
3/3/22

1

Chapter 16 - Component-based software
engineering

Chapter 16 Component-based software engineering 119/11/2014

1

Topics covered

² Components and component models

² CBSE processes

² Component composition

Chapter 16 Component-based software engineering 219/11/2014

2

Component-based development

² Component-based software engineering (CBSE) is an
approach to software development that relies on the
reuse of entities called ‘software components’.

² It emerged from the failure of object-oriented
development to support effective reuse. Single object
classes are too detailed and specific.

² Components are more abstract than object classes and
can be considered to be stand-alone service providers.
They can exist as stand-alone entities.

Chapter 16 Component-based software engineering 319/11/2014

3

CBSE essentials

² Independent components specified by their interfaces.
Clear separation between interfaces and implementation
that allows the latter to be substituted easily.

² Component standards that define interfaces to facilitate
component integration and are embodied in a
component model. They define how interfaces are
specified and components communicate.

² Middleware that provides support for component inter-
operability. Handles low-level issues efficiently, allowing
developers to focus on application-related problems.

² A development process that is geared to reuse.

Chapter 16 Component-based software engineering 419/11/2014

4

CBSE and design principles

² Apart from the benefits of reuse, CBSE is based on
sound software engineering design principles:
§ Components are independent so they do not interfere with each

other’s operation.
§ Component implementation details are hidden, so a

component’s implementation can be changed without affecting
the rest of the system.

§ Communication is through well-defined interfaces.
§ One component can be replaced by another component

providing additional or enhanced functionality, if its interface is
maintained.

§ Component infrastructures offer a range of standard services
that can be used in application systems. This reduces the
amount of new code that has to be developed.

Chapter 16 Component-based software engineering 519/11/2014

5

Component standards

² Standards need to be established so that components
can communicate with each other and inter-operate.

² Unfortunately, several competing component standards
were established:
§ Sun’s Enterprise Java Beans
§ Microsoft’s COM and .NET
§ CORBA’s CCM

² In practice, these multiple standards have hindered the
uptake of CBSE. It is impossible for components
developed using different approaches to work together.

Chapter 16 Component-based software engineering 619/11/2014

6

3/3/22

2

Service-oriented software engineering

² An executable service is a type of independent
component. It has a ‘provides’ interface but not a
‘requires’ interface.

² From the outset, services have been based around
standards so there are no problems in communicating
between services offered by different vendors.

² System performance may be slower with services but
this approach is replacing CBSE in many systems.

² Covered in Chapter 18.

Chapter 16 Component-based software engineering 719/11/2014

7

Components and component models

19/11/2014 Chapter 16 Component-based software engineering 8

8

Components

² Components provide a service without regard to where
the component is executing or its programming
language.
§ A component is an independent executable entity that can be

made up of one or more executable objects;
§ The component interface is published and all interactions are

through the published interface.

Chapter 16 Component-based software engineering 919/11/2014

9

Component definitions

² Councill and Heinmann:
§ A software component is a software element that conforms to a

component model and can be independently deployed and
composed without modification according to a composition
standard.

² Szyperski:
§ A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is
subject to composition by third-parties.

Chapter 16 Component-based software engineering 1019/11/2014

10

Component characteristics

Component
characteristic

Description

Composable For a component to be composable, all external interactions must
take place through publicly defined interfaces. In addition, it must
provide external access to information about itself, such as its
methods and attributes.

Deployable To be deployable, a component has to be self-contained. It must be
able to operate as a stand-alone entity on a component platform that
provides an implementation of the component model. This usually
means that the component is binary and does not have to be
compiled before it is deployed. If a component is implemented as a
service, it does not have to be deployed by a user of a component.
Rather, it is deployed by the service provider.

Chapter 16 Component-based software engineering 1119/11/2014

11

Component characteristics

Component
characteristic

Description

Documented Components have to be fully documented so that potential users can
decide whether or not the components meet their needs. The syntax
and, ideally, the semantics of all component interfaces should be
specified.

Independent A component should be independent—it should be possible to
compose and deploy it without having to use other specific
components. In situations where the component needs externally
provided services, these should be explicitly set out in a ‘requires’
interface specification.

Standardized Component standardization means that a component used in a CBSE
process has to conform to a standard component model. This model
may define component interfaces, component metadata,
documentation, composition, and deployment.

Chapter 16 Component-based software engineering 1219/11/2014

12

3/3/22

3

Component as a service provider

² The component is an independent, executable entity. It
does not have to be compiled before it is used with other
components.

² The services offered by a component are made available
through an interface and all component interactions take
place through that interface.

² The component interface is expressed in terms of
parameterized operations and its internal state is never
exposed.

Chapter 16 Component-based software engineering 1319/11/2014

13

Component interfaces

² Provides interface
§ Defines the services that are provided by the component to other

components.
§ This interface, essentially, is the component API. It defines the

methods that can be called by a user of the component.

² Requires interface
§ Defines the services that specifies what services must be made

available for the component to execute as specified.
§ This does not compromise the independence or deployability of

a component because the ‘requires’ interface does not define
how these services should be provided.

Chapter 16 Component-based software engineering 1419/11/2014

14

Component interfaces

Provides interfaceRequires interface

Component
Defines the services
that are needed and
should be provided
by other components

Defines the services
that are provided
by the component
to other components

Chapter 16 Component-based software engineering 15

Note UML notation. Ball and sockets can fit together.

19/11/2014

15

A model of a data collector component

Provides interfaceRequires interface

Data collector

addSensor
removeSensor
startSensor
stopSensor
testSensor

listAll
report
initialize

sensorManagement

sensorData

Chapter 16 Component-based software engineering 1619/11/2014

16

Component access

² Components are accessed using remote procedure calls
(RPCs).

² Each component has a unique identifier (usually a URL)
and can be referenced from any networked computer.

² The called component uses the same mechanism to
access the “required” components that are defined in its
interface.

² Therefore it can be called in a similar way as a
procedure or method running on a local computer.

19/11/2014 Chapter 16 Component-based software engineering 17

17

Component models

² A component model is a definition of standards for
component implementation, documentation and
deployment.

² Examples of component models:
§ EJB model (Enterprise Java Beans)
§ COM+ model (.NET model)
§ Corba Component Model

² The component model specifies how interfaces should
be defined and the elements that should be included in
an interface definition.

Chapter 16 Component-based software engineering 1819/11/2014

18

3/3/22

4

Basic elements of a component model

Component model

Interfaces Usage
information

Deployment
and use

Interface
definition

Specific
interfaces

Composition

Naming
convention

Meta-data
access

Customisation

Packaging

Documentation

Evolution
support

Chapter 16 Component-based software engineering 1919/11/2014

19

Elements of a component model: Interfaces

² Components are defined by specifying their interfaces.

² The component model specifies how the interfaces should be defined and
the elements, such as operation names, parameters and exceptions, which
should be included in the interface definition.

² The model should also specify the language used to define the component
interfaces.

² For web services, interface specification uses XML-based languages.
² EJB uses Java as the interface definition language.
² .NET uses Microsoft Common Intermediate Language (CIL).

² Some component models require specific interfaces that must be defined by
a component. These are used to compose the component with the
component model infrastructure, which provides standardized services such
as security and transaction management.

Chapter 16 Component-based software engineering 2019/11/2014

20

Elements of a component model: Usage

² In order for components to be distributed and accessed remotely, they need
to have a unique name or handle associated with them. This has to be
globally unique.

² For example, in EJB a hierarchical name is generated with the root based
on an Internet domain name. Services have a unique Uniform Resource
Identifier (URI).

² Component meta-data is data about the component itself, such as
information about its interfaces and attributes. The meta-data is important
because it allows users of the component to find out what services are
provided and required.

² Components are generic entities and when deployed they have to be
configured to fit into an application system. For example, you could
configure the Data collector component by defining the maximum
number of sensors in a sensor array. The component model may therefore
specify how the binary components can be customized for a particular
deployment environment.

Chapter 16 Component-based software engineering 2119/11/2014

21

Elements of a component model: Deployment

² The component model includes a specification of how components should
be packaged for deployment as independent, executable entities.

² Because components are independent entities, they have to be packaged
with all supporting software that is not provided by the component
infrastructure or is not defined in the “requires” interface.

² Deployment information includes information about the contents of a
package and its binary organization.

² Inevitably, as new requirements emerge, components will have to be
changed or replaced. The component model may therefore include rules
governing when and how component replacement is allowed.

² Finally, the component model may define the component documentation
that should be produced. This is used to find the component and to decide
whether it is appropriate.

Chapter 16 Component-based software engineering 2219/11/2014

22

Middleware support

² Component models are the basis for middleware that
provides support for executing components.

² Component model implementations provide:
§ Platform services that allow components written according to the

model to communicate in a distributed environment and which
are fundamental and must be available in all component-based
systems;

§ Support services that are standard type of application-
independent services (e.g. authentication) used by different
components, thus reducing component development costs and
potential component incompatibility can be avoided.

² To use services provided by a model, components are
deployed in a container. This is a set of interfaces used
to access the service implementations.

Chapter 16 Component-based software engineering 2319/11/2014

23

Middleware services defined in a component
model

Platform services

Addressing Interface
definition

Component
communications

Exception
management

Support services

Security

Transaction
management

Concurrency

Component
management

Persistence

Resource
management

Chapter 16 Component-based software engineering 2419/11/2014

24

3/3/22

5

CBSE processes

19/11/2014 Chapter 16 Component-based software engineering 25

25

CBSE processes

² CBSE processes are software processes that support
component-based software engineering
§ They take into account the possibilities of reuse and the different

process activities involved in developing and using reusable
components.

² Development for reuse
§ This process is concerned with developing components or

services that will be reused in other applications. It usually
involves generalizing existing components.

² Development with reuse
§ This process is the process of developing new applications using

existing components and services.

Chapter 16 Component-based software engineering 2619/11/2014

26

CBSE processes

Chapter 16 Component-based software engineering 2719/11/2014

CBSE for
reuse

CBSE with
reuse

Component
acquisition

Component
certification

Component
repository

CBSE processes

Specifier,
Designer,
Integrator,
Maintainer

Librarian,
Vendor,
Broker

Component
management

Librarian

Local or
external
certifier

External
source

Domain analyst,
Designer,
Implementor,
Maintainer,
Market analyst

27

Supporting processes

² Component acquisition is the process of acquiring
components for reuse or development into a reusable
component.
§ It may involve accessing locally- developed components or

services or finding these components from an external source.

² Component management is concerned with managing a
company’s reusable components, ensuring that they are
properly catalogued, stored and made available for
reuse.

² Component certification is the process of checking a
component and certifying that it meets its specification.

Chapter 16 Component-based software engineering 2819/11/2014

28

CBSE for reuse

² CBSE for reuse focuses on component development.

² Components developed for a specific application usually
have to be generalized to make them reusable.

² A component is most likely to be reusable if it is
associated with a stable domain abstraction (business
object).

² For example, in a hospital stable domain abstractions
are associated with the fundamental purpose - nurses,
patients, treatments, etc.

² Also, in a banking system stable domain abstractions are
accounts, account holders and statements.

Chapter 16 Component-based software engineering 2919/11/2014

29

Component development for reuse

² Components for reuse may be specially constructed by
generalising existing components.

² Component reusability
§ Should reflect stable domain abstractions;
§ Should hide state representation;
§ Should be as independent as possible;
§ Should publish exceptions through the component

interface.
² There is a trade-off between reusability and usability

§ The more general the interface, the greater the
reusability but it is then more complex and hence
less usable.

Chapter 16 Component-based software engineering 3019/11/2014

30

3/3/22

6

Changes for reusability

² Remove application-specific methods.

² Change names to make them general.

² Add methods to provide more complete functional
coverage.

² Make exception handling consistent for all methods.

² Add a configuration interface to allow the component to
be adapted to different situations of use.

² Integrate required components to reduce dependencies
and thus increase independence.

Chapter 16 Component-based software engineering 3119/11/2014

31

Exception handling

² Components should not handle exceptions themselves,
because each application will have its own requirements
for exception handling.
§ Rather, the component should define what exceptions can arise

and should publish these as part of the interface.

² In practice, however, there are two problems with this:
§ Publishing all exceptions leads to bloated interfaces that are

harder to understand. This may put off potential users of the
component.

§ The operation of the component may depend on local exception
handling, and changing this may have serious implications for
the functionality of the component.

Chapter 16 Component-based software engineering 3219/11/2014

32

Legacy system components

² Existing legacy systems that fulfil a useful business
function can be re-packaged as components for reuse.

² This involves writing a wrapper component that
implements provides and requires interfaces then
accesses the legacy system.

² Although costly, this can be much less expensive than
rewriting the legacy system.

Chapter 16 Component-based software engineering 3319/11/2014

33

Reusable components

² The development cost of reusable components may be
higher than the cost of specific equivalents. This extra
reusability enhancement cost should be an organization
rather than a project cost.

² Generic components may be less space-efficient and
may have longer execution times than their specific
equivalents.

Chapter 16 Component-based software engineering 3419/11/2014

34

Component management

² Component management involves deciding how to
classify the component so that it can be discovered,
making the component available either in a repository or
as a service, maintaining information about the use of
the component and keeping track of different component
versions.

² A company with a reuse program may carry out some
form of component certification before the component is
made available for reuse.
§ Certification means that someone apart from the developer

checks the quality of the component.

Chapter 16 Component-based software engineering 3519/11/2014

35

CBSE with reuse

² CBSE with reuse process has to find and integrate
reusable components.

² When reusing components, it is essential to make trade-
offs between ideal requirements and the services
actually provided by available components.

² This involves:
§ Developing outline requirements;
§ Searching for components then modifying requirements

according to available functionality;
§ Searching again to find if there are better components that meet

the revised requirements;
§ Composing components to create the system.

Chapter 16 Component-based software engineering 3619/11/2014

36

3/3/22

7

CBSE with reuse

Identify candidate
components

Outline
system

requirements

Modify
requirements

according to discovered
components

Architectural
design

Compose
components to
create system

Identify candidate
components

Chapter 16 Component-based software engineering 3719/11/2014

37

The component identification process

Component
selection

Component
search

Component
validation

Chapter 16 Component-based software engineering 3819/11/2014

38

Component identification issues

² Trust. You need to be able to trust the supplier of a
component. At best, an untrusted component may not
operate as advertised; at worst, it can breach your
security.

² Requirements. Different groups of components will
satisfy different requirements.

² Validation.
§ The component specification may not be detailed enough to

allow comprehensive tests to be developed.
§ Components may have unwanted functionality. How can you test

this will not interfere with your application?

Chapter 16 Component-based software engineering 3919/11/2014

39

Component validation

² Component validation involves developing a set of test
cases for a component (or, possibly, extending test
cases supplied with that component) and developing a
test harness to run component tests.
§ The major problem with component validation is that the

component specification may not be sufficiently detailed to allow
you to develop a complete set of component tests.

² As well as testing that a component for reuse does what
you require, you may also have to check that the
component does not include any malicious code or
functionality that you don’t need.

Chapter 16 Component-based software engineering 4019/11/2014

40

Ariane launcher failure – validation failure?

² In 1996, the 1st test flight of the Ariane 5 rocket ended in
disaster when the launcher went out of control 37
seconds after take off.

² The problem was due to a reused component from a
previous version of the launcher (the Inertial Navigation
System) that failed because assumptions made when
that component was developed did not hold for Ariane 5.

² The functionality that failed in this component was not
required in Ariane 5.

Chapter 16 Component-based software engineering 4119/11/2014

41

Component composition

19/11/2014 Chapter 16 Component-based software engineering 42

42

3/3/22

8

Component composition

² The process of assembling components to create a
system.

² Composition involves integrating components with each
other and with the component infrastructure.

² Normally you have to write ‘glue code’ to integrate
components.

Chapter 16 Component-based software engineering 4319/11/2014

43

Types of composition

² Sequential composition (1) where the composed
components are executed in sequence. This involves
composing the provides interfaces of each component.

² Hierarchical composition (2) where one component calls
on the services of another. The provides interface of one
component is composed with the requires interface of
another.

² Additive composition (3) where the interfaces of two
components are put together to create a new
component. Provides and requires interfaces of
integrated component is a combination of interfaces of
constituent components.

Chapter 16 Component-based software engineering 4419/11/2014

44

Types of component composition

Chapter 16 Component-based software engineering 4519/11/2014

(1)

A A

B B

A B

(2) (3)

45

Glue code

² Code that allows components to work together.

² If A and B are composed sequentially, then glue code
has to call A, collect its results then call B using these
results, transforming them into the format required by B.

² Glue code may be used to resolve interface
incompatibilities.

19/11/2014 Chapter 16 Component-based software engineering 46

46

Interface incompatibility

² Parameter incompatibility where operations have the
same name but are of different types.

² Operation incompatibility where the names of operations
in the composed interfaces are different.

² Operation incompleteness where the provides interface
of one component is a subset of the requires interface of
another or vice versa.

Chapter 16 Component-based software engineering 4719/11/2014

47

Components with incompatible interfaces

addressFinder

phoneDatabase (string command)
string location(string pn)

string owner (string pn)

string propertyType (string pn)

mapper

mapDB (string command)
displayMap (string postCode, scale)

printMap (string postCode, scale)

Chapter 16 Component-based software engineering 4819/11/2014

48

3/3/22

9

Adaptor components

² Address the problem of component incompatibility by
reconciling the interfaces of the components that are
composed.

² Different types of adaptor are required depending on the
type of composition.

² An addressFinder and a mapper component may be
composed through an adaptor that strips the postal code
from an address and passes this to the mapper
component.

Chapter 16 Component-based software engineering 4919/11/2014

49

Composition through an adaptor

² The component postCodeStripper is the adaptor that
facilitates the sequential composition of
addressFinder and mapper components.

Chapter 16 Component-based software engineering 5019/11/2014

50

An adaptor linking a data collector and a sensor

Data collector

addSensor
removeSensor
startSensor
stopSensor
testSensor

listAll
report
initialize

sensorManagement

sensorData

Adaptersensor

start

getdata

stop

Chapter 16 Component-based software engineering 5119/11/2014

51

Reconciling sensor and Data collector
components

² Here the adaptor reconciles the “requires” interface of
the data collector component with the “provides”
interface of the sensor component.

² To issue a collect command, Data collector sends
the message sensorData(“collect”).

² The adaptor parses the input string, identifies the
command (collect), and then calls Sensor.getdata
to collect the sensor value.

² It then returns the result (as character string) to the data
collector component.

² A separate adaptor can be used for each sensor device.
Chapter 16 Component-based software engineering 5219/11/2014

52

Photo library composition

Photo
Library

adaptor
Image

Manager

getImage

User
Interface

getCatalogEntry

addItem

retrieve

catEntry

Chapter 16 Component-based software engineering 5319/11/2014

53

Interface semantics

² You have to rely on component documentation to decide
if interfaces that are syntactically compatible are actually
compatible.

² Consider an interface for a PhotoLibrary component:

Chapter 16 Component-based software engineering 5419/11/2014

54

3/3/22

10

Photo Library documentation

Chapter 16 Component-based software engineering 55

“This method adds a photograph to the library and associates the
photograph identifier and catalogue descriptor with the photograph.”

“what happens if the photograph identifier is already associated with a
photograph in the library?”

“is the photograph descriptor associated with the catalogue entry as well
as the photograph i.e. if I delete the photograph, do I also delete the
catalogue information?”

19/11/2014

55

The Object Constraint Language

² The Object Constraint Language (OCL) has been
designed to define constraints that are associated with
UML models.

² It is based around the notion of pre and post condition
specification – common to many formal methods.

Chapter 16 Component-based software engineering 5619/11/2014

56

The OCL description of the Photo Library
interface

Chapter 16 Component-based software engineering 57

-- The context keyword names the component to which the conditions apply

context addItem

-- The preconditions specify what must be true before execution of addItem
pre: PhotoLibrary.libSize() > 0
PhotoLibrary.retrieve(pid) = null

-- The postconditions specify what is true after execution
post:libSize () = libSize()@pre + 1
PhotoLibrary.retrieve(pid) = p
PhotoLibrary.catEntry(pid) = photodesc

context delete

pre: PhotoLibrary.retrieve(pid) <> null ;

post: PhotoLibrary.retrieve(pid) = null
PhotoLibrary.catEntry(pid) = PhotoLibrary.catEntry(pid)@pre
PhotoLibrary.libSize() = libSize()@pre—1

19/11/2014

57

Photo library conditions

² As specified, the OCL associated with the Photo Library
component states that:
§ There must not be a photograph in the library with the same

identifier as the photograph to be entered;
§ The library must exist – assume that creating a library adds a

single item to it;
§ Each new entry increases the size of the library by 1;
§ If you retrieve using the same identifier then you get back the

photo that you added;
§ If you look up the catalogue using that identifier, then you get

back the catalogue entry that you made.
§ To delete an item, it must exist and after deletion the photo can

no longer be retrieved and the size of the library is reduced by 1.

Chapter 16 Component-based software engineering 5819/11/2014

58

Composition trade-offs

² When composing components, you may find conflicts
between functional and non-functional requirements, and
conflicts between the need for rapid delivery and system
evolution.

² You need to make decisions such as:
§ What composition of components is more effective for delivering

the functional requirements for the system?
§ What composition of components will make it easier to adapt the

composite component when its requirements change?
§ What will be the emergent properties of the composed system?

These properties include performance and dependability. You
can only assess these properties once the complete system is
implemented.

Chapter 16 Component-based software engineering 5919/11/2014

59

Data collection and report generation
components

(a) Data
collection

(b)

Data
management

Report
generator

Data
collection Data base

Report

Report

Chapter 16 Component-based software engineering 6019/11/2014

60

3/3/22

11

Difference between the two composition
approaches

² Potential conflict between adaptability and performance.
Composition (a) is more adaptable but composition (b) is likely to be
faster and more reliable.

² In composition (a), reporting and data management are separate, so
there is more flexibility for future change (e.g. the data management
system can be replaced or the reporting system can be replaced if
new types of reports are needed).

² In composition (b), the database component has built-in reporting
facilities (e.g. Microsoft Access). Data integrity rules that apply to the
database also apply to reports, so these reports will not be able to
combine data in incorrect ways. In composition (a), there are no
such constraints, so errors in reports can occur.

Chapter 16 Component-based software engineering 6119/11/2014

61

Composition principle

² In general, a good composition principle to follow is the
principle of separation of concerns.

² Design the system so that each component has a clearly
defined role.

² Ideally, component roles should not overlap.

² However, it may be cheaper to buy one multifunctional
component rather than two or three separate
components.

² Furthermore, dependability or performance penalties
may be incurred when multiple components are used.

Chapter 16 Component-based software engineering 6219/11/2014

62

Key points

² CBSE is a reuse-based approach to defining and
implementing loosely coupled components into systems.

² A component is a software unit whose functionality and
dependencies are completely defined by its interfaces.

² Components may be implemented as executable
elements included in a system or as external services.

² A component model defines a set of standards that
component providers and composers should follow.

² The key CBSE processes are CBSE for reuse and
CBSE with reuse.

Chapter 16 Component-based software engineering 6319/11/2014

63

Key points

² During the CBSE process, the processes of
requirements engineering and system design are
interleaved.

² Component composition is the process of ‘wiring’
components together to create a system.

² When composing reusable components, you normally
have to write adaptors to reconcile different component
interfaces.

² When choosing compositions, you have to consider
required functionality, non-functional requirements and
system evolution.

Chapter 16 Component-based software engineering 6419/11/2014

64

