
4/14/22

1

Chapter 21– Real-time Software Engineering

04/12/2014 Chapter 21. Real-time Software Engineering 1

1

Topics covered

² Embedded system design

² Architectural patterns for real-time software

² Timing analysis

² Real-time operating systems

04/12/2014 Chapter 21. Real-time Software Engineering 2

2

Embedded software

² Computers are used to control a wide range of systems
from simple domestic machines, through games
controllers, to entire manufacturing plants.

² Their software must react to events generated by the
hardware and, often, issue control signals in response to
these events.

² The software in these systems is embedded in system
hardware, often in read-only memory, and usually
responds, in real time, to events from the system’s
environment.

² It has been estimated that by now there will be more
than 100 embedded systems per person.

04/12/2014 Chapter 21. Real-time Software Engineering 3

3

Responsiveness

² Responsiveness in real-time is the critical difference
between embedded systems and other software
systems, such as information systems, web-based
systems or personal software systems.

² For non-real-time systems, correctness can be defined
by specifying how system inputs map to corresponding
outputs that should be produced by the system.

² In a real-time system, the correctness depends both on
the response to an input and the time taken to generate
that response. If the system takes too long to respond,
then the required response may be ineffective.

04/12/2014 Chapter 21. Real-time Software Engineering 4

4

Definition

² A real-time system is a software system where the correct
functioning of the system depends on the results
produced by the system and the time at which these
results are produced.

² A soft real-time system is a system whose operation is
degraded if results are not produced according to the
specified timing requirements.

² A hard real-time system is a system whose operation is
incorrect if results are not produced according to the
timing specification.

04/12/2014 Chapter 21. Real-time Software Engineering 5

5

Characteristics of embedded systems

² Embedded systems generally run continuously and do not
terminate. They start when the hardware is switched on, and
execute until the hardware is switched off.

² Interactions with the system’s environment are unpredictable. Real-
time embedded systems must be able to respond to expected and
unexpected events at any time.

² There may be physical limitations that affect the design of a system.
Examples of limitations include restrictions on the power available to
the system and the physical space taken up by the hardware.

² Direct hardware interaction may be necessary, as embedded
systems may have to interact with a wide range of hardware devices
that do not have separate device drivers.

² Issues of safety and reliability may dominate the system design.

04/12/2014 Chapter 21. Real-time Software Engineering 6

6

4/14/22

2

Embedded system design

04/12/2014 Chapter 21. Real-time Software Engineering 7

7

Embedded system design

² The design process for embedded systems is a systems
engineering process that has to consider, in detail, the
design and performance of the system hardware.

² Part of the design process may involve deciding which
system capabilities are to be implemented in software
and which in hardware.

² Low-level decisions on hardware, support software and
system timing must be considered early in the process.

² These may mean that additional software functionality,
such as battery and power management, has to be
included in the system.

04/12/2014 Chapter 21. Real-time Software Engineering 8

8

Reactive systems

² Real-time systems are often considered to be reactive
systems. Given a stimulus, the system must produce a
reaction or response within a specified time.

² Periodic stimuli. Stimuli which occur at
predictable time intervals.
§ For example, a temperature sensor may be polled 10 times per

second.

² Aperiodic stimuli. Stimuli which occur at
unpredictable times.
§ For example, a system power failure may trigger an

interrupt which must be processed by the system.

04/12/2014 Chapter 21. Real-time Software Engineering 9

9

Stimuli and responses for a burglar alarm
system

Stimulus Response

Clear alarms Switch off all active alarms; switch off all lights that have
been switched on.

Console panic button positive Initiate alarm; turn on lights around console; call police.

Power supply failure Call service technician.

Sensor failure Call service technician.

Single sensor positive Initiate alarm; turn on lights around site of positive
sensor.

Two or more sensors positive Initiate alarm; turn on lights around sites of positive
sensors; call police with location of suspected break-in.

Voltage drop of between 10%
and 20%

Switch to battery backup; run power supply test.

Voltage drop of more than 20% Switch to battery backup; initiate alarm; call police; run
power supply test.

04/12/2014 Chapter 21. Real-time Software Engineering 10

10

Types of stimuli

² Stimuli come from sensors in the systems environment
and from actuators controlled by the system.
§ Periodic stimuli These occur at predictable time intervals.

• For example, the system may examine a sensor every 50
milliseconds and take action (respond) depending on that sensor
value (the stimulus).

§ Aperiodic stimuli These occur irregularly and unpredictably and
may be signalled using the computer’s interrupt mechanism.

• An example of such a stimulus would be an interrupt indicating that
an I/O transfer was complete and that data was available in a buffer.

04/12/2014 Chapter 21. Real-time Software Engineering 11

11

A general model of an embedded real-time
system

Real-time
control system

ActuatorActuator ActuatorActuator

SensorSensorSensor SensorSensorSensor

Stimuli

Responses

04/12/2014 Chapter 21. Real-time Software Engineering 12

12

4/14/22

3

Architectural considerations

² Because of the need to respond to timing demands
made by different stimuli/responses, the system
architecture must allow for fast switching between
stimulus handlers.

² Timing demands of different stimuli are different so a
simple sequential loop is not usually adequate.

² Real-time systems are therefore usually designed as
cooperating processes with a real-time executive
controlling these processes.

04/12/2014 Chapter 21. Real-time Software Engineering 13

13

Sensor and actuator processes

Data
processor

Actuator
control

Actuator

Sensor
control

Sensor

Stimulus Response

04/12/2014 Chapter 21. Real-time Software Engineering 14

14

System elements

² Sensor control processes
§ Collect information from sensors. May buffer information

collected in response to a sensor stimulus.

² Data processor
§ Carries out processing of collected information and computes

the system response.

² Actuator control processes
§ Generates control signals for the actuators.

04/12/2014 Chapter 21. Real-time Software Engineering 15

15

Real-time software design process activities

² Platform selection That is, the hardware and the real-
time operating system to be used. Factors that influence
these choices include the timing constraints on the
system, limitations on power available, the experience of
the development team, and the price target for the
delivered system.

² Stimuli/response identification Identify the stimuli that the
system must process and the associated response or
responses for each stimulus.

² Timing analysis For each stimulus and associated
response, identify the timing constraints that apply to
both stimulus and response processing.

04/12/2014 Chapter 21. Real-time Software Engineering 16

16

Real-time software design process activities

² Process design Involves aggregating the stimulus and
response processing into a number of concurrent
processes.

² Algorithm design For each stimulus and response,
design algorithms to carry out the required computations.

² Data design Specify the information that is exchanged by
processes and the events that coordinate information
exchange, and design data structures to manage this
information exchange.

² Process scheduling Design a scheduling system that will
ensure that processes are started in time to meet their
deadlines.

04/12/2014 Chapter 21. Real-time Software Engineering 17

17

Process coordination

² Processes in a real-time system have to be coordinated
and share information.

² Process coordination mechanisms ensure mutual
exclusion to shared resources.

² When one process is modifying a shared resource, other
processes should not be able to change that resource.

² When designing the information exchange between
processes, you have to take into account the fact that
these processes may be running at different speeds.

04/12/2014 Chapter 21. Real-time Software Engineering 18

18

4/14/22

4

Mutual exclusion

² Producer processes collect data and add it to
the buffer. Consumer processes take data from the
buffer and make elements available.

² Producer and consumer processes must be
mutually excluded from accessing the same
element.

² The buffer must stop producer processes
adding information to a full buffer and consumer
processes trying to take information from an empty
buffer.

04/12/2014 Chapter 21. Real-time Software Engineering 19

19

Producer/consumer processes sharing a circular
buffer

Consumer
process

Producer
process

Circular Buffer

Head

Tail

v1

v2

v3
v4v5

v6

v7

v8

v9

v10

04/12/2014 Chapter 21. Real-time Software Engineering 20

20

Real-time system modelling

² The effect of a stimulus in a real-time system may
trigger a transition from one state to another.

² State models are therefore often used to describe
embedded real-time systems.

² UML state diagrams may be used to show the states
and state transitions in a real-time system.

04/12/2014 Chapter 21. Real-time Software Engineering 21

21

State machine model of a petrol (gas) pump

Card
inserted

into reader

Timeout

Resetting
do: display CC

error

Initializing

do: initialize
display

Paying

Stopped

Reading

do: get CC
details

Waiting

do: display
 welcome

do:
deliver fuel

do: debit
CC account

Payment ack.

Ready Delivering

update displayNozzle
trigger on

Nozzle trigger off

Nozzle trigger on

Hose in
holster

do: validate
credit card

Validating

Invalid card

Card removed
Card OK

Hose out of holster

Hose in
holster

Timeout

04/12/2014 Chapter 21. Real-time Software Engineering 22

22

Sequence of actions in real-time pump control
system

² The buyer inserts a credit card into a card reader built
into the pump.

² Removal of the card triggers a transition to a
Validating state where the card is validated.

² If the card is valid, the system initializes the pump and,
when the fuel hose is removed from its holster,
transitions to the Delivering state.

² After the fuel delivery is complete and the hose replaced
in its holster, the system moves to a Paying state.

² After payment, the pump software returns to the
Waiting state.

04/12/2014 Chapter 21. Real-time Software Engineering 23

23

Real-time programming

² Programming languages for real-time systems
development have to include facilities to access system
hardware, and it should be possible to predict the timing
of particular operations in these languages.

² Systems-level languages, such as C, which allow
efficient code to be generated are widely used in
preference to languages such as Java.

² There is a performance overhead in object-oriented
systems because extra code is required to mediate
access to attributes and handle calls to operations. The
loss of performance may make it impossible to meet
real-time deadlines.

04/12/2014 Chapter 21. Real-time Software Engineering 24

24

4/14/22

5

Architectural patterns for real-time software

04/12/2014 Chapter 21. Real-time Software Engineering 25

25

Architectural patterns for embedded systems

² Real-time systems’ patterns are process-oriented rather
than object- or component-oriented.

² Characteristic system architectures for embedded
systems
§ Observe and React This pattern is used when a set of sensors

are routinely monitored and displayed.
§ Environmental Control This pattern is used when a system

includes sensors, which provide information about the
environment and actuators that can change the environment.

§ Process Pipeline This pattern is used when data has to be
transformed from one representation to another before it can be
processed.

04/12/2014 Chapter 21. Real-time Software Engineering 26

26

The Observe and React pattern

Name Observe and React
Description The input values of a set of sensors of the same types are

collected and analyzed. These values are displayed in some way. If
the sensor values indicate that some exceptional condition has
arisen, then actions are initiated to draw the operator’s attention to
that value and, in certain cases, to take actions in response to the
exceptional value.

Stimuli Values from sensors attached to the system.

Responses Outputs to display, alarm triggers, signals to reacting systems.

Processes Observer, Analysis, Display, Alarm, Reactor.

Used in Monitoring systems, alarm systems.

04/12/2014 Chapter 21. Real-time Software Engineering 27

27

Observe and React process structure

Analysis
process

Observer
process

Reactor processAlarm
process

Sensor
values

Display
process

Display
values

DisplaySensors

Alarm
Other equipment

04/12/2014 Chapter 21. Real-time Software Engineering 28

28

Alarm system description

A software system is to be implemented as part of a burglar alarm
system for commercial buildings. This uses several different types of
sensor. These include movement detectors in individual rooms, door
sensors that detect corridor doors opening, and window sensors on
ground-floor windows that detect when a window has been opened.

When a sensor detects the presence of an intruder, the system
automatically calls the local police and, using a voice synthesizer,
reports the location of the alarm. It switches on lights in the rooms
around the active sensor and sets off an audible alarm. The sensor
system is normally powered by mains power but is equipped with a
battery backup. Power loss is detected using a separate power circuit
monitor that monitors the mains voltage. If a voltage drop is detected,
the system assumes that intruders have interrupted the power supply
so an alarm is raised.

04/12/2014 Chapter 21. Real-time Software Engineering 29

29

Process structure for a burglar alarm system

Lighting control
process

External alert
process

Voltage monitor
process

System
controller

Console display
process

Door sensor
process

Movement
detector process

Window sensor
process

Audible alarm
process

Control panel
process Testing process

Power management
process

04/12/2014 Chapter 21. Real-time Software Engineering 30

30

4/14/22

6

The Environmental Control pattern

Name Environmental Control
Description The system analyzes information from a set of sensors that collect data from

the system’s environment. Further information may also be collected on the
state of the actuators that are connected to the system. Based on the data
from the sensors and actuators, control signals are sent to the actuators that
then cause changes to the system’s environment. Information about the
sensor values and the state of the actuators may be displayed.

Stimuli Values from sensors attached to the system and the state of the system
actuators.

Responses Control signals to actuators, display information.

Processes Monitor, Control, Display, Actuator Driver, Actuator monitor.

Used in Control systems.

04/12/2014 Chapter 21. Real-time Software Engineering 31

31

Environmental Control process structure

Control
process

Monitor
process

Actuator monitor
process

Actuator
driver process

Sensor
values

Display
process

Display
values

DisplaySensors

Actuator

Control
instructions

Actuator
state

04/12/2014 Chapter 21. Real-time Software Engineering 32

32

Control system architecture for an anti-skid
braking system

Analysis
process

Wheel
monitor

Pedal
monitor

Brake 4
process

Brake 1
process

Brake 2
process

Brake 3
process

Brake 1 Brake 2

Brake 3 Brake 4

Pedal pressure sensor

Wheel sensors

04/12/2014 Chapter 21. Real-time Software Engineering 33

33

The Process Pipeline pattern

Name Process Pipeline

Description A pipeline of processes is set up with data moving in
sequence from one end of the pipeline to another. The
processes are often linked by synchronized buffers to
allow the producer and consumer processes to run at
different speeds. The culmination of a pipeline may be
display or data storage or the pipeline may terminate in
an actuator.

Stimuli Input values from the environment or some other
process.

Responses Output values to the environment or a shared buffer.

Processes Producer, Buffer, Consumer.

Used in Data acquisition systems, multimedia systems.

04/12/2014 Chapter 21. Real-time Software Engineering 34

34

Process Pipeline process structure

Buffer
process

Producer
process

Produced
data

Consumer
process

Consumed
data

...

04/12/2014 Chapter 21. Real-time Software Engineering 35

35

Neutron flux data acquisition

Flux value
buffer

Flux
processing

Raw data
buffer

A-D
convertor

Sensor
identifier and

flux value

Processed
flux level

Neutron flux sensors
Storage

Display

04/12/2014 Chapter 21. Real-time Software Engineering 36

36

4/14/22

7

Timing analysis

04/12/2014 Chapter 21. Real-time Software Engineering 37

37

Timing analysis

² The correctness of a real-time system depends not just
on the correctness of its outputs but also on the time at
which these outputs were produced.

² In a timing analysis, you calculate how often each
process in the system must be executed to ensure that
all inputs are processed and all system responses
produced in a timely way.

² The results of the timing analysis are used to decide how
frequently each process should execute and how these
processes should be scheduled by the real-time
operating system.

04/12/2014 Chapter 21. Real-time Software Engineering 38

38

Factors in timing analysis

² Deadlines
§ The times by which stimuli must be processed and some

response produced by the system.

² Frequency
§ The number of times per second that a process must execute so

that you are confident that it can always meet its deadlines.

² Execution time
§ The time required to process a stimulus and produce a

response.

04/12/2014 Chapter 21. Real-time Software Engineering 39

39

Power failure timing analysis

4ms 8ms 12ms 16ms 20ms 24ms 28ms 32ms 36ms 40ms

R1 R2 R3 R4

Battery startupPower switcher

Normal voltage
level

Critical voltage
level

Time

Voltage

04/12/2014 Chapter 21. Real-time Software Engineering 40

40

Power failure timings

² It takes 50 milliseconds (ms) for the supplied voltage to
drop to a level where the equipment may be damaged.
The battery backup must therefore be activated and in
operation within 50ms.

² It takes 16ms from starting the backup power supply to
the supply being fully operational.

² There is a checking process that is scheduled to run 250
times per second i.e. every 4ms.
§ This process assumes that there is a power supply problem if

there is a significant drop in voltage between readings and this is
sustained for 3 readings.

04/12/2014 Chapter 21. Real-time Software Engineering 41

41

Power failure timings

² Assume the power fails immediately after a reading has
been taken. Therefore reading R1 is the start reading for
the power fail check. The voltage continues to drop for
readings R2–R4, so a power failure is assumed. This is
the worst possible case.

² At this stage, the process to switch to the battery backup
is started. Because the battery backup takes 16ms to
become operational, this means that the worst-case
execution time for this process is 8ms.

04/12/2014 Chapter 21. Real-time Software Engineering 42

42

4/14/22

8

Timing requirements for the burglar alarm
system

Stimulus/Response Timing requirements

Audible alarm The audible alarm should be switched on within half a second of an
alarm being raised by a sensor.

Communications The call to the police should be started within 2 seconds of an alarm
being raised by a sensor.

Door alarm Each door alarm should be polled twice per second.

Lights switch The lights should be switched on within half a second of an alarm being
raised by a sensor.

Movement detector Each movement detector should be polled twice per second.

Power failure The switch to backup power must be completed within a deadline of 50
ms.

Voice synthesizer A synthesized message should be available within 2 seconds of an
alarm being raised by a sensor.

Window alarm Each window alarm should be polled twice per second.

04/12/2014 Chapter 21. Real-time Software Engineering 43

43

Alarm process timing

Lighting control
process

External alert
process

Voltage monitor
process

System
controller

Console display
process

Door sensor
process

Movement
detector process

Window sensor
process

Audible alarm
process

Control panel
process Testing process

Power management
process

50Hz (0.5ms)

50Hz (1ms)

50Hz (0.5ms)

250Hz (0.5ms)

250Hz
(1 ms)

B50 Hz (0.5ms)

50 Hz (1 ms)

R (20 ms)

R (10 ms)R (5 ms)R (5 ms)

04/12/2014 Chapter 21. Real-time Software Engineering 44

44

Stimuli to be processed

² Power failure is detected by observing a voltage drop of
more than 20%.
§ The required response is to switch the circuit to backup power by

signalling an electronic power-switching device that switches the
mains power to battery backup.

² Intruder alarm is a stimulus generated by one of the
system sensors.
§ The response to this stimulus is to compute the room number of

the active sensor, set up a call to the police, initiate the voice
synthesizer to manage the call, and switch on the audible
intruder alarm and building lights in the area.

04/12/2014 Chapter 21. Real-time Software Engineering 45

45

Frequency and execution time

² The deadline for detecting a change of state is 0.25
seconds, which means that each sensor has to be
checked 4 times per second. If you examine 1 sensor
during each process execution, then if there are N
sensors of a particular type, you must schedule the
process 4N times per second to ensure that all sensors
are checked within the deadline.

² If you examine 4 sensors, say, during each process
execution, then the execution time is increased to about
4 ms, but you need only run the process N times/second
to meet the timing requirement.

04/12/2014 Chapter 21. Real-time Software Engineering 46

46

Real-time operating systems

04/12/2014 Chapter 21. Real-time Software Engineering 47

47

Real-time operating systems

² Real-time operating systems are specialised operating
systems which manage the processes in the RTS.

² Responsible for process management and
resource (processor and memory) allocation.

² May be based on a standard kernel which
is used unchanged or modified for a particular
application.

² Do not normally include facilities such as file
management.

04/12/2014 Chapter 21. Real-time Software Engineering 48

48

4/14/22

9

Operating system components

² Real-time clock
§ Provides information for process scheduling.

² Interrupt handler
§ Manages aperiodic requests for service.

² Scheduler
§ Chooses the next process to be run.

² Resource manager
§ Allocates memory and processor resources.

² Dispatcher
§ Starts process execution.

04/12/2014 Chapter 21. Real-time Software Engineering 49

49

Non-stop system components

² Configuration manager
§ Responsible for the dynamic reconfiguration of the system

software and hardware. Hardware modules may be replaced and
software upgraded without stopping the systems.

² Fault manager
§ Responsible for detecting software and hardware faults and

taking appropriate actions (e.g. switching to backup disks) to
ensure that the system continues in operation.

04/12/2014 Chapter 21. Real-time Software Engineering 50

50

Components of a real-time operating system

Process resource
requirements

Scheduler

Scheduling
information

Resource
manager

Dispatcher

Real-time
clock

Processes
awaiting
resources

Ready
list

Interrupt
handler

Available
resource

list

Processor
list

Executing process

Ready
processes

Released
resources

04/12/2014 Chapter 21. Real-time Software Engineering 51

51

Process management

² Concerned with managing the set of concurrent
processes.

² Periodic processes are executed at pre-specified time
intervals.

² The RTOS uses the real-time clock to determine when to
execute a process taking into account:
§ Process period - time between executions.
§ Process deadline - the time by which processing must be

complete.

04/12/2014 Chapter 21. Real-time Software Engineering 52

52

Process management

² The processing of some types of stimuli must
sometimes take priority.

² Interrupt level priority. Highest priority which is
allocated to processes requiring a very fast
response.

² Clock level priority. Allocated to periodic
processes.

² Within these, further levels of priority may be
assigned.

04/12/2014 Chapter 21. Real-time Software Engineering 53

53

Interrupt servicing

² Control is transferred automatically to a
pre-determined memory location.

² This location contains an instruction to jump to
an interrupt service routine.

² Further interrupts are disabled, the interrupt
serviced and control returned to the interrupted
process.

² Interrupt service routines MUST be short,
simple and fast.

04/12/2014 Chapter 21. Real-time Software Engineering 54

54

4/14/22

10

Periodic process servicing

² In most real-time systems, there will be several
classes of periodic process, each with different
periods (the time between executions),
execution times and deadlines (the time by
which processing must be completed).

² The real-time clock ticks periodically and each
tick causes an interrupt which schedules the
process manager for periodic processes.

² The process manager selects a process which
is ready for execution.

04/12/2014 Chapter 21. Real-time Software Engineering 55

55

RTOS actions required to start a process

Resource manager

Allocate memory
and processor

Scheduler

Choose process
for execution

Despatcher

Start execution on an
available processor

Process queue Memory map Processor list Ready list

04/12/2014 Chapter 21. Real-time Software Engineering 56

56

Process switching

² The scheduler chooses the next process to be executed
by the processor. This depends on a scheduling strategy
which may take the process priority into account.

² The resource manager allocates memory and a
processor for the process to be executed.

² The dispatcher takes the process from ready list, loads it
onto a processor and starts execution.

04/12/2014 Chapter 21. Real-time Software Engineering 57

57

Scheduling strategies

² Non pre-emptive scheduling
§ Once a process has been scheduled for execution, it runs to

completion or until it is blocked for some reason (e.g. waiting for
I/O).

² Pre-emptive scheduling
§ The execution of an executing processes may be stopped if a

higher priority process requires service.

² Scheduling algorithms
§ Round-robin;
§ Rate monotonic (shortest period / highest frequency);
§ Shortest deadline first.

04/12/2014 Chapter 21. Real-time Software Engineering 58

58

Key points

² An embedded software system is part of a hardware/software
system that reacts to events in its environment. The software is
‘embedded’ in the hardware. Embedded systems are normally real-
time systems.

² A real-time system is a software system that must respond to events
in real time. System correctness does not just depend on the results
it produces, but also on the time when these results are produced.

² Real-time systems are usually implemented as a set of
communicating processes that react to stimuli to produce
responses.

² State models are an important design representation for embedded
real-time systems. They are used to show how the system reacts to
its environment as events trigger changes of state in the system.

04/12/2014 Chapter 21. Real-time Software Engineering 59

59

Key points

² There are several standard patterns that can be observed in
different types of embedded system. These include a pattern for
monitoring the system’s environment for adverse events, a pattern
for actuator control and a data-processing pattern.

² Designers of real-time systems have to do a timing analysis, which
is driven by the deadlines for processing and responding to stimuli.
They have to decide how often each process in the system should
run and the expected and worst-case execution time for processes.

² A real-time operating system is responsible for process and
resource management. It always includes a scheduler, which is the
component responsible for deciding which process should be
scheduled for execution.

04/12/2014 Chapter 21. Real-time Software Engineering 60

60

