
University of Cyprus

Department of

Computer Science

Παύλος Αντωνίου

Γραφείο: B109, ΘΕΕ01

EPL660: Information

Retrieval and Search

Engines – Lab 9

Introduction to Apache Spark

• Fast and general engine for large-scale

data processing on clusters
– claim to run programs up to 100x faster

than Hadoop MapReduce for in-memory

analytics, or 10x faster on disk.

• Developed in the AMPLab at UC Berkeley
– Started in 2009

• Open-sourced in 2010 under a BSD license

• Proven scalability to over 8000 nodes in

production

Spark vs Hadoop

• Spark is an in-memory distributed processing

engine

• Hadoop is a framework for distributed storage

(HDFS) and distributed resource management and

job scheduling (YARN) and distributed processing

(Map/Reduce)

• Spark can run with (by default) or without Hadoop

components (HDFS/YARN)

Storage in Spark

• Distributed Storage Options:

– Local filesystem (non distributed)

– Hadoop HDFS – Great fit for batch (offline) jobs.

– Amazon S3 – For batch jobs. Commercial.

– Apache Cassandra (DB) – Perfect for streaming data

analysis (time series) and an overkill for batch jobs.

– Apache HBase (DB)

– MongoDB (DB)

• Cassandra vs Hbase vs MongoDB: http://db-

engines.com/en/system/Cassandra%3BHBase%3

BMongoDB

https://wiki.apache.org/hadoop/AmazonS3
http://cassandra.apache.org/
https://hbase.apache.org/
https://www.mongodb.com/
http://db-engines.com/en/system/Cassandra;HBase;MongoDB

Job Scheduling in Spark

• Distributed Resource Management & Job

Scheduling Options:

– Standalone: simple cluster manager included with

Spark that makes it easy to set up a cluster

– Hadoop YARN: the resource manager in Hadoop

– Apache Mesos: a general cluster manager that can

also run Hadoop MapReduce and service applications

• Hadoop vs Spark

http://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html

Key points about Spark

• Runs on both Windows and UNIX-like systems

• Provides high-level APIs in Java, Scala, Python

and R

• Supports rich set of higher-level tools

including SQL and Dataframes for SQL and

structured data processing (e.g. json files), Mllib for

machine learning, GraphX for graph processing,

and Spark Streaming for stream processing of live

data streams (e.g. sources: TCP/IP sockets,

Twitter…)

http://spark.apache.org/docs/latest/sql-programming-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html

Running Apache Spark

• Apache Spark 3.0.0 is installed on your Virtual

Machine

• Start Spark Shell:

– cd /usr/local/spark/bin

– Python Shell:
• ./pyspark

– Scala Shell
• ./spark-shell

– R Shell
• ./sparkR

– Submit an application written in a file
• ./spark-submit --master local[2] SimpleApp.py

– Run ready-made examples
• ./run-example <class> [params]

http://spark.apache.org/docs/latest/submitting-applications.html

Spark Essentials: SparkContext

• First thing that a Spark program does in order to

access a cluster is to create a SparkContext object

• In the shell for either Scala or Python, this is the

sc variable, which is created automatically

• In your programs, you must use a constructor to

instantiate a new SparkContext

• Then in turn SparkContext gets used to create

other variables

Hands on – sparks-shell / pyspark

• From the “scala>” REPL prompt, type:
scala> sc

res0: org.apache.spark.SparkContext =

org.apache.spark.SparkContext@10b87ff6

• From the python “>>>” interpreter, type:
>>> sc

<SparkContext master=local[*]

appName=PySparkShell>

Spark Essentials: SparkSession

• From Spark 2.0 onwards, SparkSession is

introduced

• In your programs, you must use a

SparkSession.builder to instantiate a new

SparkSession object

• In the shell for either Scala or Python, this is the

spark variable, which is created automatically

• No need to create SparkContext, since

SparkSession encapsulates the same

functionalities

Hands on – sparks-shell / pyspark

• From the “scala>” REPL prompt, type:
scala> spark

res0:

org.apache.spark.sql.SparkSession =

org.apache.spark.sql.SparkSession@49c8

3262

• From the python “>>>” interpreter, type:
>>> spark

<pyspark.sql.session.SparkSession

object at 0x7f5e68293be0>

Spark Essentials: Master

• The master parameter determines which

cluster to use
e.g. ./spark-submit --master local[2] SimpleApp.py

master description

local
run Spark locally with one worker thread

(no parallelism)

local[K]
run Spark locally with K worker threads

(ideally set to # cores)

spark://HOST:PORT

connect to a Spark standalone cluster

manager;

PORT depends on config (7077 by default)

mesos://HOST:PORT
connect to a Mesos cluster manager;

PORT depends on config (5050 by default)

Hands on - change master param

• Through a program (via SparkContext object)

– To create a SparkContext object you first need to build

a SparkConf object that contains information about your

application.

– Scala
import org.apache.spark.SparkContext

import org.apache.spark.SparkConf

val conf = new SparkConf().setAppName("MyApp").setMaster("local[4]")

val sc = new SparkContext(conf)

– Python
from pyspark import SparkContext, SparkConf

sconf = SparkConf().setAppName("MyApp").setMaster("local[4]")

sc = SparkContext(conf=sconf)

• Command line (initiate shell with 4 worker threads):
./bin/spark-shell --master local[4]

./bin/pyspark --master local[4]

Spark Essentials

• Spark application consists of a driver program that

runs the user’s main function and executes

various parallel operations on a cluster

• Main abstractions on a cluster:

– resilient distributed dataset (RDD)s

• Read-only distributed collection of elements (e.g. lists, text) that

can be run in parallel (parallel processing) on many devices.

Each record in the RDD can be divided into logical parts and

then executed on different nodes of the cluster.

– shared variables that can be used in parallel operations

– Find more here

https://spark.apache.org/docs/latest/rdd-programming-guide.html#:~:text=The%20main%20abstraction%20Spark%20provides,be%20operated%20on%20in%20parallel.&text=A%20second%20abstraction%20in%20Spark,be%20used%20in%20parallel%20operations.

Spark Essentials: Run on cluster

https://spark.apache.org/docs

/latest/cluster-overview.html

Worker Node

Driver Program

SparkContext

Cluster Manager

Worker Node

Executor

task

cache

task

Executor

task

cache

task

Spark applications run as independent sets of

processes on a cluster, coordinated by

the SparkContext object in your main program

(called the Driver Program).

Spark Essentials: Run on clusters

1. connects to a cluster manager which allocates

resources across applications

2. acquires executors on cluster nodes – worker

processes to run computations and store data

3. sends app code to the executors

4. sends tasks for the executors to run

Driver Program

SparkContext

Cluster Manager

Worker Node

Executor

task

cache

task

Worker Node

Executor

task

cache

task

The system currently supports three cluster managers:

Standalone – a simple cluster manager included with Spark that

makes it easy to set up a cluster.

Apache Mesos – a general cluster manager that can also run

Hadoop MapReduce and service applications.

Hadoop YARN – the resource manager in Hadoop.

http://spark.apache.org/docs/1.6.0/spark-standalone.html
http://spark.apache.org/docs/1.6.0/running-on-mesos.html
http://spark.apache.org/docs/1.6.0/running-on-yarn.html

App Monitoring: Spark Web UI

• Every SparkContext launches a Web UI, typically

on port 4040, to display information about running

tasks, executors, and storage usage

• In browser type driver-node-ipaddr:4040

– In a single node cluster driver-node-ipaddr is localhost

https://spark.apache.org/docs/latest/monitoring.html

Spark Essentials: RDD

• Resilient Distributed Datasets (RDDs) distributed

collection of elements that can be operated on

in parallel

• There are currently two types:

– parallelized collections – created by Scala collections

or Python iterables or collections (e.g. lists)

– Hadoop datasets – created by files (text files,

sequence files, InputFormat files) stored in HDFS

• RDD objects are immutable

– Primarily for high-speed gains

Spark Essentials: RDD

• There exist two types of operations on RDDs:

transformations and actions

• transformations are lazy: do not compute their

results immediately

– example transformations: map(), filter()

• transformations only computed when an action

requires a result to be returned to driver

– transformed RDDs recomputed each time an action

runs on them

– Example actions: reduce(), collect(), count()

Spark Essentials: RDD

• RDD can be persisted into storage in memory or

disk

• Transformations create a new RDD dataset from

an existing one

Spark Essentials: Transformations & Actions

• A full list with all the supported transformations

and actions can be found on the following links

http://spark.apache.org/docs/latest/rdd-

programming-guide.html#transformations

http://spark.apache.org/docs/latest/rdd-

programming-guide.html#actions

http://spark.apache.org/docs/latest/rdd-programming-guide.html#transformations
http://spark.apache.org/docs/latest/rdd-programming-guide.html#actions

Hands on – parallelized collections

• From the python “>>>” interpreter, let’s create a
collection (list) holding the numbers 1 to 5:
data = [1, 2, 3, 4, 5]

• then create an RDD (parallelized collection) based
on that data that can be operated on in parallel:
distData = sc.parallelize(data)

• finally use a filter transformation to select values
less than 3 and then action collect RDD contents
back to driver

distData.filter(lambda s: s<3).collect()

– Filter transformation returns a new dataset formed by selecting
those elements of the source on which function returns true

Hands on – parallelized collections

• Lambda: anonymous functions on runtime

– Normal function definition: def f (x): return x**2

• call: f(8)

– Anonymous function: g = lambda x: x**2

• call: g(8)

Spark Essentials: RDD

• Spark can create RDDs from any file stored in

HDFS or other storage systems supported by

Hadoop, e.g., local file system, Amazon S3,

Cassandra, Hypertable, HBase, etc.

• Spark supports text files, SequenceFiles, and any

other Hadoop InputFormat, and can also take a

directory or a glob (e.g. /data/201404*)

Hands on – pyspark
from pyspark import SparkContext, SparkConf

sconf = SparkConf().setAppName("SimpleApp").setMaster("local")

sc = SparkContext(conf=sconf)

file is a list of lines from a file located on HDFS

file =

sc.textFile("hdfs://localhost:54310/user/ubuntu/input/unixdict

.txt")

lineLength is the result of a map transformation. Function

len() is applied to each element of file list (i.e. each line)

Not immediately computed, due to laziness.

lineLengths = file.map(lambda line: len(line))

reduce is an action. At this point Spark breaks the

computation into tasks to run on separate machines; each

machine runs both its part of the map and a local reduction,

returning only its answer to the driver program.

a is the previous aggregate result and n is the current item

totalLength = lineLengths.reduce(lambda a, n: a + n)

print("The result is : ",totalLength)

RUN APP on SPARK USING: ./spark-submit SimpleApp.py

Hands on – pyspark

• map() transformation

– applies the given function on every element of the RDD

=> returns new RDD representing the results

– x = [1, 2, 3, 4, 5] # python list

– par_x = sc.parallelize(x) # distributed RDD

– result = par_x.map(lambda i : i**2) # new RDD

– print(result.collect()) → [1, 4, 9, 16, 25]

• reduce() action

– aggregates all elements of RDD using a given function

and returns the final result to the driver program

Hands on – pyspark
from pyspark import SparkContext, SparkConf

sconf = SparkConf().setAppName("SimpleApp").setMaster("local")

sc = SparkContext(conf=sconf)

file is a list of lines from a file located on HDFS

file =

sc.textFile("hdfs://localhost:54310/user/csdeptucy/input/unixd

ict.txt")

lineLength is the result of a map transformation. Function

len() is applied to each element of file list.

Not immediately computed, due to laziness.

lineLengths = file.map(lambda line: len(line))

reduce is an action. At this point Spark breaks the

computation into tasks to run on separate machines; each

machine runs both its part of the map and a local reduction,

returning only its answer to the driver program.

a is the previous aggregate result and n is the current line

totalLength = lineLengths.reduce(lambda a, n: a + n)

print("The result is : ",totalLength)

RUN APP on SPARK USING: ./spark-submit --master local SimpleApp.py

Hands on – pyspark
from pyspark import SparkContext, SparkConf

sconf = SparkConf().setAppName("SimpleApp").setMaster("local")

sc = SparkContext(conf=sconf)

file is a list of lines from a file located on HDFS

file =

sc.textFile("hdfs://localhost:54310/user/csdeptucy/input/unixd

ict.txt")

lineLength is the result of a map transformation. Function

len() is applied to each element of file list.

Not immediately computed, due to laziness.

lineLengths = file.map(lambda line: len(line))

reduce is an action. At this point Spark breaks the

computation into tasks to run on separate machines; each

machine runs both its part of the map and a local reduction,

returning only its answer to the driver program.

a is the previous aggregate result and b is the current line

totalLength = lineLengths.reduce(lambda a, n: a + n)

print("The result is : ",totalLength)

RUN APP on SPARK USING: ./spark-submit --master local SimpleApp.py

If we also wanted to use lineLengths again later,

we could add (before reduce):
lineLengths.persist() OR

lineLengths.cache()

which would cause lineLengths to be saved in memory

after the first time it is computed.

Spark Essentials: Persistence

• Spark can persist (or cache) an RDD dataset in

memory across operations

– cache() : use only default storage level MEMORY_ONLY

– persist() : specify storage level (see next slide)

• Each node stores in memory any slices of it that it

computes and reuses them in other actions on that

dataset – often making future actions more than

10x faster

• The cache is fault-tolerant: if any partition of an

RDD is lost, it will automatically be recomputed

using the transformations that originally created it

Spark Essentials: Persistence

transformation description

MEMORY_ONLY

Store RDD as deserialized Java objects in the JVM. If the RDD

does not fit in memory, some partitions will not be cached and will

be recomputed on the fly each time they're needed. This is the

default level.

MEMORY_AND_DISK
Store RDD as deserialized Java objects in the JVM. If the RDD

does not fit in memory, store the partitions that don't fit on disk, and

read them from there when they're needed.

MEMORY_ONLY_SER

Store RDD as serialized Java objects (one byte array per partition).

This is generally more space-efficient than deserialized objects,

especially when using a fast serializer, but more CPU-intensive to

read.

MEMORY_AND_DISK_SER
Similar to MEMORY_ONLY_SER, but spill partitions that don't fit in

memory to disk instead of recomputing them on the fly each time

they're needed.

DISK_ONLY Store the RDD partitions only on disk.

MEMORY_ONLY_2,

MEMORY_AND_DISK_2, etc

Same as the levels above, but replicate each partition

on two cluster nodes.

Spark Essentials: Persistence

• How to choose Persistence:

– If your RDDs fit comfortably with the default storage level

(MEMORY_ONLY), leave them that way. This is the most CPU-

efficient option, allowing operations on the RDDs to run as fast as

possible.

– If not, try using MEMORY_ONLY_SER and selecting a fast

serialization library to make the objects much more space-efficient,

but still reasonably fast to access.

– Don’t spill to disk unless the functions that computed your datasets

are expensive, or they filter a large amount of the data. Otherwise,

re-computing a partition may be as fast as reading it from disk.

– Use the replicated storage levels if you want fast fault recovery

(e.g. if using Spark to serve requests from a web application). All

the storage levels provide full fault tolerance by re-computing lost

data, but the replicated ones let you continue running tasks on the

RDD without waiting to re-compute a lost partition.

More on transformation & actions

• flatMap() transformation

– same as map but instead of returning just one element

per element returns a sequence per element (which

can be empty) – flattens the results

• reduceByKey() transformation

– operation on key-value pairs

• in Python, key-value pairs can be implemented as tuples

– aggregates all values having the same key using a

given function

– returns a distributed dataset (RDD)

RDD Word Count Example

• Now lets run word count example:
file = sc.textFile("pg4300.txt")

words = file.flatMap(lambda line: line.split(" "))

.map(lambda word: (word, 1))

.reduceByKey(lambda a, b: a + b)

words.saveAsTextFile(“output") # output folder on local fs

• of course pg4300.txt could be located in HDFS

as well:
file =

sc.textFile("hdfs://localhost:54310/user/csdeptucy/input/pg4

300.txt")

words = file.flatMap(lambda line: line.split(" "))

.map(lambda word: (word, 1))

.reduceByKey(lambda a, b: a + b)

words.saveAsTextFile("hdfs://...")

Machine Learning on Spark

• MLlib is Apache Spark's scalable machine

learning library

• Write applications quickly in Java, Scala, Python,

and R

• Run programs up to 100x faster than Hadoop

MapReduce in memory, or 10x faster on disk

• Runs on any Hadoop data source (e.g. HDFS,

HBase, or local files), making it easy to plug into

Hadoop workflows

What is MLlib?

• Classification: logistic regression, linear support vector

machine (SVM), naive Bayes …

• Clustering: K-means, Gaussian mixtures …

• Regression: generalized linear regression, survival

regression,...

• Decomposition: singular value decomposition (SVD),

principal component analysis (PCA)

• Decision trees, random forests, and gradient-boosted

trees

• Recommendation: alternating least squares (ALS)

– based on collaborative filtering

• Topic modeling: latent dirichlet allocation (LDA)

• Frequent itemsets, association rules, and sequential

pattern mining

Why MLlib?

• scikit-learn?

– Algorithms:

• Classification: SVM, nearest neighbors, random forest, …

• Clustering: k-means, spectral clustering, …

• Regression: support vector regression (SVR), ridge regression,

Lasso, logistic regression, …

• Decomposition: PCA, non-negative matrix factorization (NMF),

independent component analysis (ICA), …

• Mahout?

– Algorithms

• Classification: logistic regression, naive Bayes, random forest,

• Clustering: k-means, fuzzy k-means, …

• Recommendation: ALS, …

• Decomposition: PCA, SVD, randomized SVD, …

• Python library

• Not Distributed (single-machine) => Not

Scalable, Runs slow on large dataset

• Java/Scala library

• Distributed => Scalable

• Core algorithms on top of Hadoop Map/Reduce

=> Runs slow on large datasets

• Can run on Spark

K-means (python)

• Study the file kmeans-example.py

– to cluster a set of vector values

– Input file: /usr/local/spark/data/mllib/kmeans-data.txt

0.0 0.0 0.0

0.1 0.1 0.1

0.2 0.2 0.2

9.0 9.0 9.0

9.1 9.1 9.1

9.2 9.2 9.2

https://www.cs.ucy.ac.cy/courses/EPL660/labs/LAB09/kmeans-example.py

What is Spark Streaming?

• Enables scalable, high-throughput, fault-tolerant

stream processing of live data streams

• Data ingestion from many sources like Kafka,

Kinesis, TCP sockets, Twitter, …

• Data processing using complex algorithms

expressed with functions like map, reduce, join, …

• Processed data can be pushed out to filesystems,

databases, and live dashboards

How Spark Streaming works?

• Internally Spark Streaming receives live input data

streams and divides the data into batches, which

are then processed by the Spark engine to

generate the final stream of results in batches.

DStream: a continuous stream of data.

DStream is represented as a sequence of RDDs.

Spark Examples: Spark Streaming
from pyspark import SparkContext

from pyspark.streaming import StreamingContext

Create a local StreamingContext with two working threads and batch

interval of 1 second

sconf = SparkContext("local[2]", "NetworkWordCount")

ssc = StreamingContext(sconf, 1)

Create a DStream to connect to hostname:port, like localhost:9999

lines DStream represents the stream of data that will be received

from the data server. Each record in this DStream is a line of text.

lines = ssc.socketTextStream("localhost", 9999)

Split each line into words

words = lines.flatMap(lambda line: line.split(" "))

Count each word in each batch

pairs = words.map(lambda word: (word, 1))

wordCounts = pairs.reduceByKey(lambda x, y: x + y)

Print the first ten elements of each RDD generated in this DStream

to the console

wordCounts.pprint()

ssc.start() # Start the computation

ssc.awaitTermination() # Wait for the computation to terminate

Detailed

explanation

here.

See next slides

https://spark.apache.org/docs/latest/streaming-programming-guide.html#a-quick-example
https://spark.apache.org/docs/latest/streaming-programming-guide.html#a-quick-example

Spark Examples: Spark Streaming
Firstly, in one terminal run Netcat (http://nc110.sourceforge.net)

to generate a data stream on the localhost:9999 TCP socket

$ nc -lk 9999

hello world

hi there fred

what a nice world there

In another terminal run the NetworkWordCount example

expecting a data stream on the localhost:9999 TCP socket

$ /usr/local/spark/bin/spark-submit network-word-count.py

Spark Examples: Spark Streaming

• Input DStreams represent the stream of input data received

from streaming sources

• lines was an input DStream as it represented the stream

of data received from the netcat server

• Every input DStream (except file stream) is associated with

a Receiver object which receives the data from a source

and stores it in Spark’s memory for processing.

• Spark worker/executor is a long-running task occupying one

of the cores allocated to the Spark Streaming application.
– Important: Spark Streaming application needs to be allocated enough cores (or

threads, if running locally) to process received data, as well as to run the receiver(s).

– When running a Spark Streaming program locally, do not use “local” or “local[1]” as

the master URL. Either of these means that only one thread will be used for running

tasks locally. If you are using an input DStream based on a receiver (e.g. sockets,

Kafka, etc.), then the single thread will be used to run the receiver, leaving no thread

for processing the received data.

https://spark.apache.org/docs/latest/streaming-programming-guide.html#input-dstreams-and-receivers

https://spark.apache.org/docs/latest/streaming-programming-guide.html#input-dstreams-and-receivers

