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Private-Key Cryptography
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traditional private/secret/single key cryptography
uses one key

shared by both sender and receiver

iIf this key is disclosed communications are
compromised

also is symmetric, parties are equal

hence does not protect sender from receiver
forging a message & claiming is sent by sender




Public-Key Cryptography
» uses two keys — a public & a private key
« asymmetric since parties are not equal

 uses clever application of number theoretic
concepts to function

« complements rather than replaces private key
cryptography
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Public-Key Cryptography

* public-key/two-key/asymmetric cryptography
involves the use of two keys:

— a public-key, which may be known by anybody, and can
be used to encrypt messages, and verify signatures

— a private-key, known only to the recipient, used to
decrypt messages, and sign (create) signatures

* Is asymmetric because

— those who encrypt messages or verify signatures cannot
decrypt messages or create signatures
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Public-Key Cryptography
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Why Public-Key Cryptography? X
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» developed to address two key issues:

— key distribution — how to have secure communications
In general without having to trust a key distribution center
(KDC) with your key

— digital signatures — how to verify a message comes
intact from the claimed sender

* public invention due to Whitfield Diffie & Martin
Hellman at Stanford University in 1976
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Public-Key Characteristics
* Public-Key algorithms rely on two keys with the

characteristics that it is:

— computationally infeasible to find decryption key knowing
only algorithm & encryption key

— computationally easy to en/decrypt messages when the
relevant (en/decrypt) key is known

— either of the two related keys can be used for encryption,
with the other used for decryption (in some schemes)
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Public-Key Cryptosystems D4
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Figure 9.4 [Public-Key Cryptosystem: Secrecy and Authentication
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Public-Key Applications

 can classify uses into 3 categories:
— encryption/decryption (provide secrecy)
— digital signatures (provide authentication)
— key exchange (of session keys)

« some algorithms are suitable for all uses, others
are specific to one
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Security of Public Key Schemes
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like private key schemes brute force exhaustive
search attack is always theoretically possible

but keys used are too large (>512bits)

security relies on a large enough difference in
difficulty between easy (en/decrypt) and hard
(cryptanalyse) problems

more generally the hard problem is known, its
just made too hard to do in practise

requires the use of very large numbers
hence is slow compared to private key schemes
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* by Rivest, Shamir & Adleman of MIT in 1977

* best known & widely used public-key scheme

* security due to cost of factoring
(TrapayovToTroinon) large numbers
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* Prime numbers only have divisors of 1 and self
— they cannot be written as a product of other numbers
— note: 1 is prime, but is generally not of interest

* eg. 2,3,5,7 are prime, 4,6,8,9,10 are not
* prime numbers are central to number theory

* list of prime number less than 200 is:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 ol
o7 71 73 79 83 89 97 101 103 107 109 113 127 131
137 139 149 151 157 163 167 173 179 181 191 193

197 199
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RSA Key Setup D 4

- Each user generates a public/private key pair by:
 selecting two large primes at random: p, g

« computing system modulus N=p. g
— RSA currently recommends a modulus that's at least 768
bits long
« computing = (p-1) (g-1)
» selecting at random the encryption key e
— where 1<e<@, gcd(e, @)=

— In practice, common choices for e are 3, 17 and 65537
(Fermat primes)

— Public encryption key KU={e,N}
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RSA Key Setup D 4

« computing a private key d so that e. d leaves a

remainder of 1 when divided by ¢.
— We say e.d is congruent to 1 modulo ¢

* solving following equation to find decryption key d

—e.d =1 (mod @) => e.d = k. +1, and
0<d=N

d = e! (mod @) (modularinverse - can be

computed using the Extended Euclidean algorithm.
More info can be found here)

— Private encryption key KR={d,p,q}
* Note that d is easy to compute only if one knows

the value of @. This is essentially the same as
knowing the values of p and g.


http://www.di-mgt.com.au/euclidean.html#extendedeuclidean
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RSA — encryption/decryption D 6

 If M is any number that is not divisible by N, then
dividing M¢-9 by N and taking the remainder yields

the original value M.

— This is a relatively deep mathematical theorem, which
we can write as M*-9 mod N = M

 If M is a numeric encoding of a block of plaintext,
the cyphertext is C=M® mod N.

* Then C4 mod N =(M® mod N)4 mod N = (Me)d
mod N = M®-4 mod N = M. Thus, we can
recover the plaintext M with the private key d.
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RSA (en/de)cryption implementation |LI[ |

* Let's say we want to compute:
« ¢c=mdmod n
Note that we don't have to calculate the full value of m to
the power d here. We can make use of the fact that:
a = bc mod n = (b mod n).(c mod n) mod n
so we can break down a potentially large number into its
components and combine the results of easier, smaller
calculations to calculate the final value.
* For example: (m=13, d=7, n=33)
c = 13" mod 33 = 136*3*1) mod 33 = 133.133.13 mod 33
= (133 mod 33).(133 mod 33).(13 mod 33) mod 33
(2197 mod 33).(2197 mod 33).(13 mod 33) mod 33
9.19.13 mod 33 = 4693 mod 33
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RSA summary

N=p.q where p, q are distinct prime numbers
¢, =(p-1).(q-1)

e<N, gcd(e,p)=1 & d=e'(mod o)

public encryption key: KU={e,N}

private decryption key: KR={d,p,q}

to encrypt a message M the sender:

— obtains public key of recipient
— computes: C=M® mod N, where 0<M<N

to decrypt the ciphertext C the owner:

— uses their private key KR={d, p, g}

— computes: M=C% mod N

note that the message M must be smaller than the
modulus N (block if needed)
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Why RSA works?

* Multiplying p by g is easy: the number of
operations depends on the number of bits
(number of digits) in p and g.

* For example, multiplying two 384-bit numbers

takes approximately
3842= 147,456 bit operations
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Why RSA works? (2) D 4

* If one knows only N, finding p and g (factorization)
Is hard: in essence, the number of operations

depends on the value of N.

— The simplest method for factoring a 768-bit number
takes about 2384~ 3.94 x101"° trial divisions.

— A more sophisticated methods takes about 28°~ 3.87 x
102 trial divisions.

— A still more sophisticated method takes about 241 ~
219,000,000,000 trial divisions
* No-one has found an really quick algorithm for
factoring a large number N.

* No-one has proven that such a quick algorithm
doesn’t exist (or even that one is unlikely to exist)




RSA example
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Select primes: p=17 & Q=11

Compute n = pq =17%x11=187
Compute ¢@=(p—1) (-1)=16%10=160
Selecte : gcd(e,160)=1; choose e=7

Determine d: d.e=1 (mod 160)
Value is d=23 since 23x7=161= 10x160+1

Publish public key KU={7, 187}
Keep secret private key KR={23, 17,11}




RSA example (cont)
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« sample RSA encryption/decryption is:
e given message M = 88 (nb. 88<187)

* encryption:
C = 887 mod 187 = 11

« decryption:
M = 1123 mod 187 = 88
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RSA security

 three approaches to attacking RSA:
— brute force key search (infeasible given size of numbers)

— mathematical attacks (based on difficulty of computing o,
by factoring modulus N)

— timing attacks (on running of decryption)
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