Ad-hoc Networks

Wishfull thinking? We want . . .

- the wireless, self-configuring, self-optimizing data network
- trillions of nodes, global interconnectivity, quality of service
- all Internet applications, and voice, and video
- seamless operations from laptops, mainframes, to headsets
- . . . and it shouldn’t cost too much.

This is the vision.

What is Ad-hoc?

From Latin: “for this (only)"

- Webster: “ad-hoc – for the particular end or case at hand without consideration of wider application”
- Ad-hoc committee, ad-hoc report, ad-hoc protest

In the case of computer networks:

- Ad-hoc network = wireless network without infrastructure.
- Related terms: spontaneous networks – the network automatically “emerges” when nodes gather together.

Why Ad-hoc?

Ad-hoc networking is often justified by scenarios where you do not want or where you cannot deploy & manage an infrastructure.

- Spontaneous meetings (at work, airport): exchange files, play games
- Special circumstances: disaster relief
- Or simply cabling costs, management overhead: old building, “wearable LAN”, wireless headset

Why is Ad-hoc so Hard?

- Routing, routing, routing!
 already hard to solve in fixed networks, now a constantly changing set of nodes
- Security:
 new vulnerabilities, nasty neighbors
- Small devices:
 running with batteries, little computing power
Ad-hoc Network = multi-hop Network

- No default router available
- Potentially every node becomes a router: must be able to forward traffic on behalf of others
- Higher fan-out, multiple routes: a wireless network has potentially more route alternatives, how to find out the “best” path in a communication mesh?

Pro-active and Re-active Routing

When should routing state be collected?

- **Pro-active Routing Protocols:**
 learn the network’s topology before a forwarding request comes in

- **Re-active Routing Protocol:**
 be lazy – become active only when needed.

Pro-active Routing

Current Internet routing protocols are pro-active.

- Also called *table-driven* routing protocols
- Imagine that each node knows the full topology → connectivity matrix
- Simplification: each node maintains a vector – indexed by potential destination names – entry contains forwarding information for this dest.
- RIP (routing information protocol), distance-vector OSPF (open shortest path first), link-state

Pro-active Ad-hoc Routing Protocols

Among the first proposals for ad-hoc routing, still investigated.

- DSDV 1994 – Destination Sequenced Distance-Vector
- GSR 1998 – Global State Routing
- Fisheye 1999 – Fisheye State Routing
Pro-active Routing: e.g., based on Distance Vector

Also called Bellman-Ford routing algorithm: periodic exchange of the routing tables.

Pro-active Routing Example: DSDV (I)

DSDV is based on Distance Vector. How DSDV addresses the problems:

- Tagging of distance information:
 - the destination issues increasing sequence numbers
 - other nodes can discard old/duplicate updates
- Changes are not immediately propagated:
 - wait some “settling” time
- Incremental updates instead of full table exchange.

Problems of Distance Vector (in Ad-hoc)

- Topology changes are slowly propagated
- Count-to-infinity problem (→ poisoned reverse)
- Moving nodes create confusion:
 they carry connectivity data which, at the new place, are wrong!
 → fatal routing loops
- Table exchange eats bandwidth.

DSDV (II)

Destination D adds a sequence number \(n \)
→ assume msg \(n \) is delayed over \(D \rightarrow G \rightarrow F \rightarrow A \)
→ and \(n + 1 \) reaches A via C before msg \(n \)
A can discard the late message \(n \)
Re-active Ad-hoc Routing

Also called “on-demand” routing protocols.

- The source has to *discover* a route to the destination.
- The source (and intermediate nodes) have to *maintain* a route as long as it is used.
- Routes have to be *repaired* in case of topology changes.

On-Demand Routing

Also several proposals:

- DSR – Dynamic Source Routing
- AODV – Ad hoc On-demand Distance Vector
- TORA – Temporally Ordered Routing Algorithm
- ABR – Associativity Based Routing

On-Demand Routing: Discovery

- Discovery is based on broadcasting *route_request* msgs (flooding)
- Each node re-broadcasts the *route_request*, and adds its own address to a “path history”
- Eventually the destination hears the request: → *route_reply* travels along the revers path history

On-Demand Routing: AODV Example
On-Demand Routing: Optimization

- Intermediate nodes remember successful paths
 → they answer on behalf of the destination

- Intermediate nodes discover broken links and automatically repair the link (instead of letting the source find out)

Scaling Problems

Common assumption of current ad-hoc research: small networks with less than 100 nodes.

How to scale this to 1000 and more nodes? → routing hierarchy

- Create logical cells (partitioning into clusters)
 – use one of AODV, DSDV etc inside a cell
 – designate a “cluster-head” or gateway

- Two-level routing:
 – direct routing inside a cluster
 – inter-cluster routing via cluster-heads
 – add more levels if needed

Some Names of Clustering Routing Protocols

- ZRP – Zone Routing Protocol
- OLSR – Optimized Link State Routing
- CEDAR – Core Extraction Distributed Ad hoc Routing
- CBRP – Cluster Based Routing Protocol
 Routing Protocol Classification (L.M. Feeney, SICS)

single channel protocols

uniform

topoology-based

proactive

GSR

reactive

DSR

non-uniform

partitioning

neighbor selection

CEDAR

CBRP

Naming and Addressing in Ad-hoc Networks

IP-Number is a mix of network name and host name:
– routing is based on network part
– does not work for ad-hoc networking

networks are created/destroyed on-the-fly

“Network” becomes a virtual & transient concept

Ad-hoc nodes have “unique identifiers” (names)
e.g., based on WaveLAN card number

Associating IP-Subnet with Ad-hoc Network

How to include ad-hoc networks into IP?

• Install a gateway with wireless interface,
 – gateway participates in ad-hoc routing
 – can forward data to the Internet

• Assign an IP network number to this ad-hoc network.

• Each ad-hoc node has its IP host number inside this subnet.

IP-Subnet with Ad-hoc Network (contd)

What we do: We fool IP! → routing at level 2.5

A problem is:

• Two gateways, and two overlapping ad-hoc networks:
 – to which IP-subnet does a node belong?
 – can it switch?
 – how far may an IP-subnet be extended?
More Problem Areas for Ad-hoc Networks

- Security:
 - trust your neighbors?
 - how to create “secure (overlay) networks”?
 - also opportunities: we could hide traffic patterns.

- Advanced network services:
 - Quality of Service (merging voice and data)
 - Multicasting

→ Ad-hoc will remain a research area for many years to come.

Other Routing Ideas I

Geographic routing: use the destination’s location!

- The mobile destination measures its position (GPS)
- It informs from time to time a registry
- A sender does routing “towards” this location
- In the supposed vicinity of the destination we use discovery à la reactive ad-hoc routing.

Other Routing Ideas II

High-density wireless networks and multipath routing

- Presume many nodes in a metropolitan area
 e.g. cellular phones
- Simulations show:
 above a critical density, you can satisfy all point-to-point bandwidth requests by multipath-multihop forwarding
- This can become a telephony network without network operator!

Military usage: create communication infrastructure by “sprinkling” thousands of nodes with planes or ballistic guns over enemy area.

Linking Routing with Resource Control

- Why should a node forward traffic from others?
 - only drains our precious battery
 - limits what we can send
- Create an incentive to forward packets:
 - collect fees from passing packets
 - use the electronic coins for later purchase of bandwidth

Ideally, routing would “automatically” avoid expensive regions. Denial-of-Service attacks would be very expensive.
Resource Control

Another link of a Packet Forwarding Economy to wireless communications:
spectrum is like real estate - buy, lease, sell it etc.

- Several countries have started to **auction** some frequency ranges.
- Currently, a frequency range is allocated for (10) years.
- Move towards real-time allocation:
 - during the day: use spectrum for mobile nodes
 - during the evening: for TV broadcasting
 - during the night: bulk data transfer

Summary

- Ad hoc networks: mainly routing, security problems
- Existing routing algorithms not suited for wireless networks
- Pro-active vs. re-active routing strategies
- Examples: DSDV and AODV
- The future (?):
 - ubiquitous high density wireless networks
 - computational (communicational) economies