
Computer Graphics
Scan Conversion - rasterization

Andreas Aristidou
andarist@ucy.ac.cy

http://www.andreasaristidou.com

CG apes from Dawn of the Planet of the Apes, 2014

What is line scan conversion

EPL426 | Computer Graphics

▪ This is the last stage of rasterization (the process in which geometric elements
are converted to tables by pixels and stored in the framebuffer to be viewed)

▪ It follows clipping

▪ All graphics packages scan at the end of the rendering pipeline

▪ Triangles (or higher complexity polygons) are converted to pixels

▪ For 3D rendering, we take into account other processes, such as lighting and
shading, but we will focus first on algorithms for line scan conversion

Line drawing algorithms

EPL426 | Computer Graphics

The Problem Of Scan Conversion

EPL426 | Computer Graphics

▪ A line segment in a scene is defined by the coordinate positions of the line end-
points

x

y

(2, 2)

(7, 5)

The Problem Of Scan Conversion

EPL426 | Computer Graphics

▪ But what happens when we try to draw this on a pixel based display?

How do we choose which pixels to turn on?

Considerations

EPL426 | Computer Graphics

▪ Considerations to keep in mind:

▪ The line has to look good
▪ Avoid jaggies

▪ It has to be lightening fast!
▪ How many lines need to be drawn in a typical scene?

▪ This is going to come back to bite us again and again

Line Equations

EPL426 | Computer Graphics

▪ Let’s quickly review the equations involved in drawing lines

x

y

y0

yend

xendx0

Slope-intercept line equation:

bxmy +=

where:

0

0

xx

yy
m

end

end

−

−
=

00 xmyb −=

Lines & Slopes

EPL426 | Computer Graphics

▪ The slope of a line (m) is defined by its start and end coordinates

▪ The diagram below shows some examples of lines and their slopes

m = 0

m = -1/3

m = -1/2

m = -1

m = -2
m = -4

m = ∞

m = 1/3

m = 1/2

m = 1

m = 2
m = 4

m = 0

A Very Simple Solution

EPL426 | Computer Graphics

▪ We could simply work out the corresponding y coordinate for each unit x
coordinate

▪ Let’s consider the following example:

x

y

(2, 2)

(7, 5)

2 7

2

5

A Very Simple Solution

▪ First work out m and b :

▪ Now for each x value work out the y value:

x

y

(2, 2)

(7, 5)

2 3 4 5 6 7

2

5
5

3

27

25
=

−

−
=m

5

4
2

5

3
2 =−=b

5

3
2

5

4
3

5

3
)3(=+=y

5

1
3

5

4
4

5

3
)4(=+=y

5

4
3

5

4
5

5

3
)5(=+=y

5

2
4

5

4
6

5

3
)6(=+=y

EPL426 | Computer Graphics

A Very Simple Solution

EPL426 | Computer Graphics

▪ Now just round off the results and turn on these pixels to draw our line

3
5

3
2)3(=y

3
5

1
3)4(=y

4
5

4
3)5(=y

4
5

2
4)6(=y

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

A Very Simple Solution

EPL426 | Computer Graphics

▪ However, this approach is just way too slow

▪ In particular look out for:

▪ The equation y = mx + b requires the multiplication of m by x

▪ Rounding off the resulting y coordinates

▪ We need a faster solution

A Quick Note About Slopes

EPL426 | Computer Graphics

▪ In the previous example we chose to solve the parametric line equation to give
us the y coordinate for each unit x coordinate

▪ What if we had done it the other way around?

▪ So this gives us:

▪ where: and

m

by
x

−
=

0

0

xx

yy
m

end

end

−

−
=

00 xmyb −=

A Quick Note About Slopes

EPL426 | Computer Graphics

▪ Leaving out the details this gives us:

▪ We can see easily that this line
doesn’t look very good!

▪ We choose which way to work out
the line pixels based on the slope of
the line

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

4
3

2
3)3(=x 5

3

1
5)4(=x

A Quick Note About Slopes

EPL426 | Computer Graphics

▪ If the slope of a line is between -1 and 1 then we work out the y coordinates for
a line based on it’s unit x coordinates

▪ Otherwise we do the opposite – x coordinates are computed based on unit y
coordinates

m = 0

m = -1/3

m = -1/2

m = -1

m = -2
m = -4

m = ∞

m = 1/3

m = 1/2

m = 1

m = 2
m = 4

m = 0

The DDA Algorithm

EPL426 | Computer Graphics

▪ The digital differential analyzer (DDA) algorithm takes an incremental approach
in order to speed up scan conversion

▪ Simply calculate yk+1 based on yk

The DDA Algorithm

EPL426 | Computer Graphics

▪ Consider the list of points that we determined for the line in our previous
example:

▪ (2, 2), (3, 23/5), (4, 31/5), (5, 34/5), (6, 42/5), (7, 5)

▪ Notice that as the x coordinates go up by one, the y coordinates simply go up
by the slope of the line

▪ This is the key insight in the DDA algorithm

The DDA Algorithm

EPL426 | Computer Graphics

▪ When the slope of the line is between -1 and 1 begin at the first point in the
line and, by incrementing the x coordinate by 1, calculate the corresponding y
coordinates as follows:

▪ When the slope is outside these limits, increment the y coordinate by 1 and
calculate the corresponding x coordinates as follows:

myy kk +=+1

m
xx kk

1
1 +=+

The DDA Algorithm

EPL426 | Computer Graphics

▪ Again the values calculated by the equations used by the DDA algorithm must
be rounded to match pixel values

(xk, yk)
(xk+1, yk+m)

(xk, round(yk))

(xk+1, round(yk+m))

(xk, yk) (xk+ 1/m, yk+1)

(round(xk), yk)

(round(xk+ 1/m), yk+1)

▪ The DDA algorithm is much faster than our previous attempt
▪ In particular, there are no longer any multiplications involved

▪ However, there are still two big issues:
▪ Accumulation of round-off errors can make the pixelated line drift away from what was intended

▪ The rounding operations and floating point arithmetic involved are time consuming

The DDA Algorithm

EPL426 | Computer Graphics

void Line(int x0, int y0, int x1, int y1) {

int x, y;

float dy = y1 – y0;

float dx = x1 – x0;

float m = dy / dx;

y = y0;

for (x = x0; x < x1; ++x) {

WritePixel(x, Round(y));

y = y + m;

}

}

Rounding takes time

Since slope is fractional, need special
case for vertical lines (dx = 0)

The Bresenham Line Algorithm

EPL426 | Computer Graphics

▪ The Bresenham algorithm is another incremental scan conversion algorithm

▪ The big advantage of this algorithm is that it uses only integer calculations

The Big Idea

EPL426 | Computer Graphics

▪ Move across the x axis in unit intervals and at each step choose between two
different y coordinates

2 3 4 5

2

4

3

5

For example, from position
(2, 3) we have to choose
between (3, 3) and (3, 4)

We would like the point that is
closer to the original line

(xk, yk)

(xk+1, yk)

(xk+1, yk+1)

The y coordinate on the mathematical line at xk+1 is:

The Bresenham Line Algorithm

EPL426 | Computer Graphics

▪ At sample position xk+1 the vertical separations from the mathematical line

are labelled dupper and dlower

bxmy k ++=)1(

y

yk

yk+1

xk+1

dlower

dupper

The Bresenham Line Algorithm

EPL426 | Computer Graphics

▪ So, dupper and dlower are given as follows :

▪ and:

▪ We can use these to make a simple decision about which pixel is closer to the
mathematical line

klower yyd −=

kk ybxm −++=)1(

yyd kupper −+=)1(

bxmy kk −+−+=)1(1

The Bresenham Line Algorithm

EPL426 | Computer Graphics

▪ This simple decision is based on the difference between the two pixel positions:

▪ Let’s substitute m with ∆y/∆x where ∆x and ∆y are the differences between
the end-points :

122)1(2 −+−+=− byxmdd kkupperlower

)122)1(2()(−+−+



=− byx

x

y
xddx kkupperlower

)12(222 −++−= bxyyxxy kk

cyxxy kk +−= 22

The Bresenham Line Algorithm

EPL426 | Computer Graphics

▪ So, a decision parameter pk for the kth step along a line is given by:

▪ The sign of the decision parameter pk is the same as that of dlower – dupper

▪ If pk is negative, then we choose the lower pixel, otherwise we choose the
upper pixel

cyxxy

ddxp

kk

upperlowerk

+−=

−=

22

)(

The Bresenham Line Algorithm

EPL426 | Computer Graphics

▪ Remember coordinate changes occur along the x axis in unit steps so we can
do everything with integer calculations

▪ At step k+1 the decision parameter is given as:

▪ Subtracting pk from this we get:

cyxxyp kkk +−= +++ 111 22

)(2)(2 111 kkkkkk yyxxxypp −−−=− +++

The Bresenham Line Algorithm

EPL426 | Computer Graphics

▪ But, xk+1 is the same as xk+1 so:

▪ where yk+1 - yk is either 0 or 1 depending on the sign of pk

▪ The first decision parameter p0 is evaluated at (x0, y0) is given as:

)(22 11 kkkk yyxypp −−+= ++

xyp −= 20

The Bresenham Line Algorithm

EPL426 | Computer Graphics

BRESENHAM’S LINE DRAWING ALGORITHM

(for |m| < 1.0)

1. Input the two line end-points, storing the left end-point in (x0, y0)

2. Plot the point (x0, y0)

3. Calculate the constants Δx, Δy, 2Δy, and (2Δy - 2Δx) and get the first value for the

decision parameter as:

4. At each xk along the line, starting at k = 0, perform the following test. If pk < 0, the next

point to plot is (xk+1, yk) and:

xyp −= 20

ypp kk +=+ 21

The Bresenham Line Algorithm

EPL426 | Computer Graphics

▪ Note! The algorithm and derivation above assumes slopes are less than 1. for
other slopes we need to adjust the algorithm slightly

Otherwise, the next point to plot is (xk+1, yk+1) and:

5. Repeat step 4 (Δx – 1) times

xypp kk −+=+ 221

Bresenham Example

EPL426 | Computer Graphics

▪ Let’s have a go at this

▪ Let’s plot the line from (20, 10) to (30, 18)

▪ First off calculate all of the constants:

▪ Δx: 10

▪ Δy: 8

▪ 2Δy: 16

▪ 2Δy - 2Δx: -4

▪ Calculate the initial decision parameter p0:

▪ p0 = 2Δy – Δx = 6

Bresenham Example

EPL426 | Computer Graphics

17

16

15

14

13

12

11

10

18

292726252423222120 28 30

k pk (xk+1,yk+1)

0

1

2

3

4

5

6

7

8

9

Bresenham Example

EPL426 | Computer Graphics

▪ Use the Bresenham algorithm for the line that starts and ends at points (21.12)
and (29.16) respectively

▪

Παράδειγμα υλοποίησης του αλγόριθμου Bresenham

EPL426 | Computer Graphics

17

16

15

14

13

12

11

10

18

292726252423222120 28 30

k pk (xk+1,yk+1)

0

1

2

3

4

5

6

7

8

Circle design algorithms

EPL426 | Computer Graphics

(17, 0)

(0, 17)

(17, 0)

(0, 17)

A Simple Circle Drawing Algorithm

EPL426 | Computer Graphics

▪ The equation for a circle is:

▪ where r is the radius of the circle

▪ So, we can write a simple circle drawing algorithm by solving the equation for y

at unit x intervals using:

222 ryx =+

22 xry −=

A Simple Circle Drawing Algorithm

EPL426 | Computer Graphics

20020 22

0 −=y

20120 22

1 −=y

20220 22

2 −=y

61920 22

19 −=y

02020 22

20 −=y

A Simple Circle Drawing Algorithm

EPL426 | Computer Graphics

▪ However, unsurprisingly this is not a brilliant solution!

▪ Firstly, the resulting circle has large gaps where the slope approaches the
vertical

▪ Secondly, the calculations are not very efficient
▪ The square (multiply) operations
▪ The square root operation – try really hard to avoid these!

▪ We need a more efficient, more accurate solution

Eight-Way Symmetry

EPL426 | Computer Graphics

▪ The first thing we can notice to make our circle drawing algorithm more
efficient is that circles centred at (0, 0) have eight-way symmetry

(x, y)

(y, x)

(y, -x)

(x, -y)(-x, -y)

(-y, -x)

(-y, x)

(-x, y)

2

R

Mid-Point Circle Algorithm

EPL426 | Computer Graphics

▪ Similarly to the case with lines, there is an incremental algorithm for drawing
circles – the mid-point circle algorithm

▪ In the mid-point circle algorithm we use eight-way symmetry so only ever
calculate the points for the top right eighth of a circle, and then use symmetry
to get the rest of the points

Mid-Point Circle Algorithm

EPL426 | Computer Graphics

(xk+1, yk)

(xk+1, yk-1)

(xk, yk)

▪ Assume that we have just plotted point

(xk, yk)

▪ The next point is a choice between

(xk+1, yk) and (xk+1, yk-1)

▪ We would like to choose the point that is
nearest to the actual circle

▪ So how do we make this choice?

Mid-Point Circle Algorithm

EPL426 | Computer Graphics

▪ Let’s re-jig the equation of the circle slightly to give us:

▪ The equation evaluates as follows:

▪ By evaluating this function at the midpoint between the candidate pixels we
can make our decision

222),(ryxyxfcirc −+=











=



,0

,0

,0

),(yxfcirc

if 𝑥, 𝑦 is inside the circle boundary

if 𝑥, 𝑦 is on the circle boundary

if 𝑥, 𝑦 is outside the circle boundary

Mid-Point Circle Algorithm

EPL426 | Computer Graphics

▪ Assuming we have just plotted the pixel at (xk,yk) so we need to choose

between (xk+1,yk) and (xk+1,yk-1)

▪ Our decision variable can be defined as:

▪ If pk < 0 the midpoint is inside the circle and and the pixel at yk is closer to the
circle

▪ Otherwise the midpoint is outside and yk-1 is closer

222)
2

1()1(

)
2

1,1(

ryx

yxfp

kk

kkcirck

−−++=

−+=

Mid-Point Circle Algorithm

EPL426 | Computer Graphics

▪ To ensure things are as efficient as possible we can do all of our calculations
incrementally

▪ First consider:

▪ or:

▪ where yk+1 is either yk or yk-1 depending on the sign of pk

()

() 2
2

1

2

111

2
1]1)1[(

2
1,1

ryx

yxfp

kk

kkcirck

−−+++=

−+=

+

+++

1)()()1(2 1

22

11 +−−−+++= +++ kkkkkkk yyyyxpp

Mid-Point Circle Algorithm

EPL426 | Computer Graphics

▪ The first decision variable is given as:

▪ Then if pk < 0 then the next decision variable is given as:

▪ If pk > 0 then the decision variable is:

r

rr

rfp circ

−=

−−+=

−=

4
5

)
2

1(1

)
2

1,1(

22

0

12 11 ++= ++ kkk xpp

1212 11 +−++= ++ kkkk yxpp

Mid-Point Circle Algorithm

EPL426 | Computer Graphics

MID-POINT CIRCLE ALGORITHM

• Input radius r and circle centre (xc, yc), then set the coordinates for the first point
on the circumference of a circle centred on the origin as:

• Calculate the initial value of the decision parameter as:

• Starting with k = 0 at each position xk, perform the following test. If pk < 0, the next
point along the circle centred on (0, 0) is (xk+1, yk) and:

),0(),(00 ryx =

rp −=
4

5
0

12 11 ++= ++ kkk xpp

The Mid-Point Circle Algorithm

EPL426 | Computer Graphics

Otherwise the next point along the circle is (xk+1, yk-1) and:

4. Determine symmetry points in the other seven octants

5. Move each calculated pixel position (x, y) onto the circular path centred at (xc, yc)

to plot the coordinate values:

6. Repeat steps 3 to 5 until x >= y

111 212 +++ −++= kkkk yxpp

cxxx += cyyy +=

Mid-Point Circle Algorithm Example

EPL426 | Computer Graphics

▪ To see the mid-point circle algorithm in action lets use it to draw a circle
centred at (0,0) with radius 10

Mid-Point Circle Algorithm Example

EPL426 | Computer Graphics

9

7

6

5

4

3

2

1

0

8

976543210 8 10

10
k pk (xk+1,yk+1) 2xk+1 2yk+1

0

1

2

3

4

5

6

Mid-Point Circle Algorithm Exercise

EPL426 | Computer Graphics

▪ Use the mid-point circle algorithm to draw the circle centred at (0,0) with
radius 15

Mid-Point Circle Algorithm Exercise

k pk (xk+1,yk+1) 2xk+1
2yk+1

0

1

2

3

4

5

6

7

8

9

10

11

12

9

7

6

5

4

3

2

1

0

8

976543210 8 10

10

131211 14

15

13

12

14

11

16

15 16EPL426 | Computer Graphics

Mid-Point Circle Algorithm Summary

EPL426 | Computer Graphics

▪ The key insights in the mid-point circle algorithm are:

▪ Eight-way symmetry can hugely reduce the work in drawing a circle

▪ Moving in unit steps along the x axis at each point along the circle’s edge we need
to choose between two possible y coordinates

Midpoint Eighth Circle Algorithm

EPL426 | Computer Graphics

MidpointEighthCircle(R) { /* 1/8th of a circle w/ radius R */
int x = 0, y = R;
int deltaE = 2 * x + 3;
int deltaSE = 2 * (x - y) + 5;
float decision = (x + 1) * (x + 1) + (y - 0.5) * (y - 0.5) – R*R;
WritePixel(x, y);

while (y > x) {
if (decision > 0) { // Move East

x++; WritePixel(x, y);
decision += deltaE;
deltaE += 2; deltaSE += 2; // Update deltas

} else { // Move SouthEast
y--; x++; WritePixel(x, y);
decision += deltaSE;
deltaE += 2; deltaSE += 4; // Update deltas

}
}

}

Other Scan-conversion Problems

EPL426 | Computer Graphics

▪ Aligned Ellipses

▪ Non-integer primitives

▪ General conics

▪ Patterned primitives

Spline Representations

EPL426 | Computer Graphics

Spline Representations

EPL426 | Computer Graphics

▪ A spline is mathematically defined by
using a set of constraints

▪ Curves have many uses:

▪ 2D illustration

▪ Fonts

▪ 3D Modelling

▪ Animation

ACM © 1987 “Principles of
traditional animation applied
to 3D computer animation”

“M
an

if
o

ld
 S

p
lin

es
”,

 X
. G

u
, Y

.
H

e
&

 H
. Q

in
, S

o
lid

 a
n

d

P
h

ys
ic

s
M

o
d

el
in

g
2

0
0

5
.

The basic idea

EPL426 | Computer Graphics

▪ The user specifies the control points

▪ A smooth curve is defined

▪

Control
Points

Control
Points

Curve

Interpolation Vs Approximation

EPL426 | Computer Graphics

▪ The curve is defined by a set of control points

▪ There are 2 ways to define the curve based on
these points

▪ Interpolation - the curve passes through all the
control points

▪ Approximation - the curve does not pass through
all control points

Convex Hulls

EPL426 | Computer Graphics

▪ The boundary formed by the set of control points for a curve are known as
convex hull

Bézier Spline Curves

EPL426 | Computer Graphics

▪ The most famous method is the one implemented by the engineer Pierre
Bézier for the design of Renault cars

▪ A Bézier curve can be applied to any number of points, although 4 are usually
used

▪ Let's n+1 points pk=(xk, yk, zk) where k is between 0 and n

▪ The coordinates of the path of the curve from the vector p0 to pn is given by the
equation

▪


=

=
n

k

nkk uuBEZpuP
0

, 10),()(

knk

nk uuknCuBEZ −−=)1(),()(,

)!(!

!
),(

knk

n
knC

−
= binomial coefficients

Bézier Spline Curves

EPL426 | Computer Graphics

Bezier splines are widely used
(Adobe, Microsoft) for font definition

Bézier Spline Curves

EPL426 | Computer Graphics

▪ Why in graphics we do not prefer the use of curves, either from simple shapes
(circle), or from complex shapes (Bezier curves)?

▪

Polygons

EPL426 | Computer Graphics

Scan-Line Polygon Fill Algorithm

EPL426 | Computer Graphics

▪ So we can figure out how to draw lines and circles

▪ How do we go about drawing polygons?

▪ We use an incremental algorithm known as the scan-line algorithm

Rasterisation (or rasterization) is the task of taking an image described in a vector
graphics format (shapes) and converting it into a raster image (pixels or dots)

2D Scan Conversion

▪ Primitives are continuous – the screen is discrete

▪

EPL426 | Computer Graphics

2D Scan Conversion

▪ Solution: calculate discretely with approximation

▪ Scanning: the algorithms for efficient sample creation include this approach

▪

EPL426 | Computer Graphics

Brute force solution for triangles

▪ ?

EPL426 | Computer Graphics

Brute force solution για τρίγωνα

▪ For each pixel

▪ We look if it's inside the triangle

EPL426 | Computer Graphics

Why triangles?

EPL426 | Computer Graphics

▪ Point on a polygon will give us triangles

▪

1
n-1

p1

p2

=
=

2
1

n

i

i

Brute force solution for triangles

▪ For each pixel

▪ We look if it's inside the triangle

Problem?

EPL426 | Computer Graphics

Brute force solution for triangles

▪ For each pixel

▪ We look if it's inside the triangle

Problem?
If the triangle is
small, we do
many unneeded
calculations

EPL426 | Computer Graphics

Brute force solution for triangles

▪ Optimization:

▪ We only look at the pixels that are inside the bounding box of the triangle

▪ How do we find the bounding box?

EPL426 | Computer Graphics

Brute force solution for triangles

▪ Optimization:

▪ We only look at the pixels that are inside the bounding box of the triangle

▪ with the Xmin, Xmax, Ymin, Ymax of its edges

EPL426 | Computer Graphics

Can we do better?

▪ If the triangles are large, again we have many unnecessary calculations

▪ What can we do?

EPL426 | Computer Graphics

Scan-Line Polygon Fill Algorithm

▪ We use line rasterization

▪ Find the intersections of the scan line with all
edges of the polygon

▪ Sort the intersections by increasing x coordinate

▪ Fill in all pixels between pairs of intersections that
lie interior to the polygon

EPL426 | Computer Graphics

Scan-Line Polygon Fill Algorithm

EPL426 | Computer Graphics

2

4

6

8

10 Scan Line

0
2 4 6 8 10 12 14 16

Scan-Line Polygon Fill Algorithm

EPL426 | Computer Graphics

Line Drawing Summary

EPL426 | Computer Graphics

▪ Over the last couple of lectures we have looked at the idea of scan converting
lines

▪ The key thing to remember is this has to be FAST

▪ For lines we have either DDA or Bresenham

▪ For circles the mid-point algorithm

Triangle Scan
void scanTriangle(Triangle T, Color rgba) {

for each edge

compute (y2, x1, dx/dy)

for each scanline at y

for the current edge pair (L, R) {

for (int x = xL; x <= xR; x++)

SetPixel(x, y, rgba);

xL += dxL/dyL;

xR += dxR/dyR;

}

}

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6

a

b

c
7

EPL426 | Computer Graphics

Demo

EPL426 | Computer Graphics

Demo: https://youtu.be/GXi32vnA-2A

https://youtu.be/GXi32vnA-2A

