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What is line scan conversion
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▪ This is the last stage of rasterization (the process in which geometric elements 
are converted to tables by pixels and stored in the framebuffer to be viewed)

▪ It follows clipping

▪ All graphics packages scan at the end of the rendering pipeline

▪ Triangles (or higher complexity polygons) are converted to pixels

▪ For 3D rendering, we take into account other processes, such as lighting and 
shading, but we will focus first on algorithms for line scan conversion



Line drawing algorithms
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The Problem Of Scan Conversion
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▪ A line segment in a scene is defined by the coordinate positions of the line end-
points
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The Problem Of Scan Conversion
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▪ But what happens when we try to draw this on a pixel based display?

How do we choose which pixels to turn on?



Considerations
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▪ Considerations to keep in mind:

▪ The line has to look good
▪ Avoid jaggies

▪ It has to be lightening fast!
▪ How many lines need to be drawn in a typical scene?

▪ This is going to come back to bite us again and again



Line Equations
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▪ Let’s quickly review the equations involved in drawing lines
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Lines & Slopes
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▪ The slope of a line (m) is defined by its start and end coordinates

▪ The diagram below shows some examples of lines and their slopes
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A Very Simple Solution

EPL426 | Computer Graphics

▪ We could simply work out the corresponding y coordinate for each unit x
coordinate

▪ Let’s consider the following example:
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A Very Simple Solution

▪ First work out m and b :

▪ Now for each x value work out the y value:
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A Very Simple Solution
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▪ Now just round off the results and turn on these pixels to draw our line
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A Very Simple Solution
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▪ However, this approach is just way too slow

▪ In particular look out for:

▪ The equation y = mx + b requires the multiplication of m by x

▪ Rounding off the resulting y coordinates

▪ We need a faster solution



A Quick Note About Slopes
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▪ In the previous example we chose to solve the parametric line equation to give 
us the y coordinate for each unit x coordinate

▪ What if we had done it the other way around?

▪ So this gives us:

▪ where: and
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A Quick Note About Slopes
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▪ Leaving out the details this gives us:

▪ We can see easily that this line 
doesn’t look very good!

▪ We choose which way to work out 
the line pixels based on the slope of 
the line
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A Quick Note About Slopes
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▪ If the slope of a line is between -1 and 1 then we work out the y coordinates for 
a line based on it’s unit x coordinates

▪ Otherwise we do the opposite – x coordinates are computed based on unit y
coordinates
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The DDA Algorithm
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▪ The digital differential analyzer (DDA) algorithm takes an incremental approach 
in order to speed up scan conversion

▪ Simply calculate yk+1 based on yk



The DDA Algorithm
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▪ Consider the list of points that we determined for the line in our previous 
example:

▪ (2, 2), (3, 23/5), (4, 31/5), (5, 34/5), (6, 42/5), (7, 5)

▪ Notice that as the x coordinates go up by one, the y coordinates simply go up 
by the slope of the line

▪ This is the key insight in the DDA algorithm



The DDA Algorithm

EPL426 | Computer Graphics

▪ When the slope of the line is between -1 and 1 begin at the first point in the 
line and, by incrementing the x coordinate by 1, calculate the corresponding y
coordinates as follows:

▪ When the slope is outside these limits, increment the y coordinate by 1 and 
calculate the corresponding x coordinates as follows:
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The DDA Algorithm
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▪ Again the values calculated by the equations used by the DDA algorithm must 
be rounded to match pixel values

(xk, yk)
(xk+1, yk+m)

(xk, round(yk))

(xk+1, round(yk+m))

(xk, yk) (xk+ 1/m, yk+1)

(round(xk), yk)

(round(xk+ 1/m), yk+1)



▪ The DDA algorithm is much faster than our previous attempt
▪ In particular, there are no longer any multiplications involved

▪ However, there are still two big issues:
▪ Accumulation of round-off errors can make the pixelated line drift away from what was intended

▪ The rounding operations and floating point arithmetic involved are time consuming

The DDA Algorithm
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void Line(int x0, int y0, int x1, int y1) {

int x, y;

float dy = y1 – y0;

float dx = x1 – x0;

float m  = dy / dx;

y = y0;

for (x = x0; x < x1; ++x) {

WritePixel( x, Round(y) );

y = y + m;

}

}

Rounding takes time

Since slope is fractional, need special 
case for vertical lines (dx = 0)



The Bresenham Line Algorithm
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▪ The Bresenham algorithm is another incremental scan conversion algorithm

▪ The big advantage of this algorithm is that it uses only integer calculations



The Big Idea
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▪ Move across the x axis in unit intervals and at each step choose between two 
different y coordinates
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The y coordinate on the mathematical line at xk+1 is:

The Bresenham Line Algorithm
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▪ At sample position xk+1 the vertical separations from the mathematical line 

are labelled dupper and dlower
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The Bresenham Line Algorithm
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▪ So, dupper and dlower are given as follows :

▪ and:

▪ We can use these to make a simple decision about which pixel is closer to the 
mathematical line
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The Bresenham Line Algorithm
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▪ This simple decision is based on the difference between the two pixel positions:

▪ Let’s substitute m with ∆y/∆x where ∆x and ∆y are the differences between 
the end-points :
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The Bresenham Line Algorithm
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▪ So, a decision parameter pk for the kth step along a line is given by:

▪ The sign of the decision parameter pk is the same as that of dlower – dupper

▪ If pk is negative, then we choose the lower pixel, otherwise we choose the 
upper pixel
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The Bresenham Line Algorithm
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▪ Remember coordinate changes occur along the x axis in unit steps so we can 
do everything with integer calculations

▪ At step k+1 the decision parameter is given as:

▪ Subtracting pk from this we get:

cyxxyp kkk +−= +++ 111 22
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The Bresenham Line Algorithm
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▪ But, xk+1 is the same as xk+1 so:

▪ where yk+1 - yk is either 0 or 1 depending on the sign of pk

▪ The first decision parameter p0 is evaluated at (x0, y0) is given as:

)(22 11 kkkk yyxypp −−+= ++

xyp −= 20



The Bresenham Line Algorithm
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BRESENHAM’S LINE DRAWING ALGORITHM

(for |m| < 1.0)

1. Input the two line end-points, storing the left end-point in (x0, y0)

2. Plot the point (x0, y0)

3. Calculate the constants Δx, Δy, 2Δy, and (2Δy - 2Δx) and get the first value for the 

decision parameter as:

4. At each xk along the line, starting at k = 0, perform the following test. If pk < 0, the next 

point to plot is (xk+1, yk) and:

xyp −= 20

ypp kk +=+ 21



The Bresenham Line Algorithm
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▪ Note! The algorithm and derivation above assumes slopes are less than 1. for 
other slopes we need to adjust the algorithm slightly

Otherwise, the next point to plot is (xk+1, yk+1) and:

5. Repeat step 4 (Δx – 1) times

xypp kk −+=+ 221



Bresenham Example
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▪ Let’s have a go at this

▪ Let’s plot the line from (20, 10) to (30, 18)

▪ First off calculate all of the constants:

▪ Δx: 10

▪ Δy: 8

▪ 2Δy: 16

▪ 2Δy - 2Δx: -4

▪ Calculate the initial decision parameter p0:

▪ p0 = 2Δy – Δx = 6



Bresenham Example
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Bresenham Example
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▪ Use the Bresenham algorithm for the line that starts and ends at points (21.12) 
and (29.16) respectively

▪



Παράδειγμα υλοποίησης του αλγόριθμου Bresenham
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Circle design algorithms
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A Simple Circle Drawing Algorithm

EPL426 | Computer Graphics

▪ The equation for a circle is:

▪ where r is the radius of the circle

▪ So, we can write a simple circle drawing algorithm by solving the equation for y

at unit x intervals using:
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A Simple Circle Drawing Algorithm
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A Simple Circle Drawing Algorithm
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▪ However, unsurprisingly this is not a brilliant solution!

▪ Firstly, the resulting circle has large gaps where the slope approaches the 
vertical

▪ Secondly, the calculations are not very efficient
▪ The square (multiply) operations
▪ The square root operation – try really hard to avoid these!

▪ We need a more efficient, more accurate solution



Eight-Way Symmetry
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▪ The first thing we can notice to make our circle drawing algorithm more 
efficient is that circles centred at (0, 0) have eight-way symmetry
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Mid-Point Circle Algorithm
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▪ Similarly to the case with lines, there is an incremental algorithm for drawing 
circles – the mid-point circle algorithm

▪ In the mid-point circle algorithm we use eight-way symmetry so only ever 
calculate the points for the top right eighth of a circle, and then use symmetry 
to get the rest of the points



Mid-Point Circle Algorithm
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(xk+1, yk)

(xk+1, yk-1)

(xk, yk)

▪ Assume that we have just plotted point 

(xk, yk)

▪ The next point is a choice between 

(xk+1, yk) and (xk+1, yk-1)

▪ We would like to choose the point that is 
nearest to the actual circle

▪ So how do we make this choice?



Mid-Point Circle Algorithm
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▪ Let’s re-jig the equation of the circle slightly to give us:

▪ The equation evaluates as follows:

▪ By evaluating this function at the midpoint between the candidate pixels we 
can make our decision
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Mid-Point Circle Algorithm
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▪ Assuming we have just plotted the pixel at (xk,yk) so we need to choose 

between (xk+1,yk) and (xk+1,yk-1)

▪ Our decision variable can be defined as:

▪ If pk < 0 the midpoint is inside the circle and and the pixel at yk is closer to the 
circle

▪ Otherwise the midpoint is outside and yk-1 is closer

222 )
2

1()1(

)
2

1,1(

ryx

yxfp

kk

kkcirck

−−++=

−+=



Mid-Point Circle Algorithm
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▪ To ensure things are as efficient as possible we can do all of our calculations 
incrementally

▪ First consider:

▪ or:

▪ where yk+1 is either yk or yk-1 depending on the sign of pk
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Mid-Point Circle Algorithm
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▪ The first decision variable is given as:

▪ Then if pk < 0 then the next decision variable is given as:

▪ If pk > 0 then the decision variable is:
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Mid-Point Circle Algorithm
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MID-POINT CIRCLE ALGORITHM

• Input radius r and circle centre (xc, yc), then set the coordinates for the first point 
on the circumference of a circle centred on the origin as:

• Calculate the initial value of the decision parameter as:

• Starting with k = 0 at each position xk, perform the following test. If pk < 0, the next 
point along the circle centred on (0, 0) is (xk+1, yk) and:

),0(),( 00 ryx =

rp −=
4

5
0

12 11 ++= ++ kkk xpp



The Mid-Point Circle Algorithm
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Otherwise the next point along the circle is (xk+1, yk-1) and:

4. Determine symmetry points in the other seven octants

5. Move each calculated pixel position (x, y) onto the circular path centred at (xc, yc)

to plot the coordinate values:

6. Repeat steps 3 to 5 until x >= y

111 212 +++ −++= kkkk yxpp

cxxx += cyyy +=



Mid-Point Circle Algorithm Example
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▪ To see the mid-point circle algorithm in action lets use it to draw a circle 
centred at (0,0) with radius 10



Mid-Point Circle Algorithm Example
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Mid-Point Circle Algorithm Exercise
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▪ Use the mid-point circle algorithm to draw the circle centred at (0,0) with 
radius 15



Mid-Point Circle Algorithm Exercise
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Mid-Point Circle Algorithm Summary

EPL426 | Computer Graphics

▪ The key insights in the mid-point circle algorithm are:

▪ Eight-way symmetry can hugely reduce the work in drawing a circle

▪ Moving in unit steps along the x axis at each point along the circle’s edge we need 
to choose between two possible y coordinates



Midpoint Eighth Circle Algorithm
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MidpointEighthCircle(R) { /* 1/8th of a circle w/ radius R */
int x = 0, y = R;
int deltaE = 2 * x + 3;
int deltaSE = 2 * (x - y) + 5;
float decision = (x + 1) * (x + 1) + (y - 0.5) * (y - 0.5) – R*R;
WritePixel(x, y);

while ( y > x ) {
if (decision > 0) { // Move East

x++; WritePixel(x, y);
decision += deltaE;
deltaE += 2; deltaSE += 2; // Update deltas

} else { // Move SouthEast
y--; x++; WritePixel(x, y);
decision += deltaSE;
deltaE += 2; deltaSE += 4; // Update deltas

}
}

}



Other Scan-conversion Problems

EPL426 | Computer Graphics

▪ Aligned Ellipses

▪ Non-integer primitives

▪ General conics

▪ Patterned primitives



Spline Representations
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Spline Representations
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▪ A spline is mathematically defined by 
using a set of constraints

▪ Curves have many uses:

▪ 2D illustration

▪ Fonts

▪ 3D Modelling

▪ Animation

ACM © 1987 “Principles of 
traditional animation applied 
to 3D computer animation”
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The basic idea
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▪ The user specifies the control points

▪ A smooth curve is defined

▪

Control 
Points

Control 
Points

Curve



Interpolation Vs Approximation

EPL426 | Computer Graphics

▪ The curve is defined by a set of control points

▪ There are 2 ways to define the curve based on 
these points

▪ Interpolation - the curve passes through all the 
control points

▪ Approximation - the curve does not pass through 
all control points



Convex Hulls
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▪ The boundary formed by the set of control points for a curve are known as 
convex hull



Bézier Spline Curves
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▪ The most famous method is the one implemented by the engineer Pierre 
Bézier for the design of Renault cars

▪ A Bézier curve can be applied to any number of points, although 4 are usually 
used

▪ Let's n+1 points pk=(xk, yk, zk) where k is between 0 and n

▪ The coordinates of the path of the curve from the vector p0 to pn is given by the 
equation

▪
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Bézier Spline Curves
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Bezier splines are widely used 
(Adobe, Microsoft) for font definition



Bézier Spline Curves
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▪ Why in graphics we do not prefer the use of curves, either from simple shapes 
(circle), or from complex shapes (Bezier curves)?

▪



Polygons
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Scan-Line Polygon Fill Algorithm
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▪ So we can figure out how to draw lines and circles

▪ How do we go about drawing polygons?

▪ We use an incremental algorithm known as the scan-line algorithm

Rasterisation (or rasterization) is the task of taking an image described in a vector 
graphics format (shapes) and converting it into a raster image (pixels or dots)



2D Scan Conversion

▪ Primitives are continuous – the screen is discrete

▪
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2D Scan Conversion

▪ Solution: calculate discretely with approximation

▪ Scanning: the algorithms for efficient sample creation include this approach

▪
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Brute force solution for triangles

▪ ?
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Brute force solution για τρίγωνα

▪ For each pixel 

▪ We look if it's inside the triangle
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Why triangles?
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▪ Point on a polygon will give us triangles

▪
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Brute force solution for triangles

▪ For each pixel 

▪ We look if it's inside the triangle

Problem?
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Brute force solution for triangles

▪ For each pixel 

▪ We look if it's inside the triangle

Problem?
If the triangle is 
small, we do 
many unneeded 
calculations
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Brute force solution for triangles

▪ Optimization:

▪ We only look at the pixels that are inside the bounding box of the triangle

▪ How do we find the bounding box?
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Brute force solution for triangles

▪ Optimization:

▪ We only look at the pixels that are inside the bounding box of the triangle

▪ with the Xmin, Xmax, Ymin, Ymax of its edges
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Can we do better?  

▪ If the triangles are large, again we have many unnecessary calculations 

▪ What can we do?
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Scan-Line Polygon Fill Algorithm

▪ We use line rasterization

▪ Find the intersections of the scan line with all 
edges of the polygon

▪ Sort the intersections by increasing x coordinate

▪ Fill in all pixels between pairs of intersections that 
lie interior to the polygon
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Scan-Line Polygon Fill Algorithm
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Scan-Line Polygon Fill Algorithm
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Line Drawing Summary
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▪ Over the last couple of lectures we have looked at the idea of scan converting 
lines

▪ The key thing to remember is this has to be FAST

▪ For lines we have either DDA or Bresenham

▪ For circles the mid-point algorithm



Triangle Scan
void scanTriangle(Triangle T, Color rgba) {

for each edge 

compute (y2, x1, dx/dy)

for each scanline at y

for the current edge pair (L, R) {

for (int x = xL; x <= xR; x++)

SetPixel(x, y, rgba);

xL += dxL/dyL;

xR += dxR/dyR;

}

}
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Demo
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Demo: https://youtu.be/GXi32vnA-2A

https://youtu.be/GXi32vnA-2A

