Computer Graphics
Scan Conversion - rasterization

Andreas Aristidou
andarist@ucy.ac.cy
http://www.andreasaristidou.com

What is line scan conversion

This is the last stage of rasterization (the process in which geometric elements
are converted to tables by pixels and stored in the framebuffer to be viewed)

It follows clipping
All graphics packages scan at the end of the rendering pipeline
Triangles (or higher complexity polygons) are converted to pixels

For 3D rendering, we take into account other processes, such as lighting and
shading, but we will focus first on algorithms for

2 EPL426 | Computer Graphics

Line drawing algorithms

+ + 4+ + + + + 4+ o+ o+

+ + 4+ + o+ + o+

3 EPL426 | Computer Graphics

The Problem Of Scan Conversion

= Aline segmentin a scene is defined by the coordinate positions of the line end-
points

(7, 5)

(2, 2)

4 EPL426 | Computer Graphics

The Problem Of Scan Conversion

= But what happens when we try to draw this on a pixel based display?

HOG
00

Yotel
4
4

OO

OO
ifole
QOC
4%®

OO
¢
OO
o+o

How do we choose which pixels to turn on?

EPL426 | Computer Graphics

5

Considerations

= Considerations to keep in mind:
The line has to look good
Avoid jaggies
It has to be lightening fast!

How many lines need to be drawn in a typical scene?
This is going to come back to bite us again and again

EPL426 | Computer Graphics

Line Equations

= Let’s quickly review the equations involved in drawing lines

y 1
y=m-X+Db
m — yend_yo
Xend_XO

" b:yo_m'xo

7 EPL426 | Computer Graphics

Lines & Slopes

= The slope of a line (M) is defined by its start and end coordinates

= The diagram below shows some examples of lines and their slopes

m = oo
m=-4 * m=4
m=-2 m=2
m = -1 m=1
m:-]-/2 m=1/2
m=0-¢ em=0

8 EPL426 | Computer Graphics

A Very Simple Solution

= We could simply work out the corresponding Y coordinate for each unit X
coordinate

Let’s consider the following example:
y A

(7, 5)

(2, 2)

9 EPL426 | Computer Graphics

A Very Simple Solution

= First work outmandb : m _5-2_3
y (7, 5) (-2 5
@)
H @) b:2_§>l<2:ﬂ
. 5
(2,2)
X

= Now for each X value work out the y value:

3 4 _3 3 4 _1 3 4 3 2
)="3+—=2= yA==-4+—-—=3= Y(O)==-5+=-=3=- y(6)==-6+-=4—
V@)= 3t5=25 Y=g g3 5775 5 5

10 EPL426 | Computer Graphics

A Very Simple Solution

= Now just round off the results and turn on these pixels to draw our line

™ ™ < <
Q 2 2 Q
MW WO <. N[0
o\ ™ o™ <t
I |l I |l
™ S 1) ©
N’ N’ N’ N’
> > > >

S
HELIPLA)
OOOOOOO0-
OIS o

N O N < o N+ O

11 EPL426 | Computer Graphics

A Very Simple Solution
= However, this approach is just way too slow
= In particular look out for:

The equation Y = MX + b requires the multiplication of M by X

Rounding off the resulting Y coordinates

= We need a faster solution

12 EPL426 | Computer Graphics

A Quick Note About Slopes

= In the previous example we chose to solve the parametric line equation to give
us the y coordinate for each unit X coordinate

= What if we had done it the other way around?
y—Db
m

= So this givesus: X =

Yenda — Yo
X nd XO

e

= where: M= and b=y,—m-X,

13 EPL426 | Computer Graphics

14

A Quick Note About Slopes

= Leaving out the details this gives us:

= We can see easily that this line
doesn’t look very good!

= We choose which way to work out
the line pixels based on the slope of
the line

EPL426 | Computer Graphics

2
X(3)=3=~4
(3) =33

O - N W & U1 O

A Quick Note About Slopes

= If the slope of a line is between -1 and 1 then we work out the y coordinates for
a line based on it’s unit X coordinates

= Otherwise we do the opposite — X coordinates are computed based on unity
coordinates

m = oo
m=-4 ? m=4
m = -2 m=2
m=-1 m=1
m = -1/, m=1/,
m=0° ‘m=0

15 EPL426 | Computer Graphics

The DDA Algorithm

= The digital differential analyzer (DDA) algorithm takes an incremental approach
in order to speed up scan conversion

= Simply calculate Y|, 1 based on Y

16 EPL426 | Computer Graphics

The DDA Algorithm

Consider the list of points that we determined for the line in our previous
example:

(2' 2)' (3' 23/5)1 (41 31/5)1 (5) 34/5)1 (61 42/5)1 (71 5)

Notice that as the X coordinates go up by one, the y coordinates simply go up
by the slope of the line

This is the key insight in the DDA algorithm

17 EPL426 | Computer Graphics

18

The DDA Algorithm

When the slope of the line is between -1 and 1 begin at the first point in the
line and, by incrementing the X coordinate by 1, calculate the corresponding y

coordinates as follows:
yk+1 — yk +M

When the slope is outside these limits, increment the y coordinate by 1 and
calculate the corresponding X coordinates as follows:

X —X+1
k+1 — Nk T
T m

EPL426 | Computer Graphics

The DDA Algorithm

= Again the values calculated by the equations used by the DDA algorithm must
be rounded to match pixel values

)
o/
()
-/
'
-/

2\ 2 2\
(N N /

)))
O

(X, +1, rou nd(;ik+m))

19 EPL426 | Computer Graphics

The DDA Algorithm

The DDA algorithm is much faster than our previous attempt
In particular, there are no longer any multiplications involved

However, there are still two big issues:
Accumulation of round-off errors can make the pixelated line drift away from what was intended
The rounding operations and floating point arithmetic involved are time consuming

void Line(int x@, int y@, int x1, int yl) {
int X, VY;

float dy = yl - yo;
float m = dy / dx;
y = Y0;

for (x = x0; x < x1; ++x) {
WritePixel(x, Round(y));4———”””’—”’—”

y =y +m;

20 EPL426 | Computer Graphics

The Bresenham Line Algorithm

= The Bresenham algorithm is another incremental scan conversion algorithm
= The big advantage of this algorithm is that it uses only integer calculations

21 EPL426 | Computer Graphics

The Big Idea

Move across the X axis in unit intervals and at each step choose between two
different y coordinates

5 /L)))
SO)
(Xk+1’ yk+l)
. A N A For example, from position
i N (2, 3) we have to choose
(X yk)\f\ L BN between (3, 3) and (3, 4)
3 —O) : : :
g \/\(X +If/y) b We would like the point that is
AL “ /J\ “ S closer to the original line
2 W, W, T W,
2 3 4 5

22 EPL426 | Computer Graphics

The Bresenham Line Algorithm

= At sample position Xk+1 the vertical separations from the mathematical line

are labelled dupper and dlower

dupper{
}dlower

The y coordinate on the mathematical line at X, +1 is:

y=m(x, +1)+b

23 EPL426 | Computer Graphics

The Bresenham Line Algorithm

= So, dupper and dlower are given as follows : dIOWer =Y—-Y

=m(x, +1)+b-y,

= and: dupper — (yk +1) -y
=Yy, +1-m(x, +1)—-b

= We can use these to make a simple decision about which pixel is closer to the
mathematical line

24 EPL426 | Computer Graphics

25

The Bresenham Line Algorithm

This simple decision is based on the difference between the two pixel positions:

d d,...=2m(x +1) -2y +2b-1

lower “upper

Let’s substitute M with AY/AX where AX and AY are the differences between
the end-points :

Ax(d) = Ax(2 (xk+1) 2y, +2b-1)

lower upper
=2AYy- X, —2AX Y, +2Ay + Ax(2b-1)

=2Ay-X, —2AX-y, +C

EPL426 | Computer Graphics

The Bresenham Line Algorithm

So, a decision parameter P, for the Kth step along a line is given by:

= Ax(d
=2Ay-X, —2AX-y, +C

lower upper)

The sign of the decision parameter P, is the same as that of dlower - duppef

It Py is negative, then we choose the lower pixel, otherwise we choose the
upper pixel

26 EPL426 | Computer Graphics

The Bresenham Line Algorithm

Remember coordinate changes occur along the X axis in unit steps so we can
do everything with integer calculations

At step K+1 the decision parameter is given as:

P = 2Ay RN 2AX - Yk tC

Subtracting P, from this we get:

Pt — P = 28 (X1 — %) = 2AX(Yi1 — Vi)

27 EPL426 | Computer Graphics

The Bresenham Line Algorithm

= But, X, .1 is the same as X, +1 so:

Pt = Py +2AY —2AX(Yq — Vi)

= whereY, 1 - Y| is either 0 or 1 depending on the sign of P,
= The first decision parameter p0 is evaluated at (x0, y0) is given as:

P, = 2Ay — AX

28 EPL426 | Computer Graphics

The Bresenham Line Algorithm

29 EPL426 | Computer Graphics

The Bresenham Line Algorithm

= Note! The algorithm and derivation above assumes slopes are less than 1. for
other slopes we need to adjust the algorithm slightly

30 EPL426 | Computer Graphics

Bresenham Example

Let’s have a go at this
Let’s plot the line from (20, 10) to (30, 18)
First off calculate all of the constants:

AX: 10
AY: 8
2AY: 16
2AY - 2AX: -4
Calculate the initial decision parameter y:
PO =2Ay — AX=6

31 EPL426 | Computer Graphics

Bresenham Example

- OOOOC
%
Nelelole'e
Nelelolele
Nelolelo's
IO
- +‘ ’*.‘

32 EPL426 | Computer Graphics

+’+‘+’+:+f;

IS

50

40

Relslolellelele's

4
N
Wg'slelele
reeee

© 0O N oo o A W N B+ O ~

Bresenham Example

= Use the Bresenham algorithm for the line that starts and ends at points (21.12)
and (29.16) respectively

33 EPL426 | Computer Graphics

Napadewypa vAomoinonc tov aAyopiOpov Bresenham

+OOOOOOOOOOE
Rooleloeleloleelele
IO
NeleleleleleleZ 0'%le
HeloleloeZ06elele
Nelojezel0elel0/sle
QIQOTOOO0IOC
Nelolelolelele/e/elele
Nelelelsle'eleele's'e

>~

pk (Xk+11yk+1)

coO N OO 0o A W N +» O

34 EPL426 | Computer Graphics

Circle design algorithms

0, 17) (0, 17)

L ldd RN
(17,0) (17,0)

35 EPL426 | Computer Graphics

A Simple Circle Drawing Algorithm

= The equation for a circle is:

= where I is the radius of the circle

= So, we can write a simple circle drawing algorithm by solving the equation for Y
at unit X intervals using:

V=42 — X2

36 EPL426 | Computer Graphics

37

A Simple Circle Drawing Algorithm

TLLLILIOLITIITIIPLILILIY
G & B B BB T AEES
TS *,ggpoooqggpoooooo
TLLILTRRILLIILLIQOLIITILY
SESILCOIIISPECCIDIIL O
L B 8 B BB B I DB BEOSEEEL
0SB S ST ED LS TS LS LA
TLLTLILILIIIAIRILLITLIRY
S OO OBEOOOAEEIRBEIEEO S
TLILLIQITLPPITLIRLLTLLLYQ
TLILILILOITOLPLIRITLILY
TLITLTLIIQITLITIRLLLIIIY
TLLLITIPILIOIPIPIRILILY
TLILILIPILIOLLLPPTOIITIY
QLILILIOITLLILILIRLTLY
FLLLITLIIRLITLIIIRLIILIYY
TLLLTLIPTLIOIPOP IR IS
0 O DB KON OO DOD OO
PLILITLIOLITLIOIP LIPS
TLILILILIIITLILIRLIIITRS
TLILITIPILIPLTLIT LIRS
TLTLILIPTLLLLILITITLTIOS

EPL426 | Computer Graphics

—/202-0? ~ 20

— 202 -12 ~ 20

— 202 -22 ~ 20

—/202-192 ~ 6

—/202-20% ~ 0

38

A Simple Circle Drawing Algorithm

However, unsurprisingly this is not a brilliant solution!

Firstly, the resulting circle has large gaps where the slope approaches the
vertical

Secondly, the calculations are not very efficient

The square (multiply) operations
The square root operation — try really hard to avoid these!

We need a more efficient, more accurate solution

EPL426 | Computer Graphics

Eight-Way Symmetry

= The first thing we can notice to make our circle drawing algorithm more
efficient is that circles centred at (0, 0) have eight-way symmetry

N o

(_X1 _y) l (X’ _y)

39 EPL426 | Computer Graphics

Mid-Point Circle Algorithm

Similarly to the case with lines, there is an incremental algorithm for drawing
circles — the

In the mid-point circle algorithm we use eight-way symmetry so only ever
calculate the points for the top right eighth of a circle, and then use symmetry

to get the rest of the points

40 EPL426 | Computer Graphics

Mid-Point Circle Algorithm

= Assume that we have just plotted point

(X Vi)

= The next point is a choice between
(Xc*+1, yy) and (% +1, y,-1)

= We would like to choose the point that is
nearest to the actual circle

= So how do we make this choice?

()
-/
()
-/
()
-/
)
-/

41 EPL426 | Compu

Mid-Point Circle Algorithm

Let’s re-jig the equation of the circle slightly to give us:

1:circ (X1 y) =X + y2 —r’

The equation evaluates as follows:
(<0, if (x,y) is inside the circle boundary
f..(X,y)s=0, if (x,y) is on the circle boundary

>0, if (x,y) is outside the circle boundary

By evaluating this function at the midpoint between the candidate pixels we
can make our decision

42 EPL426 | Computer Graphics

Mid-Point Circle Algorithm

Assuming we have just plotted the pixel at (X,Y,) so we need to choose
between (X, +1,y,) and (X, +1,y,-1)
Our decision variable can be defined as: Px = feire (X +1, Yy _%)

= (% +D)7+(y, -) -1’

If P < 0 the midpoint is inside the circle and and the pixel at Y, is closer to the
circle

Otherwise the midpoint is outside and Y, -1 is closer

43 EPL426 | Computer Graphics

Mid-Point Circle Algorithm

To ensure things are as efficient as possible we can do all of our calculations
incrementally

First consider:

Pees = Teire (Xk+1 +1, Y — %)
=[(x +D)+1]" + (yk+1 _%)2 —r°

or:

Ps = P + 2% +D + Viess = ¥i) = Vi = Vi) +1
where Y, is either Y, or Y,-1 depending on the sign of P,

44 EPL426 | Computer Graphics

45

Mid-Point Circle Algorithm

= The first decision variable is given as: Po = fcirc (L r— %)

:1+(r—}é)2 —r°
_5/ _
Y-
= Then if P, < 0 then the next decision variable is given as:
Prs = P + 2%, +1
= If P, > 0 then the decision variable is:

Py = Py +2X|<+1 +1_ZYk +1

EPL426 | Computer Graphics

Mid-Point Circle Algorithm

46 EPL426 | Computer Graphics

The Mid-Point Circle Algorithm

47 EPL426 | Computer Graphics

Mid-Point Circle Algorithm Example

= To see the mid-point circle algorithm in action lets use it to draw a circle
centred at (0,0) with radius 10

48 EPL426 | Computer Graphics

49

10
9

S D

NI
NIl
ST

0

SR R R R R
208500

EPL426 | Computer Graphics

Mid-Point Circle Algorithm Example

RRRIIHIAT

Pk

(Xr1:Yie1) | 2X

e

I CIAIELC

HEHICHIEINAII
OOOOO a*:}g\?o*o

Sele'e

Reelsielelelelolelel
@

S

o 1 2 3 4 5 6 7 8 9 10

o o0 &~ W DN BB O X

Mid-Point Circle Algorithm Exercise

= Use the mid-point circle algorithm to draw the circle centred at (0,0) with
radius 15

50 EPL426 | Computer Graphics

Mid-Point Circle Algorithm Exercise

0
¢$
‘4
O
s
HC
26
O
ele
ole
e'e
Q@
OC
O
ele
S
oS

Pk | Kex1:Yis1)

11 - OIS

X K S S S
Bl it iananisis
oleleleelele e eeleeevee
8 N
7 OIS
SIS YIS
6 \
5 -CYCICIIIIIIIISIIIIIDE
OIS
4

.§§++§*§+‘§+§§*+‘§4“
3 OIS
2 O IIIISIIIIK
1@5@&@@@@@@@&@@@@}
9500000000000 00000

© 00 N O O A W N P+, O

[HEY
o

=
=

=
N

/
51 EPL426 | ComppieqGraphxsg 5 6 7 8 9 101112 13141516

Mid-Point Circle Algorithm Summary

= The key insights in the mid-point circle algorithm are:
Eight-way symmetry can hugely reduce the work in drawing a circle

Moving in unit steps along the x axis at each point along the circle’s edge we need
to choose between two possible y coordinates

52 EPL426 | Computer Graphics

Midpoint Eighth Circle Algorithm

MidpointEighthCircle(R) { /* 1/8th of a circle w/ radius R */
int x = 0, y = R;
int deltakE = 2 ¥ X + 3;
int deltaSE = 2 * (x - y) + 5;
float decision = (x + 1) * (x + 1) + (y - ©6.5) * (y - ©0.5) - R*R;
WritePixel(x, y);

while (y > x) {
if (decision > ©) { // Move East
X++; WritePixel(x, y);
decision += deltakE;
deltaE += 2; deltaSE += 2; // Update deltas
} else { // Move SouthEast
y--3 X++; WritePixel(x, y);
decision += deltaSE;
deltaE += 2; deltaSE += 4; // Update deltas

53 EPL426 | Computer Graphics

Other Scan-conversion Problems

Aligned Ellipses ©

.
\;
|

J

Non-integer primitives S— —

General conics

Patterned primitives

54 EPL426 | Computer Graphics

Spline Representations

4 L4
15k Fry
k- F1
P o oasl
. F1e
14 15)-
ash - asl-
af- b
- [F 3 5 6 T s 4 [P 5 5 & T

55 EPL426 | Computer Graphics

Spline Representations

= A spline is mathematically defined by
using a set of constraints
= Curves have many uses:
= 2D illustration
= Fonts
= 3D Modelling
= Animation

56 EPL426 | Computer Graphics

He & H. Qin, Solid and
Physics Modeling 2005.

“Manifold Splines”, X. Gu, Y.

ACM © 1987 “Principles of
traditional animation applied
to 3D computer animation”

The basic idea

= The user specifies the control points
= A smooth curve is defined

PN
NS

57 EPL426 | Computer Graphics

Interpolation Vs Approximation

= The curve is defined by a set of control points

= There are 2 ways to define the curve based on
these points

Interpolation - the curve passes through all the
control points

Approximation - the curve does not pass through
all control points

58 EPL426 | Computer Graphics

Convex Hulls

= The boundary formed by the set of control points for a curve are known as
convex hull

oP:

po\/\p3 po_pp

oDy

P

59 EPL426 | Computer Graphics

Bézier Spline Curves

The most famous method is the one implemented by the engineer Pierre
Bézier for the design of Renault cars

A Bézier curve can be applied to any number of points, although 4 are usually
used

Let's n+1 points p,.=(X, Y, Z,) where K is between 0 and n

The coordinates of the path of the curve from the vector p, to p,is given by the
equation

BEZ, ,(u) =C(n,k)u*(@—u)"™

P(u)=> pBEZ,,(u), O<ux<l o
k=0 -

~ KI(n—K)!

C(n,k)

binomial coefficients

60 EPL426 | Computer Graphics

Bézier Spline Curves

P P>

r

Bezier splines are widely used
(Adobe, Microsoft) for font definition

61 EPL426 | Computer Graphics

Bézier Spline Curves

= Why in graphics we do not prefer the use of curves, either from simple shapes
(circle), or from complex shapes (Bezier curves)?

62 EPL426 | Computer Graphics

Polygons

63 EPL426 | Computer Graphics

Scan-Line Polygon Fill Algorithm

= So we can figure out how to draw lines and circles
= How do we go about drawing polygons?
= We use an incremental algorithm known as the

(or rasterization) is the task of taking an image described in a vector
graphics format (shapes) and converting it into a raster image (pixels or dots)

__

64 EPL426 | Computer Graphics

2D Scan Conversion

= Primitives are continuous — the screen is discrete

+ |+ |+ + | +
+ |+ |+ + | +
+ |+ |+ + | +
+ |+ |+ + | +
+ |+ |+ + |+
+ |+ |+ + |+
+ |+ |+ + | +
+ |+ |+ + | +
+ |+ |+ + | +
+ |+ |+ + | +
+ |+ |+ + | +
+ |+ |+ |+ |+ |+ |+ +|+|+|+]|+]|+]+]|+]|+]+]+
+ |+ |+ |+ |+ |+ |+ +|+|+|+]|+]|+]+]|+]|+]+]+

EPL426 | Computer Graphics

2D Scan Conversion

= Solution: calculate discretely with approximation

= Scanning: the algorithms for efficient sample creation include this approach

+ |+ +]+]+

+ |+ +]+

+ |+ |+ |+ +]+

+ |+ |+ +]|+ +]+

+ |+ +]+

+ |+ |+ +|+]+

+ |+]|+ |+ +]|+ +]+

+ 22|+ |+ |+]|+ +]|+]+

+ |+ |+ |+ |+ |+ +]+]+|H]]|+

+ |+ |+ |+ |+ |+ |+ |+ |+ +]+|+|+|F]F]]|]|+

+ |+ |+ |+ |+ |+ ||+ +]|+]+

+ |+ |+ |+ |+ |+ |+ E]|+]|+

+ |+ |+ |+ |+ |+ 2|]+

+|+ |+ |+ |+ +]+|+

+ |+ |+ |+ |+ 2]+ +

+ |+ |+ |+ +F]+ +

+ |+ |+ |+ |+ +

+ |+ |+ |+]|+

+ |+ |+ |+]|+

+ |+ |+ |+ |+ |+ |+ |+ |+ +]+|+|+|F]F]]|]|+

+ |+ |+ |+ |+ |+ |+ +]|+|+|+]|+|+]|+]|+]|+]+]+]|+

+ |+ |+ |+ |+ |+ |+ +]|+|+|+]|+|+]|+]|+]|+]+]+]|+

EPL426 | Computer Graphics

606

7

Brute force solution for triangles

= P

EPL426 | Computer GTaphics

14

ion ywa tplywva

+ |+ |+ +|+]|+|+]+]| +

+ |+ |+ |+ +|+]+|+|+|+]|+]|+

Fl+ |+ |+ |+ |+ | +|+|+]|+]+]|+]|+]+]+
+ |+ |+ |+ |+ | +|+|+|+]|+]+]|+]|+]+]+

+ |+ |+ |+ |+ |+ F|F|F]|F]| |||+ +]+

+ |+ |+ |+ |+ |+ +]]|+ +]|F
+ |+ |+ |+ |+ |+ |+]|+ +]|+
I EIEIEEERENENERE N
IR EIEIEEIERE:
+ |+ |+ |+ |+]|+ +]+

+ |+ |+ |+ +]+ +

+ |+ |+ |+ +)|+

I EIEIERE]

+ |+ |+]+

= We look if it's inside the triangle

EPL426 | Computer GTaphics

Brute force solut
= For each pixel

68

Why triangles?

= Point on a polygon will give us triangles

P,

y P
i&i = 2I1

=1

69 EPL426 | Computer Graphics

Brute force solution for triangles

= For each pixel

= We look if it's inside the triangle

Problem?

+ |+ |+ +|+]|+|+]+]| +

++ |+ |+ |+]|+ +]+|]|+ +]|+

Fl+ |+ |+ |+ |+ | +|+|+]|+]+]|+]|+]+]+
+ |+ |+ |+ |+ | +|+|+|+]|+]+]|+]|+]+]+

+ |+ |+ |+ |+ |+ F|F|F]|F]| |||+ +]+

+ |+ |+ |+ |+ |+ |+]|+ +]|+
I EIEIEEERENENERE N
IR EIEIEEIERE:
+ |+ |+ |+ |+]|+ +]+
+ |+ |+ |+ +]+ +

+ |+ |+ |+ +)|+

I EIEIERE]

+ |+ |+]+

EPL426 | Computer GTaphics

70

Brute force solution for triangles

many unneeded

If the triangle is
calculations

Problem?
small, we do

+ |+ |+ +]+ +]|+]|+
+++++++‘\++

+ |+ |+ |+ |+ +]+]|+]+]|+
+ |+ |+ +|+]+]+]|+]+]|+

+ |+ |+ |+ |+ +] |+ +]|+]|+

+ |+ |+ |+ |+ Q|+ |+ |+ +]|+]|]+ +]|+

+ |+ |+ |+ + |+ +QF |+ |+ +|+]+]|+] +]| +

+l+ |+]+]+

S 3 I IO I I I

MR REN AR AR REE A B

+ |+ |+ |+ |+ |+ +|+]|+]|+]|+
+ |+ |+ |+ |+ |+ +]|+]|+]|+

= We look if it's inside the triangle
EPL426 | Computer GPaphics

= For each pixel

71

Brute force solution for triangles

= Optimization:

= We only look at the pixels that are inside the bounding box of the triangle

= How do we find the bounding box?

+ |+ |+ |+ |+ |+ +]+

+ |+ |+ |+ |+]|+ +‘\+ +

+ |+ |+ |+ |+ +]+]|+]+]|+

+ |+ |+ +|+]+]+]|+]+]|+

+ |+ |+ |+ |+ +] |+ +]|+]|+

+ |+ |+ | +[+QF |+ |+ |+ +]|+]|+]+]| +]|+

+l+ |+]+]+

S 3 I IO I I I

+ |+ |+ |+ + |+ +QF |+ |+ +|+]+]|+] +]| +

MR REN AR A REE R B

+ |+ |+ |+ |+ |+ +|+]|+]|+]|+

+ |+ |+ |+ |+]|+]|+]| +]|+

EPL426 | Computer GTaphics

-0
/=

Brute force solution for triangles

= We only look at the pixels that are inside the bounding box of the triangle

= with the Xmin, Xmax, Ymin, Ymax of its edges

= Optimization:

+ |+ |+ |+ |+ |+ +]+

+ |+ |+ |+ |+]|+ +‘\+ +

+ |+ |+ |+ |+ +]+]|+]+]|+

+ |+ |+ +|+]+]+]|+]+]|+

+ |+ |+ |+ |+ +] |+ +]|+]|+

+ |+ |+ | +[+QF |+ |+ |+ +]|+]|+]+]| +]|+

+l+ |+]+]+

S 3 I IO I I I

+ |+ |+ |+ + |+ +QF |+ |+ +|+]+]|+] +]| +

MR REN AR A REE R B

+ |+ |+ |+ |+ |+ +|+]|+]|+]|+

+ |+ |+ |+ |+]|+]|+]| +]|+

EPL426 | Computer GTaphics

+ |+ |+]|+ +]|+|+]| +]| +

+ |+ |+ +|+|+]|+|+]|+]|+]|+]|+

+ |+ |+ |+ |+ |+]|+]|+ |+ |+ +]|]|+
+ |+ |+ |+ |+]|+ |+]|+ + |+ +|+]|+]|+]|+

+ |+ |+ |+ |+ |+]|+]|+ +]|+]|+|+|+]|+]|+]|+

+ |+ |+ + |+ |+]|+ +]+]+
+ |+ |+ + |+ |+ +]+]+
+ |+ |+ + |+ +]+]+
++ |+ + |+ +]+

+ |+ |+ +] +]+

+ |+ |+ +]+

+ |+ |+ +

Can we do better?

= If the triangles are large, again we have many unnecessary calculations

= What can we do?

EPL426 | Computer GTaphics

74

Scan-Line Polygon Fill Algorithm

= We use line rasterization

+ |+ |+ |+

+ |+ |+ |+

+ |+ |+ |+]|+

+ |+ |+ |+ |+ |+ +
A

L I N O I I

+ |+ |+ |+ |+ |+ |+ |+ |+]|+ +

+ |+ |+ |+ |+ |+ |+ |+ |+ |+]|+]|+

+ |+ |+ |+ |+ +]|+]+

+ |+ |+ |+ |+ |+]|+ +|+]+]|+

+ |+ |+ |+ |+ [+ |+ F|+]|+ +|+]+

|+ |+ |+ [+ F| |+ F|F|F|[+|[F]|F]|+]|+]|+]+]+

+l+ |+ |+ |+ [+ F]|]+ +]+

+ |+ |+ |+ |+ |+ F|+]+]|+
+ |+ |+ |+ + |+ +]| |+

+ |+ |+ |+ + |+ +]|+

+ |+ |+]|+ +|+]+]|+
4

+ |+ + |+ +

L I N I I S SO N N O R A S O I I N R

+ |+ [+ |+ +

|+ |+ |+ |+ F|+ |+ F|F|F|[+ [+ F]|+|+]|+]+]+

+ |+ |+ |+ |+ F|+ |+ F|F|F|[+|[F]|F]|+]|F]|+]+]+

|+ |+ |+ [+ [+ + |+ F|F|+[+|[+F]F]|+]|+]+]+]+

+l+ |+ |+ |+ |+ F|]+ +]+

+l+ |+ |+ [+ |+]|+ +]+

+l+ |+ |+ [+ +]+]+]+

L B N I O I I

+ |+ |+ |+]|+ |+ +]|+
+ |+ |+ |+ |+ |+]+

+ |+ |+ |+]|+]|+

+ |+ |+ |+ +

+ |+ |+ |+]|+

+ |+ |+ |+ |+ |+ |+ +|F|F |+]|+ +]|]|+ +]+]|+

+ |+ |+ |+ |+ |+ |+ +|F|F |+]|+ +]|]|+ +]+]|+

+ |+ |+ ||+ |+ |+ +|+ |+ +|+]|+|[+]+]|+|+]+]|+

= Find the intersections of the scan line with all

edges of the polygon
= Sort the intersections by increasing x coordinate

= Fill in all pixels between pairs of intersections that

lie interior to the polygon

EPL426 | Computer Graphics

/e

76

Scan-Line Polygon Fill Algorithm

10 +

/

Scan Line

EPL426 | Computer Graphics

Scan-Line Polygon Fill Algorithm
<

OOOOOOOOOOOOOOOOOC
ielelelsls'sslole/els/sle/el0lele'slele
OFOROOOOOOOOIOIOE
LEOL LGOI
OROFRQCROGVO LI
BIRE T+ 41544454+ INSECEEE
HI0000090009O LI

NSIh 4444444441 A00O K
SISt 44444+ 4NN
slolels. OO
e IR
O e
S

9,00

77 EPL426 | Computer Graphics

Line Drawing Summary

Over the last couple of lectures we have looked at the idea of scan converting
lines

The key thing to remember is this has to be FAST
For lines we have either DDA or Bresenham
For circles the mid-point algorithm

78 EPL426 | Computer Graphics

7Y

Triangle Scan

void scanTriangle (Triangle T, Color rgba) {

for each edge
compute (y,, x;, dx/dy)

for each scanline at y
for the current edge pair (L, R) {

for (int x = x;; X <= Xz; X++)
SetPixel (x, y, rgba);

X, t= dx./dy;;
Xg t= dxg/dyg;

EPL426 | Computer Graphics

ORLNWhOITO N

/

01234567

Demo: https:

80 EPL426 | Computer Graphics

https://youtu.be/GXi32vnA-2A

