
13/02/2022

1

Chapter 6

HCI in the software
process

1

HCI in the software process

• Software engineering and the design process
for interactive systems

• Usability engineering, as a promoter of using
explicit criteria to judge the success of a
product in terms of its usability

• Iterative design and prototyping, as a means
to incorporate crucial customer feedback early
in the design process

• Design rationale, as a means to record
decisions made and their context

2

The software lifecycle

• Software engineering is the discipline for
understanding the software design process, or
life cycle

• Designing for usability occurs at all stages of
the life cycle, not as a single isolated activity

3

The waterfall model

Requirements
specification

Architectural
design

Detailed
design

Coding and
unit testing

Integration
and testing

Operation and
maintenance

4

Activities in the life cycle

Requirements specification
designer and customer try to capture what the system is
expected to provide; can be expressed in natural language or
more precise languages, such as a task analysis would
provide

Architectural design
high-level description of how the system will provide the
services required; factor system into major components of
the system and how they are interrelated; needs to satisfy
both functional (services provided by the system) and
nonfunctional (e.g. reliability, efficiency, etc.) requirements

Detailed design
refinement of architectural components and interrelations to
identify modules to be implemented separately; the
refinement is governed by the nonfunctional requirements

5

Activities in the life cycle (cnd)

Coding and unit testing
generating executable code from a detailed design on a per
component basis; after coding, the component can be tested
to verify that it performs correctly; possible to generate code
automatically from sufficiently specific design

Integration and testing
the individually implemented and tested components are
integrated to form the complete application, as described in
the architectural design; further testing is done at global
level; certification may also be needed

Maintenance
after product release, any further work on the system (e.g.
correction of errors, revisions to satisfy additional user
requirements) is considered maintenance and provides
feedback to all of the other activities in the life cycle

6

13/02/2022

2

Verification and validation

Verification
designing the product right

Validation
designing the right product

The formality gap
validation will always rely to some extent on subjective means
of proof, as the real world is inherently ambiguous

Management and contractual issues
design in commercial and legal contexts, where factors such as
time constraints and economic forces are important

Real-world
requirements
and constraints The formality gap

7

Interactive systems and the
software life cycle
• The first software systems were mostly data-

processing ones with low user interactivity;
usability issues were not important

• Modern software applications have high level
of interactivity; about 50% of the designer’s
time is spent on designing code for user
interfaces

• Very often, users don’t know all the tasks that
they will perform before they have started
using the system and becoming familiar with it

8

The life cycle for interactive
systems

cannot assume a linear
sequence of activities

as in the waterfall model

lots of feedback!
not all requirements can be
determined from the start!

Requirements
specification

Architectural
design

Detailed
design

Coding and
unit testing

Integration
and testing

Operation and
maintenance

9

Usability engineering

The ultimate test of usability based on measurement of user
experience

Usability engineering demands that specific usability measures
be made explicit as requirements

Usability specification
– usability attribute/principle
– measuring concept
– measuring method
– now level/ worst case/ planned level/ best case

Problems
– usability specification requires a level of detail that may not be

possible early in design
– satisfying a usability specification does not necessarily satisfy

usability itself (e.g. do fewer explicit actions make an undo
operation easier?)

10

Part of a usability
specification for a VCR

Attribute: Backward recoverability
Measuring concept: Undo an erroneous programming

sequence
Measuring method: Number of explicit user actions

to undo current program
Now level: No current product allows such an undo
Worst case: As many actions as it takes to

program-in mistake
Planned level: A maximum of two explicit user actions
Best case: One explicit cancel action

11

Criteria to determine the measuring
method for a usability attribute
1. Time to complete a task
2. Per cent of task completed
3. Per cent of task completed per unit time
4. Ratio of successes to failures
5. Time spent in errors
6. Per cent or number of errors
7. Per cent or number of competitors better than it
8. Number of commands used
9. Frequency of help and documentation use

10. Per cent of favorable/unfavorable user comments
11. Number of repetitions of failed commands
12. Number of runs of successes and of failures
13. Number of times interface misleads the user
14. Number of good and bad features recalled by users
15. Number of available commands not invoked
16. Number of regressive behaviors
17. Number of users preferring your system
18. Number of times users need to work around a problem
19. Number of times the user is disrupted from a work task
20. Number of times user loses control of the system
21. Number of times user expresses frustration or satisfaction

12

13/02/2022

3

Possible ways to set
measurable levels in a usability
specification

Set levels with respect to information on:
1. an existing system or previous version
2. competitive systems
3. carrying out the task without use of a computer system
4. an absolute scale
5. your own prototype
6. user’s own earlier performance
7. each component of a system separately
8. a successive split of the difference between best and worst
values observed in user tests

13

ISO usability standard 9241

Adopts traditional usability categories:

• Effectiveness
– can you achieve what you want to?

• Efficiency
– can you do it without wasting effort?

• Satisfaction
– do you enjoy the process?

14

Some metrics from ISO 9241

Usability Effectiveness Efficiency Satisfaction
objective measures measures measures

Suitability Percentage of Time to Rating scale
for the task goals achieved complete a task for satisfaction

Appropriate for Number of power Relative efficiency Rating scale for
trained users features used compared with satisfaction with

an expert user power features

Learnability Percentage of Time to learn Rating scale for
functions learned criterion ease of learning

Error tolerance Percentage of Time spent on Rating scale for
errors corrected correcting errors error handling
successfully

15

Iterative design and
prototyping
• Iterative design overcomes inherent problems of incomplete

requirements

• Prototypes
– simulate or animate some features of intended system
– different types of prototypes

• throw-away: prototype built and tested, design knowledge used to
build the final product, but the actual prototype is discarded

• incremental: final product is built as separate components, one at a
time; each new release includes one more component

• evolutionary: prototype serves as the basis for the next iteration of
design; the actual system evolves from a limited initial version to a
final release; operation and maintenance activities are included

• Management issues
– time
– planning
– non-functional features
– contracts

16

Throw-away prototyping within
requirements specification

17

Incremental prototyping within
the life cycle

18

13/02/2022

4

Evolutionary prototyping
throughout the life cycle

19

Management issues

Time
building prototypes takes time and especially a throw-away
prototype may be seen as wasting precious time; hence do
rapid prototyping but no rushed evaluation

Planning
managers may not have the experience to assess time/cost
overheads in building prototypes

Non-functional issues
such as reliability, safety, response time, are precisely the
ones that are sacrificed in prototyping; so how real is
eventually the prototype we have built?

Contracts
prototypes cannot form the basis for legal contracts, as the
latter are affected by many managerial and technical issues

20

Techniques for prototyping

Storyboards
need not be computer-based, just snapshots of intended interfaces
(as in a series of panels in the film industry)
can be animated using graphical drawing packages or be enhanced
with annotations and scripts describing interactions

Limited functionality simulations
some part of system functionality provided by designers
tools like HyperCard, Macromedia, etc. are common for this
Wizard of Oz technique, where the prototype provides limited
functionality enhanced by human intervention (e.g. an accountant
uses a simple prototype and an observer (wizard) translates the
accountant’s commands to more complex functionality)

High-level programming support
languages such as HyperTalk and environments such as UIMS (user
interface management system) allow the independent development of
the interface prototype from the underlying functionality

21

Warning about iterative design

The ideal model of iterative design, in which a prototype is
designed, evaluated and modified until the best possible
design is achieved in a given project time, is appealing,
but…

Design inertia
early bad decisions at the very beginning may remain bad,
despite a number of iterations

Make sure you understand the reason for a problem and
not just detect a symptom

if a user has difficulty setting correctly the time in an
appliance’s control panel, is it because the buttons need a
better design or because he things the time as being a 12-
hour model whereas the appliance uses a 24-hour one?

22

Design rationale

Design rationale is information that explains why a
computer system is the way it is

Benefits of design rationale
– communication throughout life cycle, providing in the

future understanding of the critical decisions that were
made

– reuse of design knowledge across products in similar
situations by possibly different design teams

– enforces design discipline, by forcing the designer to
deliberate for the decisions taken

– presents arguments for design trade-offs (e.g. use visible
buttons or hidden sub-menu items)

– organizes potentially large design space, by indicating all
alternatives that have been investigated

– capturing contextual information, that justifies the
particular design decisions

23

Design rationale (ctd)

Types:
• Process-oriented

– preserves order of deliberation and decision-making
– intended to reduce stress on the generalization of

design knowledge for use between different products
• Structure-oriented

– emphasizes post hoc structuring of considered
design alternatives

• Two examples:
– Issue-based information system (IBIS)
– Design space analysis

24

13/02/2022

5

Issue-based information
system (IBIS)
• Basis for much of design rationale research

• Process-oriented
• Main elements:

issues
– hierarchical structure with one ‘root’ issue

positions
– potential resolutions of an issue

arguments
– modify the relationship between positions and issues

• gIBIS is a graphical version

25

Structure of gIBIS

Sub-issue

Issue

Sub-issue

Sub-issue

Position

Position

Argument

Argument

responds to

responds to
objects to

supports

questions

generalizes

specializes

26

Design space analysis

• Structure-oriented
• QOC – hierarchical structure:

questions (and sub-questions)
– represent major issues of a design

options
– provide alternative solutions to the question

criteria
– the means to assess the options in order to make a choice

the key here is deciding the right questions and the correct
criteria to judge the options

• DRL – Decision Representation Language, similar to
QOC with a larger language and more formal semantics
– decision problems instead of questions
– alternatives instead of options
– goals instead of criteria

27

The QOC notation

Question

Option

Option

Option

Criterion

Criterion

Criterion

Question … Consequent
Question

…

28

Psychological design rationale

• To support task-artefact cycle in which user tasks are affected
by the systems they use

• Aims to make explicit consequences of design for users
(rather than capturing the designer’s intentions)

• Designers identify tasks system will support
• Scenarios are suggested to test task
• Users are observed using the first version of the system
• Psychological claims of system made explicit
• Negative aspects of design can be used to improve next

iteration of design
• Such a documentation of the psychological design rationale

makes the designer more aware of the natural evolution of
user tasks, in improving later designs

29

Summary

The software engineering life cycle
– distinct activities and the consequences for

interactive system design
Usability engineering

– making usability measurements explicit as
requirements

Iterative design and prototyping
– limited functionality simulations and animations

Design rationale
– recording design knowledge
– process vs. structure

30

