

User support

- Issues
 - different types of support at different timesimplementation and presentation both important

 - all need careful design
- · Types of user support
 - quick reference (e.g. find a particular command option or a reminder of a command's syntax)
 - task specific help (to address a problem encountered in performing a particular task)
 - full explanation (e.g. of a command in order to fully understand it; useful for expert users)
 - Tutorial (step-by-step instructions, perhaps by working through examples; useful for novice users)

1

HUMAN-COMPUTE INTERACTION

- · Provided by help and documentation
 - help problem-oriented and specific
 - documentation system-oriented and general

 - same design principles apply to both often a combination of these techniques is used

Requirements of user support

HUMAN-COMPUTI INTERACTION

HUMAN-COMPUTI INTERACTION

- Availability
 - continuous access concurrent to main application; no need to quite the application in order to access the help system
- Accuracy and completeness
 - help matches and covers actual system behaviour (taking into consideration any updated to the application) and supports all the features offered by the application
- Consistency
 - between different parts of the help system and paper documentation, regarding content, terminology and style of presentation (a command should not be described in one way here and in another way there, where "here" and "there" may also involve different applications)

6

Requirements of user support (ctd)

Robustness

3

5

- support for correct error handling and unpredictable behaviour; the user should be able to rely on getting assistance when this is needed
- - allows user to interact in a way appropriate to experience and task
 - this may range from designing a modularised interactive help system, through context sensitive help, to a full-blown adaptive help system
- Unobtrusiveness
 - does not prevent the user continuing with work and does not interfere with the user's application

Approaches to user support

- · Command assistance
 - user requests help on particular command
 e.g., UNIX man, DOS help, Windows search
 - good for quick reference
 - assumes users know what to look for
 - won't cover cases where the user doesn't know about the existence of some command or the user $\ensuremath{\mathsf{N}}$ assumes that a command exists but it doesn't
- Command prompts
 - provide information about correct usage when an error occurs
 - good for simple syntactic errors
 - also assumes knowledge of the command
 - to a certain extent, includes menus and selectable

HUMAN-COMPUTER INTERACTION

Approaches to user support (ctd)

- Context sensitive help
 - help request interpreted according to context in which it occurs, e.g. tooltips and web page rollovers
- On-line tutorials
 - user works through basics of application in a test environment (in a self-paced mode)
 - can be useful but are often inflexible, as they have no knowledge of the particular user
- On-line documentation
 - paper documentation is made available on computer
 - continually available on-line (paper versions tend to get lost)
 - can be difficult to browse
 - hypertext used to support browsing

Approaches to user support (ctd)

- Simple guidelines for on-line documentation
 - use clear structure with headings to provide signposting
 - organize information according to user tasks
 - keep sentences short, to the point and jargon free use simple but unpatronizing language
 - set out procedures in order and number steps highlight important steps
 - use examples where possible
 - support searching via an index, contents, glossary and free search
 - include a list of error messages
 - include Frequently Asked Questions (FAQ) with clear answers

7

9

8

Wizards and Assistants

- Wizards
 - task specific tool leads the user through task, step by step, using user's answers to specific questions
 - example: resumé
 - useful for safe completion of complex or infrequent tasks
 - constrained task execution so limited flexibility
 - must allow user to go back and forth and provide a progress indicator
- Assistants
 - monitor user behaviour and offer contextual advice
 - can be irritating e.g. MS paperclip
 - must be under user control e.g. XP smart tags

HUMAN-COMPUTE INTERACTION

Adaptive Help Systems

 Use knowledge of the context, individual user, task, domain and instruction to provide help adapted to user's needs, by means of monitoring the activity of the user and constructing a model for him

• Problems

- knowledge requirements considerable
- who has control of the interaction?
- what should be adapted and what will be the result of the adaptivity?
- what is the scope of the adaptation (possibly beyond the application level)?

10

Knowledge representation: User modeling

- All help systems have a model of the user
 - single, generic user, as understood by the designer of the system (non intelligent)
 - user-configured model, e.g. browser or email preferences (adaptable)
 - system-configured model (adaptive): requires setup time during which the user has a general default system (which will eventually "learn him") but the user is not required to build the model

Approaches to user modelling

HUMAN-COMPUTI INTERACTION

- Quantification
 - user moves between levels of expertise
 - based on quantitative measure of what he knows (e.g. to move from level 1 to level 2 the user has used effectively commands X & Y and help has not been accessed for 3 days)
- Stereotypes
 - user is classified into a particular category (e.g. novice and expert)
- Overlay

12

- idealized model of expert use is constructed
- actual use compared to ideal
- model may contain the commonality or difference
- Special case: user behaviour compared to known error catalogue

11

2

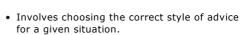
HUMAN-COMPUTI INTERACTION

HUMAN-COMPUTE INTERACTION

HUMAN-COMPUTE INTERACTION

Knowledge representation: Domain and task modelling

- Covers
 - common errors and tasks
 - user's current task or plan
 - motivation is that the user is engaged in a particular problem solving task and requires help at that level


HUMAN-COMPUT INTERACTION

HUMAN-COMPUTE INTERACTION

IUMAN-COMPUTE INTERACTION

- · Usually involves analysis of command sequences
- Problems
 - representing tasks (many tasks)
 - interleaved tasks (many ways to reach a task)
 - inferring user intention (from command use) may not be straightforward, if the user approaches the task in a non-standard way

Knowledge representation: Advisory strategy

e.g. reminder, tutorial, etc.

- Few intelligent help systems model advisory strategy, but choice of strategy is still important
- Ideally, it would be useful if the help system has access to a number of alternative strategies
- · But ambitious: too little is known about what makes a guidance strategy appropriate

13

Techniques for knowledge representation

- Rule based (e.g. logic, production rules)
- - knowledge presented as rules and facts interpreted using inference mechanism
- can be used in relatively large domains

command is EDIT file AND last command is COMPILE file

task is DEBUG action is describe automatic debugger

Techniques for knowledge representation (ctd)

- Frame based (e.g. semantic network) knowledge stored in structures with slots to be filled
 useful for a small domain

14

Expertise level: novice Command: EDIT file Last command: COMPILE file Errors in session:6 Action: describe automatic debugger

15

16

Techniques for knowledge representation (ctd)

- · Network based
 - knowledge represented as relationships between facts

 - can be used to link frames
 CC is an instance of COMPILE COMPILE is a command COMPILE is related to DEBUG COMPILE is related to EDIT

Automatic debugger facilitates DEBUG

Techniques for knowledge representation (ctd)

Example based

- knowledge represented implicitly within decision structure
- trained to classify rather than programmed with rules
 requires little knowledge acquisition
- the example below may be a trace of user activity
- EDIT file COMPILE file

17 18

Problems with knowledge representation and modelling

- Knowledge acquisition (completeness, correctness), particularly if a domain expert is not available
- Resources
- Interpretation of user behaviour, from system logs and sometimes without knowledge of the context

Issues in adaptive help

- - does the user retain control or can the system direct the interaction?
 - can the system interrupt the user to offer help?
- - what is going to be adapted and what information is needed to do this?
 - only model what is needed
- Scope
 - is modelling at application or system level?

- latter more complex e.g. expertise varies between applications

19

Designing user support

HUMAN-COMPUTE INTERACTION

20

- User support is not an 'add on'
- should be designed integrally with the
- Concentrate on content and context of help rather than technological issues

Presentation issues

- · How is help requested?
 - command, button, function (on/off), separate application
- How is help displayed?
 - new window, whole screen, split screen,
 - pop-up boxes, hint icons
- Effective presentation requires
 - clear, familiar, consistent language - instructional rather than descriptive language
 - avoidance of blocks of text
 - clear indication of summary and example information

21 22

Implementation issues

Is help

- operating system command
- meta commandapplication

What resources are available?

- screen space
- memory capacity - speed
- Structure of help data
- single filefile hierarchy
- database

Issues

- flexibility and extensibility
- hard copybrowsing

Summary

- No interactive system of any complexity is so intuitive that the user never requires help; help should be an integral part of the system
- Users require different types of help depending on context and circumstances
- Different types of help support different requirements and types of user
- Adaptive user support is an important characteristic of many approaches to designing help systems

23 24