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Review: Rendering Pipeline
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▪ We almost completed the rendering pipeline:

▪ Modeling transformations

▪ Viewing transformations

▪ Projection transformations

▪ Clipping

▪ Scan conversion

▪ Now we know everything about how to draw a 
polygon on the screen, except for determining 
the non-visible subjects, or else visible surface 
detection.



Visible Surface Determination and Back Face Culling

▪ Specifies the part of each object that is visible in the final image 
▪ Why are back face culling algorithms needed?

▪ Avoid creating incorrect images
▪ Speed up the creation of images

▪ We must determine what is visible within a scene from a chosen viewing position

▪ For 3D worlds this is known as visible surface detection or hidden surface elimination

To render or not to render, that is the question…
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Contents
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▪ Today we will deal with visible surface detection techniques:

▪ Why Surface Detection;

▪ Detect the back of the object

▪ Depth-buffer Method

▪ A-buffer Method

▪ Scan-line Method



Invisible entities
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▪ When would a polygon be invisible?

▪ Polygons that are outside the field of view

▪ If from the polygon we see its back (backfacing)

▪ If the polygon is hidden from another that is closer to the viewpoint

▪ As you can imagine, for performance reasons we do not want to deal with 
polygons that are invisible (outside field of view or backfacing)

▪ For rendering and proper visualization, we need to know if a polygon is hidden 
from another object.



Visible Surface Detection
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There are many algorithms and techniques that have been developed from time 
to time to solve visible surface detection

▪ Some methods require more processing time.

▪ Some methods require more memory.

▪ Others can only be applied to specific data types



Two Main Approaches
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▪ Visible surface detection algorithms are broadly classified as:

▪ Object Space Methods: Compares objects and parts of objects to each other within 
the scene definition to determine which surfaces are visible

▪ Image Space Methods: Visibility is decided point-by-point at each pixel position on 
the projection plane

▪ Image space methods are by far the more common



Back-Face Detection
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▪ We assume that our objects are solid

▪ Each polygon has "back and forth", depending on the order of its edges 

▪ The simplest thing we can do is to find the faces on the back of the polyhedron 
and discard them

▪ Polygons whose slash does not look towards the camera are not rendered 

Pi



Back-Face Detection
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▪ We know from before that a point (x, y, z) is behind a polygon surface if: 

▪ where A, B, C & D are the plane parameters for the surface

▪ This can actually be made even easier if we organise things to suit ourselves

0+++ DCzByAx



Back-Face Detection
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▪ Ensure we have a right handed system with the viewing direction along the 

negative z-axis

▪ Now we can simply say that if the z component of the polygon’s normal is less 
than zero the surface cannot be seen



Back-Face Detection
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▪ We can simplify this method if we assume that the vertical vector N on the 
surface of the polygon has the Cartesian values (A,B,C).

▪ If V is a vector in the direction of projection, then the polygon is a back surface 
and it is not visible if V●N > 0.



Back-Face Detection
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▪ In general back-face detection can be expected to eliminate about half of the 
polygon surfaces in a scene from further visibility tests

▪ More complicated surfaces though scupper us!

▪ We need better techniques to handle these kind of situations



Back-Face Detection
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▪ On the surface of polygons whose vertical vectors point away from the camera 
are always invisible:

Note: backface detection
alone doesn’t solve the

hidden-surface problem!



Backface culling assumes objects are closed

No Backface culling With Backface culling

A triangle facing away from you is only guaranteed to be invisible if there’s something else in front of.
This is only guaranteed for closed, solid objects (e.g. a sphere)
Objects with ‘holes’ may expose back-facing triangles to the viewer; backface culling results in errors 
(see skulls on right)

https://en.wikipedia.org/wiki/Back-face_culling
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https://en.wikipedia.org/wiki/Back-face_culling


Back-Face Detection
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▪ Most objects on stage are usually "solid" and non-transparent!

▪ What happens if it's not?



Depth-Buffer Methods
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▪ Compares surface depth values throughout a scene for each pixel position on 
the projection plane

▪ Usually applied to scenes only containing polygons

▪ As depth values can be computed easily, this tends to be very fast

▪ Also often called the z-buffer method



Depth-Buffer Methods
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• Each surface is processed separately, one
point at a time along the surface

• The S1 surface is closer to the projection
plane, so (x,y) displays the value of the
object S1.



Depth-Buffer Algorithm
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1. Initialise the depth buffer and frame buffer so that for all buffer positions (x, y)

depthBuff(x, y) = 1.0

frameBuff(x, y) = bgColour



Depth-Buffer Algorithm
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2. Process each polygon in a scene, one at a time

▪ For each projected (x, y) pixel position of a polygon, calculate the depth z (if 
not already known)

▪ If z < depthBuff(x, y), compute the surface colour at that position and set

depthBuff(x, y) = z

frameBuff(x, y) = surfColour(x, y)

After all surfaces are processed depthBuff and frameBuff will store correct values



Depth-Buffer Algorithm
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void zBuffer() {

int x, y;

for (y = 0; y < YMAX; y++)

for (x = 0; x < XMAX; x++) {

WritePixel (x, y, BACKGROUND_VALUE);

WriteZ (x, y, 1);

}

for each polygon {

for each pixel in polygon’s projection {

//plane equation

double pz = Z-value at pixel (x, y);
if (pz <= ReadZ (x, y)) {

// New point is closer to front of view

WritePixel (x, y, color at pixel (x, y))

WriteZ (x, y, pz);

}

}

}

}
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Depth-Buffer Algorithm
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integer Z-buffer with 
near = 0, far = 255

+ =

+ =



Iterative Calculations
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▪ The depth-buffer algorithm proceeds by starting at the top vertex of the polygon

▪ Then we recursively calculate the x-coordinate values down a left edge of the 
polygon

▪ The x value for the beginning position on each scan line can be calculated from the 
previous one

▪ Depth values along the edge being considered are calculated using
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Iterative Calculations
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Z-Fighting
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▪ Z-fighting occurs when two primitives have similar values in the z-buffer

Two intersecting cubes



A-Buffer Method

EPL426 | Computer Graphics

▪ The A-buffer method is an extension of the depth-buffer method

▪ The A-buffer method is visibility detection method developed at Lucasfilm 
Studios for the rendering system REYES (Renders Everything You Ever Saw)



A-Buffer Method
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▪ The A-buffer expands on the depth buffer method to allow transparencies

▪ The key data structure in the A-buffer is the accumulation buffer



A-Buffer Method
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▪ If depth is >= 0, then the surface data field stores the depth of that pixel 
position as before

▪ If depth < 0 then the data filed stores a pointer to a linked list of surface data



A-Buffer Method
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▪ Surface information in the A-buffer includes:
▪ RGB intensity components
▪ Opacity parameter
▪ Depth
▪ Percent of area coverage
▪ Surface identifier
▪ Other surface rendering parameters

▪ The algorithm proceeds just like the depth buffer algorithm

▪ The depth and opacity values are used to determine the final colour of a pixel



Painter’s Algorithm
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Deadpool © Twentieth Century Fox, Marvel Entertainment



Scan-Line Method
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▪ An image space method for identifying visible surfaces 

▪ Computes and compares depth values along the various scan-lines for a scene



Depth-Sorting Method (Painter’s Algorithm)
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Visibility (Priority) Ordering
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▪ You would draw the P1 after P2 to see the correct result (Painters Algorithm)

◼ Given a set of S polygons and a viewpoint C, find a series of {P1…Pn} at S such that 
any Pi polygon does not hide any of the polygons  {Pi+1…Pn}. 

◼ Another way to think about it: for every 2 polygons intersected by a ray through the C, 
Pi ; has a higher priority than Pj, (with i < j) 
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Depth-Sorting Algorithm (Painter’s Algorithm)
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▪ Simple approach: Deliver the polygons from back to front, "painting above" 
from the previous polygons:

▪



Depth-Sorting Algorithm (Painter’s Algorithm)
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Depth-Sorting Algorithm (Painter’s Algorithm)
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Principle of the painter's algorithm

▪ Sort objects (or polygons) from the back to the front 

▪ To get the final picture: we draw them in this order which allows the last (nearest) to be painted above 
(overwrite) the previous ones (further away)

▪

▪ It is a hybrid approach as the first step, the sorting, is in the object space and the second in 
the image space

▪ The hardest part is sorting 
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Z-sort at Projection Space

▪ Simple back-to-front sorting of all polygons based on their center
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Z-sort at Projection Space
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▪ It doesn't always work, e.g.

▪



Scan-Line Method Limitations
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▪ The scan-line method runs into trouble when surfaces cut through each other 
or otherwise cyclically overlap

▪ Such surfaces need to be divided



Scan-Line Method Limitations
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▪ The Intersecting polygons also present a problem

▪ Even non-intersecting polygons can form a circle without a valid order of 
visibility:

▪



Analytic Visibility Algorithms
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▪ Early visibility algorithms calculate the set of visible parts of the polygon 
directly, and then present the individual segments on a monitor:



Analytic Visibility Algorithms
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▪ What is the minimum worst-case cost of computing the fragments for a scene 
composed of n polygons?

▪ Answer: 
O(n2)



Summary
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▪ We need to make sure that we only draw visible surfaces when rendering 
scenes

▪ There are a number of techniques for doing this such as
▪ Back face detection
▪ Depth-buffer method
▪ A-buffer method
▪ Scan-line method

▪ Next time we will look at some more techniques and think about which 
techniques are suitable for which situations 


