
3/15/22

1

Chapter 17 – Distributed software engineering

Chapter 17 Distributed software engineering 120/11/2014

1

Topics covered

² Distributed systems

² Client–server computing

² Architectural patterns for distributed systems

² Software as a service

Chapter 17 Distributed software engineering 220/11/2014

2

Distributed systems

² Virtually all large computer-based systems are now 
distributed systems.
“… a collection of independent computers that appears to the user 

as a single coherent system.”

² Information processing is distributed over several 
computers rather than confined to a single machine.

² Even apparently self-contained applications on a PC or 
laptop (e.g. image editors) are essentially distributed 
systems, executing on a single computer but relying on 
remote cloud systems for update, storage, etc.

² Distributed software engineering is therefore very 
important for enterprise computing systems.

20/11/2014 Chapter 17 Distributed software engineering 3

3

Distributed system characteristics/benefits

² Resource sharing
§ Sharing of hardware and software resources (disks, printers, 

files, etc.) that are associated with computers on a network.

² Openness
§ Use of equipment and software from different vendors.

² Concurrency
§ Concurrent processing to enhance performance.

² Scalability
§ Increased throughput by adding new resources to cope with new 

demands on the system.

² Fault tolerance
§ The ability to continue in operation after a fault has occurred, 

due to the potential of replicating information.
20/11/2014 Chapter 17 Distributed software engineering 4

4

Distributed systems

Chapter 17 Distributed software engineering 520/11/2014

5

Distributed systems issues

² Distributed systems are more complex than systems that 
run on a single processor.

² Complexity arises because different parts of the system 
are independently managed by their owners, as is the 
network.

² There is no single authority in charge of the distributed 
system so top-down control is impossible.

² There is, therefore, an inherent unpredictability in the 
operation of distributed systems that has to be taken into 
account when designing such a system.

Chapter 17 Distributed software engineering 620/11/2014

6



3/15/22

2

Design issues

² Transparency. To what extent should the distributed system appear 
to the user as a single system? When is it useful for users to 
understand that the system is distributed?

² Openness. Should a system be designed using standard protocols 
that support interoperability? Not the case is service communication.

² Scalability. How can the system be constructed so that it is scalable 
(i.e. its capacity increases in response to demand)? 

² Security. How can usable security policies be defined and 
implemented that apply across independently managed systems?

² Quality of service. How should the quality of service  be specified 
and how could acceptable quality be delivered to all users?

² Failure management. How can system failures be detected, 
contained (to cause minimal disruption) and repaired? 

Chapter 17 Distributed software engineering 720/11/2014

7

Transparency

² Ideally, users should not be aware that a system is 
distributed and services should be independent of 
distribution characteristics.

² In practice, this is impossible because parts of the 
system are independently managed and because of 
network delays.
§ Often better to make users aware of distribution so that they can 

cope with problems.

² To achieve transparency, resources should be 
abstracted and addressed logically rather than 
physically. Middleware maps logical to physical 
resources.

Chapter 17 Distributed software engineering 820/11/2014

8

Openness

² Open distributed systems are systems that are built 
according to generally accepted standards. 

² Components from any supplier can be integrated into the 
system and can inter-operate with the other system 
components.

² Openness implies that system components can be 
independently developed in any programming language 
and, if these conform to standards, they will work with 
other components.

² Web service standards for service-oriented architectures 
were developed to be open standards.  

Chapter 17 Distributed software engineering 920/11/2014

9

Scalability

² The scalability of a system reflects its ability to deliver a 
high quality service as demands on the system increase.
§ Size It should be possible to add more resources to a system to 

cope with increasing numbers of users.
§ Distribution It should be possible to geographically disperse the 

components of a system without degrading its performance.
§ Manageability It should be possible to manage a system as it 

increases in size, even if parts of the system are located in 
independent organizations.

² There is a distinction between scaling-up and scaling-
out. Scaling up leads to a more powerful system; scaling 
out leads to more system instances. 

Chapter 17 Distributed software engineering 1020/11/2014

10

Security

² When a system is distributed, the number of ways that 
the system may be attacked is significantly increased, 
compared to centralized systems. 

² If a part of the system is successfully attacked then the 
attacker may be able to use this as a ‘back door’ into 
other parts of the system. 

² Difficulties in a distributed system arise because different 
organizations may own parts of the system. These 
organizations may have mutually incompatible security 
policies and security mechanisms. 

Chapter 17 Distributed software engineering 1120/11/2014

11

Types of attack

² The types of attack that a distributed system must 
defend itself against are:
§ Interception, where communications between parts of the system 

are intercepted by an attacker so that there is a loss of 
confidentiality.

§ Interruption, where system services are attacked and cannot be 
delivered as expected.

• Denial of service attacks involve bombarding a node with illegitimate 
service requests so that it cannot deal with valid requests.

§ Modification, where data or services in the system are changed 
by an attacker.

§ Fabrication, where an attacker generates information that should 
not exist and then uses this to gain some privileges.  

Chapter 17 Distributed software engineering 1220/11/2014

12



3/15/22

3

Quality of service

² The quality of service (QoS) offered by a distributed 
system reflects the system’s ability to deliver its services 
dependably and with a response time and throughput 
that is acceptable to its users.

² Ideally, the QoS requirements should be specified in 
advance and the system designed to deliver them, but:
§ It may not be cost-effective (in terms of needed resources) to 

continue to provide high quality at peak time (note, though, that 
cloud computing techniques have now alleviated this issue).

§ QoS parameters may be mutually contradictory: increased 
reliability may mean reduced throughput, as checking 
procedures are introduced to ensure data validity.

Chapter 17 Distributed software engineering 1320/11/2014

13

Quality of service

² Quality of service is particularly critical when the system 
is dealing with time-critical data such as sound or video 
streams. 
§ In these circumstances, if the quality of service falls below a 

threshold value then the sound or video may become so 
degraded that it is impossible to understand. 

§ Systems dealing with sound and video should include QoS 
negotiation and management components.

§ These should evaluate the QoS requirements against the 
available resources and, if these are insufficient, negotiate for 
more resources or for a reduced QoS target.

Chapter 17 Distributed software engineering 1420/11/2014

14

Failure management

² In a distributed system, it is inevitable that failures will 
occur, so the system has to be designed to be resilient to 
these failures. 

“You know that you have a distributed system when the 
crash of a system that you’ve never heard of stops you 
getting any work done.” (Leslie Lamport)

² Distributed systems should include mechanisms for 
discovering if a component of the system has failed, 
should continue to deliver as many services as possible 
in spite of that failure and, as far as possible, 
automatically recover from the failure. 

Chapter 17 Distributed software engineering 1520/11/2014

15

Models of interaction

² Two types of interaction between components in a D.S.:
§ Procedural interaction, where one computer calls on a known 

service offered by another computer and waits for a response.
§ Message-based interaction, involves the sending computer 

sending information about what is required to another computer. 
There is no necessity to wait for a response. Messages usually 
transmit more information in a single interaction than a 
procedure call to another machine.

² Consider the ordering of a meal in a restaurant:
§ The waiter has a series of synchronous procedural 

communications with clients to get individual orders.
§ Then he may have a single asynchronous message-based 

communication with the kitchen to deliver all the orders.

Chapter 17 Distributed software engineering 1620/11/2014

16

Procedural interaction between a diner and a 
waiter

Chapter 17 Distributed software engineering 1720/11/2014

17

Message-based interaction between a waiter and 
the kitchen

Chapter 17 Distributed software engineering 18

<starter>
<dish	name	=	“soup”	type	=	“tomato”	/>	
<dish	name	=	“soup”	type	=	“fish”	/>
<dish	name	=	“pigeon	salad”	/>

</starter>
<main	course>

<dish	name	=	“steak”	type	=	“sirloin”	cooking	=	“medium”	/>
<dish	name	=	“steak”	type	=	“fillet”	cooking	=	“rare”	/>
<dish	name	=	“sea	bass”>

</main>
<accompaniment>

<dish	name	=	“french fries”	portions	=	“2”	/>
<dish	name	=	“salad”	portions	=	“1”	/>

</accompaniment>

20/11/2014

18



3/15/22

4

Remote procedure calls

² Procedural communication in a distributed system is 
implemented using remote procedure calls (RPC).

² In a remote procedure call, one component calls 
another component as if it was a local procedure or 
method. The middleware in the system intercepts this 
call and passes it to a remote component. 

² This carries out the required computation and, via the 
middleware, returns the result to the calling component. 

² A problem with RPCs is that the caller and the callee
need to be available at the time of the communication, 
and they must know how to refer to each other. 

Chapter 17 Distributed software engineering 1920/11/2014

19

Message passing

² Message-based interaction normally involves one 
component creating a message that details the services 
required from another component. 

² Through the system middleware, this is sent to the 
receiving component. 

² The receiver parses the message, carries out the 
computations and creates a message for the sending 
component with the required results.  

² In a message-based approach, it is not necessary for the 
sender and receiver of the message to be aware of each 
other. They simple communicate with the middleware.

Chapter 17 Distributed software engineering 2020/11/2014

20

Middleware

² The components in a distributed system may be 
implemented in different programming languages and 
may execute on completely different types of processor. 
Models of data, information representation and protocols 
for communication may all be different. 

² Middleware is software that can manage these diverse 
parts, and ensure that they can communicate and 
exchange data. 

² It is usually implemented as a set of libraries, which are 
installed on each different distributed computer, plus a 
runtime system to manage communications.

Chapter 17 Distributed software engineering 2120/11/2014

21

Middleware in a distributed system

Chapter 17 Distributed software engineering 2220/11/2014

22

Middleware support

² Interaction support, where the middleware coordinates 
interactions between different components in the system.
§ The middleware provides location transparency in that it isn’t 

necessary for components to know the physical locations of 
other components. 

² The provision of common services, where the 
middleware provides reusable implementations of 
services that may be required by several components in 
the distributed system. 
§ By using these common services (such as authentication, 

authorization, notification, naming, transaction management), 
components can easily inter-operate and provide user services 
in a consistent way.

Chapter 17 Distributed software engineering 2320/11/2014

23

Client-server computing

Chapter 17 Distributed software engineering 2420/11/2014

24



3/15/22

5

Client-server computing

² Distributed systems that are accessed over the Internet 
are normally organized as client-server systems. 

² In a client-server system, the user interacts with a 
program running on their local computer (e.g. a web 
browser or mobile application). This interacts with 
another program running on a remote computer (e.g. a 
web server). 

² The remote computer provides services, such as access 
to web pages, which are available to external clients. 

² Note that the client-server model is not restricted to D.S. 
and can also be used as a logical interaction model 
where client and server are on the same machine.

Chapter 17 Distributed software engineering 2520/11/2014

25

Client–server interaction

Chapter 17 Distributed software engineering 26

s1

s2 s3

s4c1

c2 c3 c4

c5

c6
c7 c8

c9

c10

c11

c12

Client process

Server process

20/11/2014

26

Mapping of clients and servers to networked 
computers

Chapter 17 Distributed software engineering 27

Network

SC1

SC2CC1 CC2 CC3

CC5 CC6CC4

Server
computer

Client
computer

s1, s2

s3, s4

c5, c6, c7

c1 c2 c3, c4

c8, c9 c10, c11, c12

20/11/2014

27

Layered architectural model for client–server 
applications

Chapter 17 Distributed software engineering 28

Presentation 

Application processing 

Data handling

Database 

20/11/2014

28

Layers in a client/server system

² Presentation
§ Concerned with presenting information to the user and managing 

all user interaction.

² Data handling 
§ Manages the data that is passed to and from the client. 

Implements checks on the data, generates web pages, etc.

² Application processing layer
§ Concerned with implementing the logic of the application and so 

providing the required functionality to end users.

² Database
§ Stores data and provides transaction management services, 

query services, etc.  
Chapter 17 Distributed software engineering 2920/11/2014

29

Architectural patterns for distributed systems

Chapter 17 Distributed software engineering 3020/11/2014

30



3/15/22

6

Architectural patterns

² Widely used ways of organizing the architecture of a distributed 
system:
§ Master-slave architecture, which is used in real-time systems in which 

guaranteed interaction response times are required.
§ Two-tier client-server architecture, which is used for simple client-server 

systems, and where the system is centralized for security reasons. 
§ Multi-tier client-server architecture, which is used when there is a high 

volume of transactions to be processed by the server.
§ Distributed component architecture, which is used when resources from 

different systems and databases need to be combined, or as an 
implementation model for multi-tier client-server systems.

§ Peer-to-peer architecture, which is used when clients exchange locally 
stored information and the role of the server is to introduce clients to 
each other. It may also be used when a large number of independent 
computations may have to be made.

Chapter 17 Distributed software engineering 3120/11/2014

31

Master-slave architectures

² Master-slave architectures are commonly used in real-
time systems where there may be separate processors 
associated with data acquisition from the system’s 
environment, data processing and computation and 
actuator management. 

² The ‘master’ process is usually responsible for 
computation, coordination and communications and it 
controls the ‘slave’ processes. 

² ‘Slave’ processes are dedicated to specific actions, such 
as the acquisition of data from an array of sensors. 

Chapter 17 Distributed software engineering 3220/11/2014

32

A traffic management system with a master-
slave architecture

Chapter 17 Distributed software engineering 33

Traffic lights

Light
control
process

Traffic light control
processor

Control room
processor

Operator consoles

Traffic flow sensors and
cameras

Sensor
processor

Sensor
control
process

Coordination
and display

process

Slave Slave

Master

20/11/2014

33

Two-tier client server architectures

² In a two-tier client-server architecture, the system is 
implemented as a single logical server plus an indefinite 
number of clients that use that server. 
§ Thin-client model, where the presentation layer is implemented 

on the client and all other layers (data management, application 
processing and database) are implemented on a server. The 
client presentation software is usually a web browser, but apps 
for mobile devices may also be available.

§ Fat-client model, where some or all of the application processing 
is carried out on the client. Data management and database 
functions are implemented on the server. In this case, the client 
software may be a specially written program that is tightly 
integrated with the server application.

Chapter 17 Distributed software engineering 3420/11/2014

34

Thin- and fat-client architectural models

Thin-client
model

Fat-client
model Client

Client

Server

Database
Data management

Application processing

Presentation

Server

Database
Data management

Presentation
Application processing

Chapter 17 Distributed software engineering 3520/11/2014

35

Thin-client model

² Used when legacy systems are migrated to client server 
architectures. 
§ The legacy system acts as a server in its own right with a 

graphical interface implemented on a client.

² The advantage of the thin-client model is that it is simple 
to manage the clients, a major issue when there are 
many of them and otherwise it may be expensive and 
difficult to install software on all of them.

² A major disadvantage is that it places a heavy 
processing load on both the server and the network, as 
the former is responsible for all computation, which may 
generate a lot of messages between servers and clients.

20/11/2014 Chapter 17 Distributed software engineering 36

36



3/15/22

7

Fat-client model

² More processing is delegated to the client as the 
application processing is locally executed.

² The server is essentially a transaction server that 
manages all database transactions.

² Data handling is straightforward as there is no need to 
manage the interaction between the client and the 
application processing system.

² Most suitable for new C/S systems where the capabilities 
of the client system are known in advance.

² More complex than a thin-client model especially for 
management. New versions of the application have to be 
installed and maintained on all clients.

20/11/2014 Chapter 17 Distributed software engineering 37

37

A fat-client architecture for an ATM system

Account server

Customer
account
database

Tele-
processing

monitor

ATM

ATM

ATM

ATM

Chapter 17 Distributed software engineering 3820/11/2014

38

Thin and fat clients

² Distinction between thin and fat client architectures has 
become blurred.

² Javascript allows local processing in a browser so ‘fat-
client’ functionality available without software installation.

² Mobile apps carry out some local processing to minimize 
demands on network.

² Auto-update of apps reduces management problems.
² There are now very few thin-client applications with all 

processing carried out on remote server.

Chapter 17 Distributed software engineering 3920/11/2014

39

Multi-tier client-server architectures

² In a ‘multi-tier client–server’ architecture, the different 
layers of the system, namely presentation, data 
management, application processing, and database, are 
separate processes that may execute on different 
processors.

² This avoids problems with scalability and performance if 
a thin-client two-tier model is chosen, or problems of 
system management if a fat-client model is used. 

² In an internet banking system, the customer database is 
hosted on a mainframe computer, a web server provides 
data management services, and the customer’s own 
computer with a browser is the client.

Chapter 17 Distributed software engineering 4020/11/2014

40

Three-tier architecture for an Internet banking 
system

Database server

Customer
account
database

Web serverClient

Client

Account service
provision

SQL
SQL query

HTTPS interaction

Client

Client

Tier 1. Presentation

Tier 2. Application
processing and data

management

Tier 3. Database
processing

Chapter 17 Distributed software engineering 4120/11/2014

41

Use of client–server architectural patterns

Architecture Applications

Two-tier client–server 
architecture with thin clients

Legacy system applications that are used when
separating application processing and data management
is impractical. Clients may access these as services, as
discussed in Section 18.4.
Computationally intensive applications such as compilers
with little or no data management.
Data-intensive applications (browsing and querying) with
non-intensive application processing. Browsing the Web is
the most common example of a situation where this
architecture is used.

Chapter 17 Distributed software engineering 4220/11/2014

42



3/15/22

8

Use of client–server architectural patterns

Architecture Applications

Two-tier client-server 
architecture with fat clients

Applications where application processing is provided by
off-the-shelf software (e.g., Microsoft Excel) on the client.
Applications where computationally intensive processing
of data (e.g., data visualization) is required.
Mobile applications where internet connectivity cannot be
guaranteed. Some local processing using cached
information from the database is therefore possible.

Multi-tier client–server 
architecture

Large-scale applications with hundreds or thousands of
clients.
Applications where both the data and the application are
volatile.
Applications where data from multiple sources are
integrated.

Chapter 17 Distributed software engineering 4320/11/2014

43

Distributed component architectures

² There is no distinction in a distributed component 
architecture between clients and servers.

² Each distributable entity is a component that provides 
services to other components and receives services from 
other components.

² Component communication is through a middleware 
system (such as CORBA, EJB or .NET), which manages 
component interactions, reconciles differences between 
types of parameters passed between components, and 
provides a set of common services that application 
components can use.

20/11/2014 Chapter 17 Distributed software engineering 44

44

A distributed component architecture 

Communication middleware

Client Client Client Client Client

Comp 1

Common
services

Comp 2

Common
services

Comp 4

Common
services

Comp 4

Common
services

Chapter 17 Distributed software engineering 4520/11/2014

45

Benefits of distributed component architecture

² It allows the system designer to delay decisions on 
where and how services should be provided. Service-
providing components may execute on any node of the 
network and there is no need to decide in advance 
whether a service is part of one specific layer or another.

² It is a very open system architecture that allows new 
resources to be added as required and without disruption 
to the existing system. 

² The system is flexible and scalable and new or 
replicated objects can be added as the load increases. 

² It is possible to reconfigure the system dynamically with 
objects migrating across the network as required. 

Chapter 17 Distributed software engineering 4620/11/2014

46

A distributed component architecture for a data 
mining system

Chapter 17 Distributed software engineering 47

Database 1

Database 2

Database 3

Integrator 1

Integrator 2

Visualizer

Display

Report gen.

Clients

20/11/2014

47

Disadvantages of distributed component 
architecture

² Distributed component architectures suffer from two 
major disadvantages:
§ They are more complex to design than client–server systems. 

Distributed component architectures are difficult for people to 
visualize and understand, as they are not to humans as intuitive 
as layer client-server systems are (CS systems often reflect the 
way people interact between themselves in requesting/receiving 
services).

§ Standardized middleware for distributed component systems has 
never been accepted by the community. Different vendors (Sun, 
Microsoft) have developed different, incompatible middleware. 

² As a result of these problems, service-oriented 
architectures are replacing distributed component 
architectures in many situations. 

Chapter 17 Distributed software engineering 4820/11/2014

48



3/15/22

9

Peer-to-peer architectures

² Peer to peer (p2p) systems are decentralised systems 
where computations may be carried out by any node in 
the network.

² The overall system is designed to take advantage of the 
computational power and storage of a large number of
networked computers.

² Most p2p systems have been personal systems but 
there is increasing business use of this technology.

² It contrasts with the client-server model in that it does not 
make any distinction between servers (providers of 
services) and clients (receivers of services).

20/11/2014 Chapter 17 Distributed software engineering 49

49

Peer-to-peer systems

² File sharing systems based on the BitTorrent protocol

² Messaging systems such as Jabber

² Payments systems – Bitcoin

² Databases – Freenet is a decentralized database

² Phone systems – Viber

² Computation systems - SETI@home

Chapter 17 Distributed software engineering 5020/11/2014

50

P2p architectural models

² The logical network architecture
§ Decentralized architectures. They are highly redundant and 

hence both fault-tolerant and tolerant to nodes disconnecting 
from the network. But many different nodes may process the 
same search and there is significant overhead in replicated peer 
communication.

§ Semi-centralized architectures. It involves a server (sometimes 
called a super-peer) that helps to establish contact between 
peers on the network or coordinate the results of a computation.

² Application architecture
§ The generic organization of components making up a p2p 

application.

² Focus here on network architectures
20/11/2014 Chapter 17 Distributed software engineering 51

51

A decentralized p2p architecture

Chapter 17 Distributed software engineering 52

n4

n2 n3

n6

n7

n10

n8

n12

n11
n13

n13

n9

n1 n5

20/11/2014

52

A semicentralized p2p architecture

n1

n6

n2

n3

n5

n4

Discovery server
(Super peer)

Chapter 17 Distributed software engineering 5320/11/2014

53

Use of p2p architecture

² When a system is computationally-intensive and it is 
possible to separate the processing required into a large 
number of independent computations (e.g. a drug cancer 
discovery program that analyses a huge number of 
molecules; each molecule can be considered separately 
without the need for the peers to communicate).

² When a system primarily involves the exchange of 
information between individual computers on a network 
and there is no need for this information to be centrally-
stored or managed (e.g. file sharing systems that allow 
peers to exchange local files such as music and video or 
phone systems that support voice and video). 

Chapter 17 Distributed software engineering 5420/11/2014

54



3/15/22

10

Security issues in p2p system

² Security concerns are the principal reason why p2p 
architectures are not widely used.

² The lack of central management means that malicious 
nodes can be set up to deliver spam and malware to 
other nodes in the network.

² P2P communications require careful setup to protect 
local information and if not done correctly, then this is 
exposed to other peers.

Chapter 17 Distributed software engineering 5520/11/2014

55

Software as a service

Chapter 17 Distributed software engineering 5620/11/2014

56

Software as a service

² Software as a service (SaaS) involves hosting the 
software remotely and providing access to it over the 
Internet.

² This contrasts with the typical client-server model, where 
the customer “owns” the software application and it is his 
responsibility to purchase and manage a server on which 
this application will run (either in a thin- or fat-client 
fashion).

² As an example, compare a client-server email 
application such as Outlook or Mac Mail with a SaaS 
email application such as Yahoo or Gmail.

Chapter 17 Distributed software engineering 5720/11/2014

57

Key elements of SaaS

² Software is deployed on a server (or more commonly a 
number of servers) and is accessed through a web 
browser. It is not deployed on a local PC.

² The software is owned and managed by a software 
provider, rather than the organizations using the 
software.

² Users may pay for the software according to the amount 
of use they make of it or through an annual or monthly 
subscription. Sometimes, the software is free for anyone 
to use but users must then agree to accept 
advertisements, which fund the software service.

Chapter 17 Distributed software engineering 5820/11/2014

58

SaaS and SOA

² Software as a service is a way of providing functionality 
on a remote server with client access through a web 
browser. The server maintains the user’s data and state 
during an interaction session. Transactions are usually 
long transactions e.g. editing a document. 

² Service-oriented architecture is an approach to 
structuring a software system as a set of separate, 
stateless services. These may be provided by multiple 
providers and may be distributed. Typically, transactions 
are short transactions where a service is called, does 
something then returns a result.

Chapter 17 Distributed software engineering 5920/11/2014

59

Implementation factors for SaaS

² Configurability How do you configure the software for the 
specific requirements of each organization?

² Multi-tenancy How do you present each user of the 
software with the impression that they are working with 
their own copy of the system while, at the same time, 
making efficient use of system resources? 

² Scalability How do you design the system so that it can 
be scaled to accommodate an unpredictably large 
number of users?

Chapter 17 Distributed software engineering 6020/11/2014

60



3/15/22

11

Configuration of a software system offered as a 
service

User 1 User 1User 2 User 3 User 4 User 5

Application service

Profile C1 Profile C2 Profile C3

Chapter 17 Distributed software engineering 6120/11/2014

61

Service configuration

² Branding, where users from each organization, are presented 
with an interface that reflects their own organization.

² Business rules and workflows, where each organization 
defines its own rules that govern the use of the service and its 
data.

² Database extensions, where each organization defines how 
the generic service data model is extended to meet its specific 
needs.

² Access control, where service customers create individual 
accounts for their staff and define the resources and functions 
that are accessible to each of their users.

Chapter 17 Distributed software engineering 6220/11/2014

62

Multi-tenancy

² Multi-tenancy is a situation in which many different users 
access the same system and the system architecture is 
defined to allow the efficient sharing of system 
resources. 

² It must appear to each user that they have the sole use 
of the system. 

² Multi-tenancy involves designing the system so that 
there is an absolute separation between the system 
functionality and the system data. 

Chapter 17 Distributed software engineering 6320/11/2014

63

A multitenant database

Tenant    Key       Name     Address

  234 C100     XYZ Corp   43, Anystreet, Sometown

  234 C110     BigCorp   2, Main St, Motown

  435 X234     J. Bowie   56, Mill St, Starville

  592 PP37     R. Burns   Alloway, Ayrshire

Chapter 17 Distributed software engineering 6420/11/2014

64

Scalability

² Develop applications where each component is implemented 
as a simple stateless service that may be run on any server.

² Design the system using asynchronous interaction so that the 
application does not have to wait for the result of an 
interaction (such as a read request). 

² Manage resources, such as network and database 
connections, as a pool so that no single server is likely to run 
out of resources.

² Design your database to allow fine-grain locking. That is, do 
not lock out whole records in the database when only part of a 
record is in use.

Chapter 17 Distributed software engineering 6520/11/2014

65

Key points

² The benefits of distributed systems are that they can be 
scaled to cope with increasing demand, can continue to 
provide user services if parts of the system fail, and they 
enable resources to be shared.

² Issues to be considered in the design of distributed systems 
include transparency, openness, scalability, security, quality of 
service and failure management.

² Client–server systems are structured into layers, with the 
presentation layer implemented on a client computer. Servers 
provide data management, application and database services.

² Client-server systems may have several tiers, with different 
layers of the system distributed to different computers. 

20/11/2014 Chapter 17 Distributed software engineering 66

66



3/15/22

12

Key points

² Architectural patterns for distributed systems include master-
slave architectures, two-tier and multi-tier client-server 
architectures, distributed component architectures and peer-
to-peer architectures.

² Distributed component systems require middleware to handle 
component communications and to allow components to be 
added to and removed from the system. 

² Peer-to-peer architectures are decentralized with no 
distinguished clients and servers. Computations can be 
distributed over many systems in different organizations.

² Software as a service is a way of deploying applications as 
thin client- server systems, where the client is a web browser. 

Chapter 17 Distributed software engineering 6720/11/2014

67


