ΕΠΛ 674: Εργαστήριο 3 Ο αλγόριθμος ασύμμετρης κρυπτογράφησης RSA

Παύλος Αντωνίου |Ν

esearch

Private-Key Cryptography

- traditional private/secret/single key cryptography uses one key
- shared by both sender and receiver
- if this key is disclosed communications are compromised
- also is **symmetric**, parties are equal
- hence does not protect sender from receiver forging a message & claiming is sent by sender

Public-Key Cryptography

- uses two keys a public & a private key
- **asymmetric** since parties are **not** equal
- uses clever application of number theoretic concepts to function
- complements rather than replaces private key cryptography

Public-Key Cryptography

- public-key/two-key/asymmetric cryptography involves the use of two keys:
 - a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
 - a private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures
- is **asymmetric** because
 - those who encrypt messages or verify signatures cannot decrypt messages or create signatures

Public-Key Cryptography

Why Public-Key Cryptography?

- developed to address two key issues:
 - key distribution how to have secure communications in general without having to trust a key distribution center (KDC) with your key
 - digital signatures how to verify a message comes intact from the claimed sender
- public invention due to Whitfield Diffie & Martin Hellman at Stanford University in 1976

Public-Key Characteristics

- Public-Key algorithms rely on two keys with the characteristics that it is:
 - computationally infeasible to find decryption key knowing only algorithm & encryption key
 - computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known
 - either of the two related keys can be used for encryption, with the other used for decryption (in some schemes)

Public-Key Cryptosystems

Figure 9.4 Public-Key Cryptosystem: Secrecy and Authentication

Public-Key Applications

- can classify uses into 3 categories:
 - encryption/decryption (provide secrecy)
 - digital signatures (provide authentication)
 - key exchange (of session keys)
- some algorithms are suitable for all uses, others are specific to one

Security of Public Key Schemes

- like private key schemes brute force exhaustive search attack is always theoretically possible
- but keys used are too large (>512bits)
- security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalyse) problems
- more generally the hard problem is known, its just made too hard to do in practise
- requires the use of very large numbers
- hence is slow compared to private key schemes

- by Rivest, Shamir & Adleman of MIT in 1977
- best known & widely used public-key scheme
- security due to cost of factoring (παραγοντοποίηση) large numbers

Prime numbers

- Prime numbers only have divisors of 1 and self
 - they cannot be written as a product of other numbers
 - note: 1 is prime, but is generally not of interest
- eg. 2,3,5,7 are prime, 4,6,8,9,10 are not
- prime numbers are central to number theory
- list of prime number less than 200 is:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

RSA Key Setup

- Each user generates a public/private key pair by:
- selecting two large primes at random: p , $\ q$
- computing system modulus N=p.q
 - RSA currently recommends a modulus that's at least 768 bits long
- computing $\varphi = (p-1) (q-1)$
- selecting at random the encryption key ${\rm e}$
 - where 1<e< ϕ , gcd (e, ϕ)=1
 - In practice, common choices for *e* are 3, 17 and 65537 (Fermat primes)
 - Public encryption key KU={e,N}

RSA Key Setup

- computing a private key ${\rm d}$ so that ${\rm e}$. ${\rm d}$ leaves a remainder of 1 when divided by $\phi.$

– We say e.d is *congruent* to 1 *modulo* ϕ

- solving following equation to find decryption key d
 - -e.d = 1 (mod ϕ) => e.d = k. ϕ +1, and 0 $\leq d \leq N$

d = $e^{-1} \pmod{\varphi}$ (mod φ) (modular inverse \rightarrow can be computed using the Extended Euclidean algorithm. More info can be found <u>here</u>)

- Private encryption key KR={d,p,q}
- Note that d is easy to compute only if one knows the value of φ. This is essentially the same as knowing the values of p and q.

RSA – encryption/decryption

- If M is any number that is not divisible by N, then dividing Me.d by N and taking the remainder yields the original value M.
 - This is a relatively deep mathematical theorem, which we can write as $M^{e.d} \mod N = M$
- If M is a numeric encoding of a block of plaintext, the cyphertext is C=M^e mod N.
- Then C^d mod N = (M^e mod N)^d mod N = (M^e)^d mod N = M^{e.d} mod N = M. Thus, we can recover the plaintext M with the private key d.

RSA (en/de)cryption implementation

- Let's say we want to compute:
- c = m^d mod n

Note that we don't have to calculate the full value of m to the power d here. We can make use of the fact that: a = bc mod n = (b mod n).(c mod n) mod n so we can break down a potentially large number into its

components and combine the results of easier, smaller calculations to calculate the final value.

For example: (m=13, d=7, n=33) c = 13⁷ mod 33 = 13⁽³⁺³⁺¹⁾ mod 33 = 13³.13³.13 mod 33 = (13³ mod 33).(13³ mod 33).(13 mod 33) mod 33 = (2197 mod 33).(2197 mod 33).(13 mod 33) mod 33 = 19.19.13 mod 33 = 4693 mod 33 = 7.

RSA summary

- N=p.q where p, q are distinct prime numbers
- φ, φ=(p-1).(q-1)
- e<N, gcd(e,φ)=1 & d=e⁻¹(mod φ)
- public encryption key: KU={e,N}
- private decryption key: KR={d,p,q}
- to encrypt a message M the sender:
 - obtains public key of recipient
 - computes: $C=M^e \mod N$, where $0 \le M < N$
- to decrypt the ciphertext C the owner:
 - uses their private key KR={d, p, q}
 - computes: $M=C^d \mod N$
- note that the message M must be smaller than the modulus N (block if needed)

Why RSA works?

- Multiplying p by q is easy: the number of operations depends on the number of bits (number of digits) in p and q.
- For example, multiplying two 384-bit numbers takes approximately 384² = 147,456 bit operations

Why RSA works? (2)

- If one knows only N, finding p and q (factorization) is *hard*: in essence, the number of operations depends on the *value* of N.
 - The simplest method for factoring a 768-bit number takes about $2^{384} \approx 3.94 \times 10^{115}$ trial divisions.
 - A more sophisticated methods takes about $2^{85} \approx 3.87 \text{ x}$ 10^{25} trial divisions.
 - A still more sophisticated method takes about $2^{41} \approx 219,000,000,000$ trial divisions
- No-one has found an really quick algorithm for factoring a large number N.
- No-one has proven that such a quick algorithm doesn't exist (or even that one is unlikely to exist)

RSA example

- **1.** Select primes: p=17 & q=11
- **2.** Compute $n = pq = 17 \times 11 = 187$
- 3. Compute $\varphi = (p-1) (q-1) = 16 \times 10 = 160$
- **4.** Select e : gcd (e, 160) =1; choose e=7
- 5. Determine d:d.e=1 (mod 160) Value is d=23 since 23×7=161= 10×160+1
- 6. Publish public key KU={7,187}
- 7. Keep secret private key KR={23,17,11}

RSA example (cont)

University of Cyprus

- sample RSA encryption/decryption is:
- given message M = 88 (nb. 88<187)
- encryption:

 $C = 88^7 \mod 187 = 11$

• decryption:

 $M = 11^{23} \mod 187 = 88$

RSA security

- three approaches to attacking RSA:
 - brute force key search (infeasible given size of numbers)
 - mathematical attacks (based on difficulty of computing φ, by factoring modulus N)
 - timing attacks (on running of decryption)

References

[1] RSA Algorithm: http://www.di-mgt.com.au/rsa_alg.html

[2] Extended Euclidean Algorithm: <u>http://www.di-</u> <u>mgt.com.au/euclidean.html#extendedeuclidean</u>

