message with probability 1 − p. The above setting can be

represented by a graph G(V,E) where V is the set of nodes and E is the set of edges. Each vehicle vi is considered

a node ni in this representation and two nodes ni nj are associated with an edge (i, j) ∈ E if the one lies in

the transmission range of the other. Since the transmission range of the vehicles is equal to double the common

distance between the vehicles, the graph can be defined as follows:

G(V,E), V = {ni, iϵ[n]} (1)

E = {(i, i+ 1), (i, i+ 2)|1 ≤ i ≤ n− 2} (2)

Assume now that in the above setting the initiator node broadcasts the initial message and that the rest of the

nodes employ probabilistic flooding to disseminate the message to all nodes. We represent the nodes which have

sent or received a critical message by a graph Gb = (Vb, Eb) where Vb is the set of nodes which have sent or

received a critical message. An edge (i, j) lies in Eb if node ni has sent a message to nj or if node ni has received

a message from nj . Note that Vb ⊆ V , Eb ⊆ E. If the critical message has been received by all vehicles then

Vb = V . The following transforms the reachability problem into a graph theoretic connectivity problem:

Lemma 1: Vb is a connected graph

Proof: Assume in contradiction that Gb consists of more than one non-empty connected disjoint components

G1, G2, G3, Gi, i ≤ n. Denote by G1 the component which contains the initiator node n1. The initiator node

n1 lies in Gb for sure since it is the one which initially broadcasts the message. Since Gj , j = {2, 3, .., i} are

disconnected from G1, it means that no node from G1 was able to transmit the unknown message to any node

in Gj , j = {2, 3, .., i}. Since Gj , j = {2, 3, .., i} can only receive the critical message from G1, it implies that

Gj , j = {2, 3, .., i} is empty. Since we initially assumed Gj , j = {2, 3, .., i} to be non-empty we have reached a

contradiction.

Our objective is to compute the probability of all vehicles receiving the critical message. That is we aim at

calculating the probability of Vb = V . We denote this event by U and we denote the probability of U occurring as

Π(n), since |V | = n. To compute Π(n) we consider the application of the probabilistic flooding algorithm on the

considered topology as the experiment and we represent the probability space of this experiment using a probability

tree diagram. The tree corresponding to n nodes is denoted by T (n). The tree diagram in the case of n = 5 is shown



in Fig. 1. In this representation, each node Bi denotes the event that node i rebroadcasts the message assuming that

it has received it, whereas NBi denotes the event that node i does not rebroadcast the message. The probability

that node i rebroadcasts the message is equal to p whereas the probability that node i does not rebroadcast the

message is equal to 1 − p. This dictates the branch preceding each node Bi and NBi. To each branch preceding

node Bi we associate a probability p whereas to each branch preceding NBi we associate a probability 1 − p.

Each of the possible outcomes at the n′th level of the tree is denoted by S and is indexed by k ∈ K. Note that

U =
∪

k∈K
Sk is the event of all vehicles receiving the message which is the event of success.
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Fig. 1: Probability tree diagram for the case of five nodes.

In T(5) note that when two consecutive nodes i, i + 1, i ≤ 3 do not broadcast then the algorithm terminates

without success. On the other hand if node i broadcasts then the algorithm continues and we may consider node i

as the initiator of the tree rooted on i denoted by T (n− i+ 1). Finally, if node i did not broadcast, the only case

that allows further propagation of the critical message, is node i + 1 to broadcast the message. In this case, we

may consider node i+ 1 an initiator of a tree rooted at i+ 1, The latter tree is denoted by T (n− i). We can now

redraw, the tree diagram for the case of n nodes taking into account internal trees of similar structures. This leads

to recursion. The tree is shown in Fig. 2.
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Fig. 2: Probability tree diagram indicating recursion.

The nodes B3 at level 3 of the tree are the roots of trees T (n − 2). The node B4 at level 4 of the tree is the

root of tree T (n− 3). The set of successful outcomes generated by each of the trees are denoted by W1, W2 and

W3 respectively as shown in the diagram. From the tree diagram one can derive the following difference equation.



Π(n) = P (W1) + P (W2) + P (W3)

= ppΠ(n− 2) + p(1− p)pΠ(n− 3) + (1− p)pΠ(n− 2)

p2Π(n− 2) + p2(1− p)Π(n− 3) + (1− p)pΠ(n− 2)

pΠ(n− 2) + p2(1− p)Π(n− 3) (3)

The initial conditions of this difference equation are obviously Π(1) = Π(2) = Π(3) = 1. The solution of this

difference equation yields the probability of all vehicles receiving the critical message in the setting described

above. The difference equation is not trivial to solve in closed form, so in order to gain insights on its behavior

we solve it numerically and in Fig. 3 we plot Π(n) as a function of p for different values of n. We observe strictly

increasing functions of p. In addition, we observe areas where the probability of all vehicles receiving the message

is low and areas where the probability is high. The transition from one area to the other becomes more and more

abrupt as the number of nodes increases. The above analysis verifies the existence of phase transition phenomena

associated with probabilistic flooding despite the simplicity of the considered model.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rebroadcast Probability p

S
uc

ce
ss

 P
ro

ba
bi

lit
y

n=10
n=20
n=50
n=100

Fig. 3: Probability of all vehicles receiving the critical message versus the rebroadcast probability for different
values of n.

B. Two Lane Analysis

We now assume 2n vehicles on a two lane straight line roadway section as shown in Fig 4. The vehicles are

equidistant and have a common transmission range. The vehicles in the upper lane are indexed by integers {1,

2, 3, ..., n} in ascending order from left to right, with vehicle 1, denoted by 1U being the left most vehicle and

vehicles in the lower lane are also indexed by integers {1, 2, 3, ..., n} in ascending order from left to right,

with vehicle 1, denoted by 1D being the left most vehicle. The distance between the vehicles is set to half the

transmission range. This implies that when a node iU (iD) broadcasts a message, the message can be received by
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Fig. 4: The two lane graph L2n. The nodes receiving the critical message when the initiator node and an arbitrary
intermediate node broadcast are illustrated.

nodes iU−2, iU−1, iU+1, iU+2 of the upper lane of the graph (iD−2, iD−1, iD+1, iD+2 of the lower lane)

and by nodes iD− 1, iD, iD+1 of the lower lane of the graph (iU − 1, iU, iU +1 of the upper lane of the graph).

Without loss of generality we assume that vehicle 1U is the initiator node which generates the critical message and

broadcasts it for the first time. The rest of the vehicles employ probabilistic flooding in order to disseminate the

message to all vehicles. So, a vehicle, upon receiving the critical message for the first time decides to rebroadcast

the message with message with probability p and decides not to rebroadcast the message with probability 1-p. Such

a two lanes graph of n nodes on each lane is denoted by L2n. The L2n graph together with the broadcast range of

an illustrative number of vehicles is shown in Figure 4.

We wish to compute the probability of all nodes in the L2n graph receiving the message. This is denoted by

P(SuccessL2n). In general, we denote by P(X), the probability of event X to occur, where X is any event in

the sample space of the probabilistic flooding experiment we are considering. We denote, for any node iU (iD,

respectively) the event that iU receives and broadcasts the message, as iUB (iDB). In addition, the event that iU

(iD) does not broadcast the message is denoted as iUNB (iDNB). For clarity of presentation in the subsequent

discussion we assume that all the definitions that apply for vehicles in the upper lane also apply for the vehicles

in the lower lane with the U notation replaced by D.

Lemma 2: Assume application of the probabilistic algorithm on L2n. When nodes 2U, 3U, 1D and 2D do not

broadcast the message after receiving it, the algorithm terminates and nodes 4U and 3D do not receive the message.

The latter nodes are the first nodes that may not receive the message.

Proof: Nodes 2U, 3U, 1D and 2D receive the message due to the initial broadcast by the initiator. Nodes 4U

and 3D may receive the message only from nodes 2U, 3U, 1D and 2D. If none of them broadcasts, the message

will never be received by nodes 4U and 3D. Thus, the algorithm terminates.

So, by Lemma 2, in order for the algorithm to have positive probability to succeed on L2n, it must be that the

algorithm does not terminate at nodes 4U and 3D. The complement of the event of both 4U and 3D not receiving

the message consists of the following disjoint events.

• E1= 3UB&2DB



• E2=3UB&2DNB

• E3=3UNB&2DB

• E4=3UNB&2DNB and the message is received by at least one of the nodes 4U, 3D from at least one of the

nodes preceding nodes 3U, 2D, i.e. at least one of the nodes 1D,2U broadcast it.

The above events are disjoint since each of them contains the complement of a subset of any of the other

events. Denote as P(SuccessL2n&Ei) the probability of all nodes in L2n receiving the message when event Ei has

occurred, i ∈ [4]. Since the events Ei are disjoint it follows that

P(SuccessL2n) =

4∑
i=1

P(SuccessL2n&Ei) (4)

Before computing the probability of each of the events {E1, · · · , E4} to happen, we consider a partition of E4

which represents all the possible ways with which the event can occur. The partition is the following:

E4 =

3∪
i=1

E4/i (5)

where events E4/i, i = {1, 2, 3} are given by:

• (E4/1)=2UB&1DNB&3UNB&2DNB

• (E4/2)=2UB&1DB&&3UNB&2DNB

• (E4/3)=2UNB&1DB&3UNB&3DNB

The reasoning behind this partition is that the nodes that precede nodes 3U and 2D are nodes 2U and 1D. So, in

order to partition event E4, one has to consider all possible actions of nodes 2U and 1D. Excluding the event of both

nodes not broadcasting which is not allowed by the definition of E4, the rest of the combinations are 2UB&1DNB,

2UB&1DB, 2UNB&1DB. When one combines the latter cases with 3UNB&2DNB which also stems from the

definition of E4 one obtains the above events. From equation (4) and the fact that E4/i are a partition of E4 it

follows that :

P(SuccessL2n) =

3∑
i=1

P(SuccessL2n&Ei) +

3∑
i=1

P(SuccessL2n&E4/i) (6)

1) Computation of Probability of Success on Event E1: We first compute the probability of success of the

algorithm when event E1 occurs, i.e. we compute P(Success L2n&E1) = P(Success L2n&(3UB&2DB)). Event

E1 is illustrated in Figure 5.
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Fig. 5: The event E1 = 3UB&2DB. Nodes 3U and 2D broadcast the message. Dotted arrows indicate receiving
nodes due to 3U broadcasting whereas line dotted arrows indicate receiving nodes due to 2D broadcasting.
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Fig. 6: The event E2 = 3UB&2DNB. Node 3U broadcasts the message. Dotted arrows indicate receiving nodes
due to 3U broadcasting.

Note that P(3UB&2DB) = p ·p = p2, since each of the nodes 2D and 3U receive the message from the initiator

node and broadcast with probability p, independent of each other. We observe that when 3U and 2D broadcast the

message, they act as initiators of two lane graphs. When 3U broadcasts the message it acts as the initiator of a two

lane graph consisting of 2(n− 2) nodes whereas when 2D broadcasts the message it acts as the initiator of a two

lane graph consisting of 2(n−1) nodes. The receiving nodes when 2D broadcasts is a subset of the receiving nodes

when 3U broadcasts. We thus continue the analysis assuming that only 3U broadcasts. This assumption creates a

lower bound on the calculated success probability but due to the preceding observation we expect this lower bound

not to be conservative. It follows that:

P(SuccessL2n&E1) ≥ p2 · P(SuccessL2(n−2)) (7)

2) Computation of Probability of Success on Event E2: We now compute

P(Success L2n&E2) = P(Success L2n&(3UB&2DNB)). Event E2 is illustrated in Figure 6.

Note that P(3UB&2DNB) = p · (1− p). Nodes 3U and 2D receive the message from the initiator node and the

former broadcasts with probability p and the latter does not broadcast with probability 1−p, independently of each

other. We observe that node 3U acts as the initiator of a two line graph consisting of 2(n − 2) nodes and it thus

follows:

P(SuccessL2n&E2) = p · (1− p) · P(SuccessL2(n−2)) (8)
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Fig. 7: The event E3 = 3UNB&2DB. The broadcasting nodes are cycled. 4D is considered to be the initiator node
in order to calculate a lower bound on the success probability.

3) Computation of Probability of Success on Event E3: We now compute

P(Success L2n&E3) = P(Success L2n&(3UNB&2DB)). Event E3 is illustrated in Figure 7.

Note that P(3UNB&2DB) = (1− p) · p since nodes 2D and 3U receive the message from the initiator node and

the former broadcasts with probability p and the latter does not broadcast with probability 1 − p, independently

of each other. If node 2D is considered as the initiator node, 3U which receives the message from 2D does not

rebroadcast since it has received the message from a previous transmission. So, the probability of success of the

algorithm in this case, is less than the probability of success of a two lane graph of 2(n − 1) nodes,generated

assuming that 2D is the initiator. This upper bound on the success probability is not desirable as a lower bound

is pursued. Noting that node 4D receives the message from 2D, we consider 4D to be the initiator. This choice

creates a lower bound on the success probability as transmissions of previous nodes are not accounted for in the

success probability of L2(n−3), generated when 4D is assumed to be the initiator. We calculate a lower bound on

the probability of 4D becoming an initiator node by broadcasting when E3 occurs as follows:

P(3UNB&2DB&4DB) ≥ p · (1− p) · p, (9)

The lower bound is due to the fact 4D may receive the message not only from node 2D but also from node 3D.

We thus obtain,

P(Success L2n&(3UB&2DNB)) ≥ P(Success L2n&(3UB&2DNB&4DB))

≥ p · (1− p) · p · P(Success L2(n−3))

= p2 · (1− p) · P(Success L2(n−3))

It follows that
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Fig. 8: The event E4/1 = (2UB&1DNB)&(3UNB&2DNB). The broadcasting nodes are cycled. 4D is considered
to be the initiator node in order to calculate a lower bound on the success probability.

P(SuccessL2n&E3) ≥ p2 · (1− p) · P(SuccessL2(n−3)) (10)

4) Computation of Probability of Success on Event E4/1: We now compute the probability of success of the

algorithm when event E4/1 occurs, i.e. we compute

P(Success L2n&E4/1) = P(Success L2n&(2UB&1DNB)&(3UNB&2DNB)). The event E4/1 is illustrated in

Figure 8.

Observe that in E4/1, in order for the algorithm to cause all nodes to eventually receive the message, either 4U

or 3D must broadcast the message. The probability to be evaluated is thus

P(Success L2n&(2UB&1DNB)&(3UNB&2DNB)&(3DBor 4UB)). One may obtain a lower bound on the latter

probability by neglecting any broadcast from node 3D. This leads to

P(Success L2n&(2UB&1DNB)&(3UNB&2DNB)&(3DBor 4UB))

≥ P(Success L2n&(2UB&1DNB)&(3UNB&2DNB)&(4UB))

≥ p · (1− p) · (1− p)2 · p · P(SuccessL2(n−3))

It follows that

P(SuccessL2n&E41) ≥ p2 · (1− p)3 · P(SuccessL2(n−3)) (11)

5) Computation of Probability of Success on Event E4/2: We now compute the probability of success of the

algorithm when event E4/2 occurs, i.e. we compute

P(Success L2n&E4/2) = P(Success L2n&(2UB&1DB)&(3UNB&2DNB)). The event E4/2 is illustrated in Figure

9.

Observe that in E4/2, in order for the algorithm to cause all nodes to eventually receive the message either 4U
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Fig. 9: The event E4/2 = (2UB&1DB)&(3UNB&2DNB).The broadcasting nodes are cycled. 4D is considered to
be the initiator node in order to calculate a lower bound on the success probability.
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Fig. 10: The event E4/3 = (2UNB&1DB)&(3UNB&2DNB).The broadcasting nodes are cycled. 4D is considered
to be the initiator node in order to calculate a lower bound on the success probability.

or 3D must broadcast the message. The probability to be evaluated is thus

P(Success L2n&(2UB&1DB)&(3UNB&2DNB)&(3DBor 4UB)). One may obtain a lower bound on the latter

probability by neglecting any broadcast from node 3D. This leads to

P(Success L2n&(2UB&1DB)&(3UNB&2DNB)&(3DBor 4UB))

≥ P(Success L2n&(2UB&1DB)&(3UNB&2DNB)&(4UB))

≥ p · p · (1− p)2 · p · P(SuccessL2(n−3))

It follows that

P(SuccessL2n&E4/2) ≥ p3 · (1− p)2 · P(SuccessL2(n−3)) (12)

6) Computation of Probability of Success on Event E4/3: We now compute the probability of success of the

algorithm when event E4/3 occurs, i.e. we compute

P(Success L2n&E4/3) = P(Success L2n&(2UNB&1DB)&(3UNB&2DNB)). The event E4/3 is illustrated in

Figure 10.

We observe that 3D may be used as an initiator to obtain the success probability when E4/3 occurs. However,

such a choice would lead to an upper bound on the probability which is undesirable. An upper bound is due to



the fact that 3U cannot further broadcast the message. We thus consider node 4D as the initiator. This provides a

lower bound on the success probability according to

P(Success L2n&(2UNB&1DB)&(3UNB&2DNB)&3DB)

≥ P(Success L2n&(2UNB&1DB)&(3UNB&2DNB)&3DB&4DB)

≥ (1− p) · p · (1− p)2 · p · p · P(SuccessL2(n−3))

It follows that

P(SuccessL2n&E43) ≥ p3 · (1− p)3 · P(SuccessL2(n−3)) (13)

Combining equation (6) with equations (7) - (13), we get

Theorem 3: The probability of success of the algorithm on a two line graph L2n

is lower bounded by

P(SuccessL2n) ≥ p · P(SuccessL2(n−2))

+
(
p2 + (p2 + p3) · (1− p)3 + p5 − 2p4

)
· P(SuccessL2(n−3))

Proof:

P(SuccessL2n)

≥ p2 · P(SuccessL2(n−2)) + p · (1− p) · P(SuccessL2(n−2)) + p2 · (1− p) · P(SuccessL2(n−3))

+ p2 · (1− p)3 · P(SuccessL2(n−3)) + p3 · (1− p)2 · P(SuccessL2(n−3))

+ p3 · (1− p)3 · P(SuccessL2(n−3))

=
(
p2 + p(1− p)

)
· P(SuccessL2(n−2))

+
(
p2(1− p) + p2(1− p)3 + p3(1− p)2 + p3(1− p)3

)
· P(SuccessL2(n−3))

= p · P(SuccessL2(n−2)) +
(
p2 + (p2 + p3) · (1− p)3 + p5 − 2p4

)
· P(SuccessL2(n−3))
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