Finding Similar Items

A Common Metaphor

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in <u>high-dimensional</u> space
- Examples:
 - Pages with similar words
 - For duplicate detection, classification by topic
 - Customers who purchased similar products
 - Products with similar customer sets
 - Images with similar features
 - Users who visited the similar websites

Distance Measures

- We formally define "near neighbors" as points that are a "small distance" apart
- For each use case, we need to define what "distance" means
- Today: Jaccard similarity/distance
 - The Jaccard Similarity/Distance of two sets is the size of their intersection / the size of their union:
 - $sim(C_1, C_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$
 - $-d(C_1, C_2) = 1 |C_1 \cap C_2|/|C_1 \cup C_2|$

Distance Measures

- We formally define "near neighbors" as points that are a "small distance" apart
- For each use case, we need to define what "distance" means
- Two major classes of distance measures:
 - A Euclidean distance is based on the locations of points in such a space
 - A Non-Euclidean distance is based on properties of points, but not their "location" in a space

Some Euclidean Distances

• L_2 norm: d(p,q) = square root of the sum of the squares of the differences between p and q in each dimension:

In each dimension:

$$d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}.$$

- The most common notion of "distance"
- L₁ norm: sum of the absolute differences in each dimension
 - Manhattan distance = distance if you had to travel along coordinates only

$$d_1(\mathbf{p},\mathbf{q}) = \|\mathbf{p}-\mathbf{q}\|_1 = \sum_{i=1}^n |p_i-q_i|,$$
Slides by Jure Leskovec: Mining Massive Datasets

Non-Euclidean Distances: Cosine

- Think of a point as a vector from the origin (0,0,...,0) to its location
- Two vectors make an angle, whose cosine is normalized dot-product of the vectors:

$$d(A,B) = \theta = \arccos\left(\frac{A \cdot B}{||A|| \cdot ||B||}\right)$$

- Example: A = 00111; B = 10011
 - $A \cdot B = 2$; $||A|| = ||B|| = \sqrt{3}$
 - $-\cos(\theta) = 2/3$; θ is about 48 degrees

Non-Euclidean Distances: Jaccard

• The *Jaccard Similarity* of two sets is the size of their intersection / the size of their union:

$$-Sim(C_1, C_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$$

• The *Jaccard Distance* between sets is 1 minus their Jaccard similarity:

Finding Similar Items

Finding Similar Documents

 Goal: Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates"

Applications:

- Mirror websites, or approximate mirrors
 - Don't want to show both in a search
- Similar news articles at many news sites
 - Cluster articles by "same story"

Problems:

- Many small pieces of one doc can appear out of order in another
- Too many docs to compare all pairs
- Docs are so large or so many that they cannot fit in main memory Jure Leskovec: Mining Massive Datasets

3 Essential Steps for Similar Docs

- Shingling: Convert documents, emails, etc., to sets
- 2. Minhashing: Convert large sets to short signatures, while preserving similarity
- 3. Locality-sensitive hashing: Focus on pairs of signatures likely to be from similar documents

The Big Picture

Documents as High-Dim Data

• **Step 1:** *Shingling:* Convert documents, emails, etc., to sets

Simple approaches:

- Document = set of words appearing in doc
- Document = set of "important" words
- Don't work well for this application. Why?
- Need to account for ordering of words
- A different way: Shingles

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on application
 - Assume tokens = characters for examples
- Example: k=2; D₁= abcab
 Set of 2-shingles: S(D₁)={ab, bc, ca}
 - Option: Shingles as a bag, count ab twice

Compressing Shingles

- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a doc by the set of hash values of its k-shingles
- Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
- Example: k=2; $D_1=abcab$ Set of 2-shingles: $S(D_1)=\{ab, bc, ca\}$ Hash the singles: $h(D_1)=\{1, 5, 7\}$

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Careful: You must pick k large enough, or most documents will have most shingles
 - -k = 5 is OK for short documents
 - -k = 10 is better for long documents

Motivation for Minhash/LSH

- Suppose we need to find near-duplicate documents among N=1 million documents
- Naïvely, we'd have to compute pairwise Jaccard similarities for every pair of docs
 - i.e, $N(N-1)/2 \approx 5*10^{11}$ comparisons
 - At 10⁵ secs/day and 10⁶ comparisons/sec,
 it would take 5 days
- For N = 10 million, it takes more than a year...

MinHashing

Step 2: Minhashing: Convert large sets to short signatures, while preserving similarity

Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that have significant intersection

- Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- Example: $C_1 = 10111$; $C_2 = 10011$
 - Size of intersection = 3; size of union = 4,
 Jaccard similarity (not distance) = 3/4
 - $-d(C_1,C_2) = 1 (Jaccard similarity) = 1/4$

From Sets to Boolean Matrices

- Rows = elements of the universal set
- Columns = sets
- 1 in row e and column s if and only if e is a member of s
- Column similarity is the Jaccard similarity of the sets of their rows with 1
- Typical matrix is sparse

1	1	1	0
1	1	0	1
0	1 0	0	1
0	1	0	1
1	0	0	1
1	1	1	0
1	0	1	0

Example: Jaccard of Columns

Each document is a column:

- Example: $C_1 = 1100011$; $C_2 = 0110010$
 - Size of intersection = 2; size of union = 5,
 Jaccard similarity (not distance) = 2/5
 - $d(C_1,C_2) = 1 (Jaccard similarity) = 3/5$

Note:

- We might not really represent the data by a boolean matrix
- Sparse matrices are usually
 better represented by the list
 of places where there is a non-zero value

1	0	1	0
1	1	0	1
0	1 0		1
0	0	0	1
0	0	0	1
1	1	1	0
1	0	1	0

shingles

documents

Outline: Finding Similar Columns

- So far:
 - Documents → Sets of shingles
 - Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures
- Approach:
 - 1) Signatures of columns: small summaries of columns
 - 2) Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures & columns are related
 - Optional: check that columns with similar sigs. are really similar

Warnings:

- Comparing all pairs may take too much time: job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)

Hashing Columns (Singatures)

- Key idea: "hash" each column C to a small signature h(C), such that:
 - (1) h(C) is small enough that the signature fits in RAM
 - (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$
- Goal: Find a hash function h() such that:
 - if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Hash docs into buckets, and expect that "most" pairs of near duplicate docs hash into the same bucket

Min-Hashing

- Goal: Find a hash function h() such that:
 - if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function
- There is a suitable hash function for Jaccard similarity: Min-hashing

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)$ = the number of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(C) = min \pi(C)$$

 Use several (e.g., 100) independent hash functions to create a signature of a column

Min-Hashing Example

Permutation π

Input matrix (Shingles x Documents)

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
0	1	1	0

Signature matrix M

H											H		н			81		88			38	
н											8		10								99	
а			100	œ							1		13		88	91					313.	
В		II.	_	a							1		100		т.	-	100				88	
В				1							8	000.4	18			88)	888				88	0000-0
В			300	и							ä	(000000)	98			97	A 1881				剪数	0000000
В			7	ä							ī	0000000	18		88						99	0000000
В		r	4		8						ŧ		10		7		100				36	
H		è	100	ä							ł		В		80	io i		88			38	
н											H		н			4	++	+		8	#	
4											ı		10								312	
ı											d		8								18	
		Į.																				
н											4										98	
ч											H										14	
п											1										88	
п		IP.		я							1					7	1000				88	
п		П		п							ı	100000.40			98	4					10 151	20000.40
Ħ				и							ī				7	á	100				i ii	
н			7	â							t				74		400				88	
н		Н	4	쁘	8						Н		-			ğ	100				92	
н		ь		Ξ							н		н			٠,	-				-	
н											4		н								38	
ш											u										38	
п											я										88	
	В															900				991	88	200000000000000000000000000000000000000
ā		100	100	200					85	20			10	100	8	88	9 000	8 98	100	869	80	
8											d		8				4.0	818		200	10	000000000000000000000000000000000000000
и											Ø		8			88					88	000000000000000000000000000000000000000
Ü			P	100							ij.		100		90		0.000	818		808	86	100007
Ü		10.	ď	屬							ij.	100000000	8		90		1000	8 68		888	10 10	900000000
ı			ti.	篇							ii.	10000007 (000000000000000000000000000000	ı G				100	818		866	i di	10000000 A00000000000000000000000000000
Ħ	ю		88	6			81			æ	ä		8	100		8 3	-	88		88	8 84	
В	ю	18	92	2	88	9	94		88	98	2	<u></u>	8	æ	\$	9 !	4-4	48		20.	멸없	
4	н	£.		Ξ		=	릐	듸	릐	2	e		н	H.	8		14	48			4	
4											ø		10				444	48			10	
8											ø		100			œΝ					88	
R											S		8								88	
	ď	ţő.									0		10	100	99	e i	8666	9 (0		80	HÖ	100000000000000000000000000000000000000
•	•	-					-				•	<u> </u>										"

Slides by Jure Leskovec: Mining Massive Datasets

Surprising Property

- Choose a random permutation π
- then $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

Why?

- Let X be a set of shingles, $X \subseteq [2^{64}]$, x∈X
- Then: $Pr[\pi(y) = min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the min element
- Let x be s.t. $\pi(x) = \min(\pi(C_1 \cup C_2))$
- Then either: $\pi(x) = \min(\pi(C_1))$ if $x \in C_1$, or $\pi(x) = \min(\pi(C_2))$ if $x \in C_2$
- So the prob. that both are true is the prob. $x \in C_1 \cap C_2$

0	0
0	0
1	1
0	0
0	1
1	0

Similarity for Signatures

- We know: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the minhash property, the similarity of columns is the same as the expected similarity of their signatures

Min Hashing – Example

Input matrix

19 122 255 123 123 255 123 12		
		13
10 10 10 10 10 10 10 10 10 10 10 10 10 1		
		0 20 20 20 20 20 20 2
185 y 686		
61		
	3	6
2	6	
		1074556
	151	15
		(c) 000 000 (c) 100 (c) (c) (c)

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix *M*

21 (55 (50 10) (51 (51 (51 10) (51 50 10) (51 50 10) (7	
N 00 10 10 10 10 10 10 10 10 10 10 10 10	S 10 10 10 10 10 10 10 10 10 10 10 10 10
· · · · · · · · · ·	·············
21 50 50° / 60 50 50; 101 50 50 101 51 00000000 10000000000	N 50 * *** *** 10 10 10 10 10 10 10 10 10 10 10 10 10
1 10 10 10 10 10 10 10 10 10 10 10 10 10	9 10 10 10 10 10 10 10 10 10 10 10 10 10
	
(c) 10/10/10/20/20/20/20/20/20/20/20/20/20/20/20/20	10 10 10: 01 10 10: 01 00 10 10: 00 10 10: 00 0

Similarities:

	1-3	2-4	1-2	3-4
Col/Col				0
Sig/Sig	0.67	1.00	0	0

MinHash Signatures

- Pick 100 random permutations of the rows
- Think of sig(C) as a column vector
- Let sig(C)[i] = according to the i-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi_i(C))$$

- Note: The sketch (signature) of document C is small -- ~100 bytes!
 - We achieved our goal! We "compressed"
 long bit vectors into short signatures
 Slides by Jure Leskovec: Mining Massive Datasets

Locality Sensitive Hashing

Step 3: Locality-sensitive hashing: Focus on pairs of signatures likely to be from similar documents

LSH: First Cut

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)
- LSH General idea: Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated
- For minhash matrices:
 - Hash columns of signature matrix M to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair

Candidates from Minha

- Pick a similarity threshold s, a fraction < 1
- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
 - M(i, x) = M(i, y) for at least frac. s values of i
 - We expect documents x and y to have the same similarity as their signatures

LSH for Minhash

2	1	4	1
1	2	1	2
2	1	2	1

- **Big idea:** Hash columns of signature matrix *M* several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

Signature matrix *M*Slides by Jure Leskovec: Mining Massive Datasets

Partition M into Bands

- Divide matrix M into b bands of r rows
- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs

Hashing Bands

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Example of Bands

2	1	4	1
1	2	1	2
2	1	2	1

Assume the following case:

- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose 20 bands of 5 integers/band
- Goal: Find pairs of documents that are at least s = 80% similar

- Assume: C₁, C₂ are 80% similar
 - Since s=80% we want C₁, C₂ to hash to at least one common bucket (at least one band is identical)
- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$
- Probability C_1 , C_2 are *not* similar in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives
 - We would find 99.965% pairs of truly similar documents

2	1	4	1	
a 11111	2	1	2	
2	1	2	1	

C₁, C₂ are 30% Simila

- Assume: C₁, C₂ are 30% similar
 - Since s=80% we want C₁, C₂ to hash to at NO
 common buckets (all bands should be different)
- Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$
- Probability C_1 , C_2 identical in at least 1 of 20 bands: $1 (1 0.00243)^{20} = 0.0474$
 - In other words, approximately 4.74% pairs of docs with similarity 30% end up becoming candidate pairs -- false positives

	2	1	4	1	
SH Involves a Tradeo	1	2	1	2	
	2	1	2	1	

Pick:

- the number of minhashes (rows of M)
- the number of bands b, and
- the number of rows r per band
 to balance false positives/negatives
- Example: if we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

Analysis of LSH – What We Want

Slides by Jure Leskovec: Mining Massive Datasets

What 1 Band of 1 Row Gives You

What b Bands of r Rows Gives You

Example: b = 20; r = 5

Similarity threshold s

• Prob. that at least 1 band identical:

S	1-(1-s ^r) ^b	
.2	.006	
.3	.047	
.4	.186	
.5	.470	
.6	.802	
.7	.975	
8 Slides by	.9996 ure Leskovec: Mining Massive Dataset	

Picking *r* and *b*: The S-curve

- Picking r and b to get the best S-curve
 - -50 hash-functions (r=5, b=10)

Blue area: False Negative rate
Green area: False Positive rate

LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

Summary: 3 Steps

- Shingling: Convert documents, emails, etc., to sets
- 2. Minhashing: Convert large sets to short signatures, while preserving similarity
- 3. Locality-sensitive hashing: Focus on pairs of signatures likely to be from similar documents