
4/7/22

1

Chapter 20 – Systems of Systems

Chapter 20 Systems of Systems 126/11/2014

1

Topics covered

² System complexity

² System of systems classification

² Reductionism and complex systems

² Systems of systems engineering

² Systems of systems architecture

Chapter 20 Systems of Systems 226/11/2014

2

Systems of systems

² The increase in size of software systems is remarkable –
today’s large systems may be a hundred or thousand
times larger than the “large” systems of the 1960s.

² Very large-scale systems now and in the future will be
built by integrating existing systems from different
providers to create systems of systems (SoS).

² A system of systems is a system that contains two or
more independently managed elements.

² There is no single manager for all of the parts of the
system of systems and different parts of a system are
subject to different management and control policies and
rules.

26/11/2014 Chapter 20 Systems of Systems 3

3

Examples of systems of systems

² A cloud management system that handles local private
cloud management and management of servers on
public clouds such as Amazon and Microsoft.

² An online banking system that handles loan requests
and which connects to a credit reference system
provided by credit reference agencies to check the credit
of applicants.

² An emergency information system that integrates
information from police, ambulance, fire and coastguard
services about the assets available to deal with civil
emergencies such as flooding and large-scale accidents.

26/11/2014 Chapter 20 Systems of Systems 4

4

Essential characteristics of SoS

² Operational independence of elements Parts of the
system are not simply components but can operate as
useful systems in their own right.

² Managerial independence of elements Parts of the
system are “owned” and managed by different
organizations or by different parts of a larger
organization. This is the key factor that distinguishes a
system of systems from a system.

² Evolutionary development SoS are not developed in a
single project but evolve over time from their constituent
systems.

26/11/2014 Chapter 20 Systems of Systems 5

5

Essential characteristics of SoS

² Emergence SoS have emergent characteristics (e.g.
security, reliability, volume, etc.) that only become
apparent after the SoS has been created.

² Geographical distribution of elements The elements of
an SoS are often geographically distributed across
different organizations.

² Data intensive A software SoS typically relies on and
manages a very large volume of data.

² Heterogeneity The different systems in a software SoS
are unlikely to have been developed using the same
programming languages and design methods.

26/11/2014 Chapter 20 Systems of Systems 6

6

4/7/22

2

System complexity

26/11/2014 Chapter 20 Systems of Systems 7

7

Complexity

² All systems are composed of parts (elements) with
relationships between these elements of the system.
§ For example, the parts of a program may be objects and the

parts of each object may be constants, variables and methods.
§ Examples of relationships include ‘calls’ (method A calls method

B), ‘inherits-from’ (object X inherits the methods and attributes of
object Y) and ‘part of’ (method A is part of object X).

² The complexity of any system depends on the number
and the types of relationships between system elements.

² The type of relationship (static such as a ”uses” one or
dynamic such as a “calls” one involved in, say, if-
statements) also influences the overall complexity of a
system.

26/11/2014 Chapter 20 Systems of Systems 8

8

Simple and complex systems

26/11/2014 Chapter 20 Systems of Systems 9

System (a) System (b)

9

Process complexity

² As systems grow in size, they need more complex
production and management processes.

² Complex processes are themselves complex systems.
§ They are difficult to understand and may have undesirable

emergent properties. They are more time consuming than
simpler processes and they require more documentation and
coordination between the people and the organizations involved
in the system development.

² The complexity of the production process is one of the
main reasons why projects go wrong, with software
delivered late and over-budget.

26/11/2014 Chapter 20 Systems of Systems 10

10

System production and management processes

26/11/2014 Chapter 20 Systems of Systems 11

Production process Management process

Complex system

Produces Manages

11

Complexity and software engineering

² Complexity is important for software engineering
because it is the main influence on the understandability
and the changeability of a system.

² The more complex a system, the more difficult it is to
understand and analyze.

² As complexity increases, there are more and more
relationships between elements of the system and an
increased likelihood that changing one part of a system
will have undesirable effects elsewhere.

26/11/2014 Chapter 20 Systems of Systems 12

12

4/7/22

3

Types of complexity

² Technical complexity is derived from the relationships
between the different components of the system itself.

² Managerial complexity is derived from the complexity of
the relationships between the system and its managers
and the relationships between the managers of different
parts of the system.

² Governance complexity of a system depends on the
relationships between the laws, regulations and policies
that affect the system and the relationships between the
decision-making processes in the organizations
responsible for the system.

26/11/2014 Chapter 20 Systems of Systems 13

13

System characteristics and complexity

26/11/2014 Chapter 20 Systems of Systems 14

SoS characteristic Technical
complexity

Managerial
complexity

Governance
complexity

Operational
independence

X X

Managerial
independence

X X

Evolutionary
development

X

Emergence X

Geographical
distribution

X X X

Data-intensive X X

Heterogeneity X

14

Examples of SoS characteristics vs. type of
complexity

² Operational independence Constituent systems are
subject to different rules/policies (governance
complexity) and ways of managing the system
(managerial complexity).

² Managerial independence Management changes should
be consistent (managerial complexity) and special
support software for these changes may be needed
(technical complexity).

² Evolutionary development Different parts of the SoS may
be built using different technologies (technical
complexity).

26/11/2014 Chapter 20 Systems of Systems 15

15

Examples of SoS characteristics vs. type of
complexity

² Emergence The more complex a system, the more likely it is that it
will have undesirable emergent properties (technical complexity).

² Geographical distribution Software is required to
coordinate/synchronize remote systems (technical complexity),
managers based in different countries have difficulty coordinating
their actions (managerial complexity), and different parts of the SoS
may be located in different jurisdictions (governance complexity).

² Data intensive systems Need to cope with data errors and
incompleteness (technical complexity) and the existence of different
laws (governance complexity).

² Heterogeneity Difficulties in ensuring compatibility between different
technologies used in different parts of the SoS (technical
complexity).

26/11/2014 Chapter 20 Systems of Systems 16

16

Complexity and project failure

² Large-scale systems of systems are now unimaginably
complex entities that cannot be understood or analyzed
as a whole.

² The large number of interactions between the parts and
the dynamic nature of these interactions means that
conventional engineering approaches do not work well
for complex systems.

² It is complexity that is the root cause of problems in
projects to develop large software-intensive systems, not
poor management or technical failings.

26/11/2014 Chapter 20 Systems of Systems 17

17

Systems of systems classification

26/11/2014 Chapter 20 Systems of Systems 18

18

4/7/22

4

Maier’s classification of systems of systems

² Directed SoS are owned by a single organization and
are developed by integrating systems that are also
owned by that organization. The system elements may
be independently managed by parts of the organization.

² Collaborative SoS are systems where there is no
central authority to set management priorities and
resolve disputes. Typically, elements of the system are
owned and governed by different organizations.

² Virtual systems have no central governance and the
participants may not agree on the overall purpose of the
system. Participant systems may enter or leave the SoS.

26/11/2014 Chapter 20 Systems of Systems 19

19

More intuitive classification terms (governance-
based classification)

² Organizational systems of systems are SoS where the
governance and management of the system lies within
the same organization or company.

² Federated systems are SoS where the governance of
the SoS depends on a voluntary participative body in
which all of the system owners are represented.

² System of system coalitions are SoS where there are no
formal governance mechanisms but where the
organizations involved informally collaborate and
manage their own systems to maintain the system as a
whole.

26/11/2014 Chapter 20 Systems of Systems 20

20

Examples of SoS, based on the different
classification schemes

² A military command-and-control system that integrates
information from airborne and ground-based systems is
an example of a directed or organizational SoS.

² An integrated public transport information system is an
example of a collaborative or federated SoS. Bus, rail,
and air transport providers agree to link their systems to
provide passengers with up-to-date information.

² An example of a virtual SoS (or one based on coalitions)
is an automated high-speed algorithmic trading system.
These systems from different companies automatically
buy and sell stock from each other, with trades taking
place in fractions of a second.

26/11/2014 Chapter 20 Systems of Systems 21

21

System of systems classification

26/11/2014 Chapter 20 Systems of Systems 22

Governance

Management

Technical

Organizational Federated Coalition

1 2 3 1 2 3
1 2 3

1 2 3 1 2 3 1 2 3

1 2 3

22

iLearn as an SoS

² iLearn, a case study in the book, is a system that provides a range
of learning support by integrating separate software systems such
as Microsoft Office 365, virtual learning environments such as
Moodle, simulation modeling tools, and content such as newspaper
archives.

² iLearn is a relatively simple technical system but it has a high level
of governance complexity.

² The development of a digital learning system is a national initiative
but to create a digital learning environment, it has to be integrated
with network management and school administration systems.

² There is no common governance process across authorities so,
according to the classification scheme, this is a coalition of systems.

26/11/2014 Chapter 20 Systems of Systems 23

23

Reductionism and complex systems

26/11/2014 Chapter 20 Systems of Systems 24

24

4/7/22

5

Complexity management in engineering

² The approach that has been the basis of complexity
management in software engineering is called
reductionism.

² Reductionism is based on the assumption that any
system is made up of parts or subsystems.
§ It assumes that the behaviour and properties of the system as a

whole can be understood and predicted by understanding the
individual parts and the relationships between these parts.

² To design a system, the parts making up that system are
identified, constructed separately and then assembled
into the complete system.

26/11/2014 Chapter 20 Systems of Systems 25

25

Software engineering methods

² A reductionist approach has been the basis of software
engineering for almost 50 years.

² Top-down design, where you start with a very high-level
model of a system and break this down to its
components is a reductionist approach.
§ This is the basis of all software design methods, such as object-

oriented design. Programming languages include abstractions,
such as procedures and objects that directly reflect reductionist
system decomposition.

§ Agile methods are also reductionist. The difference between
agile methods and top-down design is that system
decomposition is incremental when an agile approach is used.

26/11/2014 Chapter 20 Systems of Systems 26

26

Reductionist methods

² Reductionist methods are successful when there are
relatively few relationships between the parts of a
system and it is possible to model these relationships.

² Software engineering methods attempt to limit
complexity by controlling the relationships between parts
of the system.

² Reductionism does not work well when there are many
relationships in a system and when these relationships
are difficult to understand and analyze.
§ The fundamental assumptions that are inherent to reductionism

are inapplicable for large and complex systems.

26/11/2014 Chapter 20 Systems of Systems 27

27

Reductionist assumptions

² System ownership and control
§ Reductionism assumes that there is a controlling authority for a

system that can resolve disputes and make high-level technical
decisions that will apply across the system.

² Rational decision making
§ Reductionism assumes that interactions between components

can be objectively assessed by, for example, mathematical
modelling.

² Defined system boundaries
§ Reductionism assumes that the boundaries of a system can be

agreed and defined.

26/11/2014 Chapter 20 Systems of Systems 28

28

System of systems reality

Reductionist assumptions

Owners of a
system control
its development

Decisions are made
rationally, driven

by technical criteria

There is a definable
problem and clear
system boundaries

There is no single
system owner
or controller

Decision-making
driven by political

motives

Wicked problem with
constantly renegotiated

system boundaries

Control Decision making Problem definition

Systems of systems reality

26/11/2014 Chapter 20 Systems of Systems 29

29

Reductionism and software SoS

² Relationships in software systems are not governed by
physical laws.
§ Political factors are usually the driver of decision making for

large and complex software systems.

² Software has no physical limitations hence there are no
limits on where the boundaries of a system are drawn.
§ The boundaries and the scope of a system are likely to change

during its development.

² Linking software systems from different owners is
relatively easy hence we are more likely to try and create
an SoS where there is no single governing body.

26/11/2014 Chapter 20 Systems of Systems 30

30

4/7/22

6

Systems of systems engineering

26/11/2014 Chapter 20 Systems of Systems 31

31

SoS engineering problems

² Lack of control over system functionality and
performance.

² Differing and incompatible assumptions made by the
developers of the different systems.

² Different evolution strategies and timetables for the
different systems.

² Lack of support from system owners when problems
arise.

26/11/2014 Chapter 20 Systems of Systems 32

32

A systems of systems engineering process

26/11/2014 Chapter 20 Systems of Systems 33

Conceptual
design

System
selection

Architectural
design

Interface
development

Integration and
deployment

Systems
knowledge

 Governance and management policy setting

33

SoS development processes

² Conceptual design is the activity of creating a high-level
vision for a system, defining essential requirements and
identifying constraints on the overall system. An
important input here is knowledge of the existing
systems that may participate in the SoS.

² System selection, where a set of systems for inclusion in
the SoS is chosen.
§ Political imperatives and issues of system governance and

management are often the key factors that influence what
systems are included in an SoS.

² Architectural design, where an overall architecture for
the SoS is developed.

26/11/2014 Chapter 20 Systems of Systems 34

34

SoS development processes

² Interface development The development of system
interfaces so that the constituent systems can
interoperate. This may also involve the development of a
unified UI so that SoS operators do not have to deal with
multiple user interfaces as they use the different systems
in the SoS.

² Integration and deployment Making the different systems
involved in the SoS work together and interoperate
through the developed interfaces. System deployment
means putting the system into place in the organizations
concerned and making it operational.

26/11/2014 Chapter 20 Systems of Systems 35

35

Interface development

² In general, the aim in SoS development is for systems to
be able to communicate directly with each other without
user intervention.

² Service interfaces.
§ If systems in an SoS have service interfaces, they can

communicate directly via these interfaces.

² The constituent systems in an SoS often have their own
specialized API or only allow their functionality to be
accessed through their user interfaces.
§ You therefore have to develop software that reconciles the

differences between these interfaces.

26/11/2014 Chapter 20 Systems of Systems 36

36

4/7/22

7

Service interface development

² To develop service-based interfaces, you have to
examine the functionality of existing systems and define
a set of services to reflect that functionality.

² The services are implemented either by calls to the
underlying system API or by mimicking user interaction
with the system.

² A principal system acts as a service broker, directing
service calls between the different systems in the SoS.

² Each system therefore does not need to know which
other system is providing a called service.

26/11/2014 Chapter 20 Systems of Systems 37

37

Service interfaces

26/11/2014 Chapter 20 Systems of Systems 38

System 3

System 2

System 1

Principal
system

Service interfaces

Unified service
interface

38

Unified user (service) interfaces

² User interfaces for each system in an SoS are likely to
be different.

² A principal system must have some overall user
interfaces that handles user authentication and provides
access to the features of the underlying system.

² It is usually expensive and time-consuming to implement
a unified user interface to replace the individual
interfaces of the underlying systems.

26/11/2014 Chapter 20 Systems of Systems 39

39

Cost-effectiveness of UI development

² The interaction assumptions of the systems in the SoS
§ Some systems may have a process-driven model of interaction

where the system controls the interface and prompts the user for
inputs. Others may give control to the user, so that the user
chooses the sequence of interactions with the system.

§ If systems have different interaction models, unifying these in a
single UI is very difficult.

² The mode of use of the SoS
§ A unified UI slows down interaction with the most commonly

used systems if most of the interaction is with a principal system.

² The ‘openness’ of the SoS
§ If the SoS is open, so that new systems may be added to it when

it is in use, then unified UI development is impractical.
26/11/2014 Chapter 20 Systems of Systems 40

40

Integration and deployment

² For SoS, it makes sense to consider integration and
deployment to be part of the same process.

² Separate integration may be difficult as some of the
systems in the SoS may already be in use.

² The integration process should begin with systems that
are already deployed, with new systems added to the
SoS to provide coherent additions to the functionality of
the overall system.

26/11/2014 Chapter 20 Systems of Systems 41

41

Staged deployment of the iLearn system

² The initial deployment provides authentication, basic
learning functionality and integration with school
administration systems.

² Stage 2 adds an integrated storage system and a set of
more specialized tools to support subject-specific
learning. These tools might include archives for history,
simulation systems for science, and programming
environments for computing.

² Stage 3 adds features for user configuration and the
ability for users to add new systems. Different versions
of the system may be created for different age groups,
with specialized or alternative tools, etc.

26/11/2014 Chapter 20 Systems of Systems 42

42

4/7/22

8

iLearn releases

26/11/2014 Chapter 20 Systems of Systems 43

iLearn V1

Authentication system

Office 365

Wordpress

School admin systems

Moodle VLE

Learning portfolio system

Conferencing system

iLearn V2

Authentication system

Programming
environments

Drawing and photo tools

Science simulation systems

Storage system

Content systems
(history, languages, etc.)

iLearn V1 tools

iLearn V3

Authentication system

iLearn V2 tools

Storage system

Configuration system

Age-specific tools

Google Apps

ibook tools

Data analysis tools

Release timeline

43

SoS testing

² There are three reasons why testing systems of systems
is difficult and expensive:
§ There may not be a detailed requirements specification that can

be used as a basis for system testing. It may not be cost
effective to develop an SoS requirements document – the details
of the system functionality are defined by the systems included.

§ The constituent systems may change in the course of the testing
process so tests may not be repeatable.

§ If problems are discovered, it may not be possible to fix the
problems by requiring one of more of the constituent systems to
be changed. Intermediate software may have to be introduced to
solve the problem.

26/11/2014 Chapter 20 Systems of Systems 44

44

SoS testing and agile testing

² Agile methods do not rely on having a complete system
specification for system acceptance testing.

² Stakeholders are engaged with the testing process and
to decide when the overall system is acceptable.

² For SoS, a range of stakeholders should be involved in
the testing process if possible. and they can comment on
whether or not the system is ready for deployment.

² Agile methods make extensive use of automated testing.
This makes it much easier to rerun tests to discover if
unexpected system changes have caused problems for
the SoS as a whole.

26/11/2014 Chapter 20 Systems of Systems 45

45

Systems of systems architecture

26/11/2014 Chapter 20 Systems of Systems 46

46

General principles for architecting SoS

² Design systems so that they can deliver value if they are
incomplete. There should be several “stable intermediate
forms” so that a partial system can still do useful things.

² Be realistic about what can be controlled. Although the
best performance may be achieved when an individual
or group exerts control over the overall system and its
constituents, overcontrolling the SoS is likely to lead to
resistance from the individual system owners.

² Focus on the system interfaces. UIs should allow the
system elements to interoperate and should not be too
restrictive so that these system elements can evolve and
continue to be useful participants in the SoS.

26/11/2014 Chapter 20 Systems of Systems 47

47

General principles for architecting SoS

² Provide collaboration incentives to constituent system
owners: financial (pay per use or reduced operational
costs), access (mutual sharing of data), or community
(you get a say in community decision making).

² Design an SoS as node and web architecture:
§ Nodes are sociotechnical systems that include data, software,

hardware, infrastructure (technical components), and
organizational policies, people, processes, and training
(sociotechnical).

§ The web is not just the communications infrastructure between
nodes, but it also provides a mechanism for informal and formal
social communications between the people managing and
running the systems at each node.

26/11/2014 Chapter 20 Systems of Systems 48

48

4/7/22

9

General principles for architecting SoS

² Specify behavior as services exchanged between nodes.
The development of service-oriented architectures now
provides a standard mechanism for system operability. If
a system does not already provide a service interface,
then this interface should be implemented as part of the
SoS development process.

² Understand and manage system vulnerabilities. In any
SoS, there will be unexpected failures and undesirable
behavior. It is critically important to try to understand
vulnerabilities and design the system to be resilient to
such failures.

26/11/2014 Chapter 20 Systems of Systems 49

49

Architectural frameworks

² Architectural frameworks such as MODAF and TOGAF
have been suggested as a means to support the
architectural design of systems of systems.

² An architecture framework recognises that a single
model of an architecture does not present all of the
information needed for architectural and business
analysis.

² Frameworks propose a number of architectural views
that should be created and maintained to describe and
document enterprise systems.

26/11/2014 Chapter 20 Systems of Systems 50

50

TOGAF

² The TOGAF framework has been developed by the
Open Group as an open standard and is intended to
support the design of a business architecture, a data
architecture, an application architecture and a
technology architecture for an enterprise.

² At its heart is the Architecture Development Method
(ADM), which consists of a number of discrete phases.

26/11/2014 Chapter 20 Systems of Systems 51

51

TOGAF – Architecture Development Method

26/11/2014 Chapter 20 Systems of Systems 52

A.
Architecture

vision

B.
Business

architecture

C.
Information

systems
architectures

D.
Technology
architecture

E.
Opportunities
and solutions

F.
Migration
planning

G.
Implementation

governance

H.
Architecture

change
management

Requirements
management

Preliminary

52

Architectural model management

² All architectural frameworks involve the production and
management of a large set of architectural models.
However, there are two issues to consider:
§ Initial model development takes a long time and involves

extensive negotiations between system stakeholders. This slows
the development of the overall system.

§ It is time-consuming and expensive to maintain model
consistency as changes are made to the organization and the
constituent systems in an SoS.

26/11/2014 Chapter 20 Systems of Systems 53

53

Architectural patterns for SoS

² An architectural pattern is a stylized architecture that can
be recognized across a range of different systems.

² Architectural patterns are a useful way of stimulating
discussions about the most appropriate architecture for a
system and for documenting and explaining the
architectures used.

² As with all architectural patterns, real systems are
usually based on more than one of these patterns.

² Architectural patterns can be effective in illustrating an
SoS organization, without the need for detailed domain
knowledge.

26/11/2014 Chapter 20 Systems of Systems 54

54

4/7/22

10

Systems as data feeds

² There is a principal system that requires data of different types.

² This data is available from other systems and the principal system
queries these systems to get the data required.

² Generally, the systems that provide data do not interact with each
other.

² This pattern is often observed in organizational or federated systems
where some governance mechanisms are in place.

² For example, to license a vehicle, you need to have both valid
insurance and a roadworthiness certificate. When you interact with
the vehicle licensing system, it itself interacts with two other systems
to check that these documents are valid, one for insurances (run by
insurance companies) and one for MOT (managed by the testing
agencies licensed by the government to check the vehicles).

26/11/2014 Chapter 20 Systems of Systems 55

55

Systems as data feeds

26/11/2014 Chapter 20 Systems of Systems 56

Data feed 3

Data feed 1

Data feed 4Data feed 2
Principal
system

56

Systems as data feeds

² The ‘systems as data feeds’ architecture is an
appropriate architecture to use when it is possible to
identify entities in a unique way and create relatively
simple queries about these entities.

² A variant of the ‘systems as data feeds’ architecture
arises when there are a number of systems involved
which provide similar data but which are not identical.

² The architecture has to include an intermediate layer to
translate the general query from the principal system into
the specific query required by the individual information
system.

26/11/2014 Chapter 20 Systems of Systems 57

57

Systems as data feeds with unifying interface

26/11/2014 Chapter 20 Systems of Systems 58

Data feed 1

Data feed 3Data feed 2
Principal
system

Data feed 1(a) Data feed 1(b) Data feed 1(c)

58

Systems in a container

² Systems in a container are systems of systems where
one of the systems acts as a virtual container and
provides a set of common services such as an
authentication and a storage service.

² Conceptually, other systems are then placed into this
container to make their functionality accessible to system
users.

² You don’t place systems into a real container to
implement these systems of systems. Rather, for each
approved system, there is a separate interface that
allows it to be integrated with the common services.

26/11/2014 Chapter 20 Systems of Systems 59

59

Container systems

26/11/2014 Chapter 20 Systems of Systems 60

Included systems

Container system

Common service 1

Common service 2

Common service 3

s1 s2 s3

s4 s5 s6

60

4/7/22

11

ILearn container: common services

² An authentication service that provides a single sign-in to
all approved systems. Users do not have to maintain
separate credentials for these.

² A storage service for user data. This can be seamlessly
transferred to and from approved systems.

² A configuration service that is used to include or remove
systems from the container.

² Other functionality comes from choosing existing
systems such as a newspaper archive or a virtual
learning environment and integrating these into the
container.

26/11/2014 Chapter 20 Systems of Systems 61

61

iLearn as a container

26/11/2014 Chapter 20 Systems of Systems 62

The Digital Learning Environment

External interaction

Configuration

Storage

Authentication

YouTube
Science

encyclopedia

MS Office
365

Physics
simulatorMoodle Lab data

analyzer

Interfaces

62

ILearn container for Physics

² The previous figure shows a version of iLearn for
Physics.

² As well as an office productivity system (Office 365) and
a VLE (Moodle), this system includes simulation and
data analysis systems.

² Other systems — YouTube and a science encyclopedia
— are also part of this system.
§ However, these are not “approved” and so no container interface

is available.
§ Users must log on to these systems separately and organize

their own data transfers.

26/11/2014 Chapter 20 Systems of Systems 63

63

Container architecture problems

² A separate interface must be developed for each
approved system so that common services can be used
with these systems.
§ This means that only a relatively small number of approved

systems can be supported.

² The owners of the container system have no influence
on the functionality and behaviour of the included
systems. Systems may stop working or may be
withdrawn at any time.

26/11/2014 Chapter 20 Systems of Systems 64

64

Trading systems

² Trading systems are systems of systems where there is
no single principal system but processing may take place
in any of the constituent systems.

² The systems involved trade information amongst
themselves. There may be one-to-one or one-to-many
interactions between these systems.

² Each system publishes its own interface but there may
not be any interface standards that are followed by all
systems.

26/11/2014 Chapter 20 Systems of Systems 65

65

Trading systems

26/11/2014 Chapter 20 Systems of Systems 66

Trading
system 1

Trading
system 2

Trading
system 3

Trading
system 4

66

4/7/22

12

Trading SoS

² Trading systems may be developed for any type of
marketplace with the information exchanged being
information about the goods being traded and their
prices.

² While trading systems are systems in their own right and
could conceivably be used for individual trading, they are
most useful in an automated trading context where the
systems negotiate directly with each other.

² The major problem with this type of system is that there
is no governance mechanism so any of the systems
involved may change at any time.

26/11/2014 Chapter 20 Systems of Systems 67

67

Key points

² Systems of systems are systems where two or more of
the constituent systems are independently managed and
governed.

² There are three types of complexity that are important for
systems of systems – technical complexity, managerial
complexity and governance complexity.

² System governance can be used as the basis for a
classification scheme for SoS. This leads to three
classes of SoS namely organizational systems,
federated systems and system coalitions.

26/11/2014 Chapter 20 Systems of Systems 68

68

Key points

² Reductionism as an engineering method breaks down
because of the inherent complexity of systems of
systems.

² Reductionism assumes clear system boundaries,
rational decision making and well-defined problems.
None of these are true for systems of systems.

² The key stages of the SoS development process are
conceptual design, system selection, architectural
design, interface development and integration and
deployment. Governance and management policies
must be designed in parallel with these activities.

26/11/2014 Chapter 20 Systems of Systems 69

69

Key points

² Architectural patterns for systems of systems are a
means of describing and discussing typical architectures
for SoS.

² Important patterns are systems as data feeds, systems
in a container and trading systems.

26/11/2014 Chapter 20 Systems of Systems 70

70

