
Computer Graphics
Clipping

Andreas Aristidou
andarist@ucy.ac.cy

http://www.andreasaristidou.com

CG apes from Dawn of the Planet of the Apes, 2014

Midterm Exam

EPL426 | Computer Graphics

Two-dimensional view: Summary

EPL426 | Computer Graphics

▪ An area that is selected for viewing is called a window.
▪ The window indicates what it is that we will see.

▪ An area on a device to which the viewing window is assigned (e.g.
monitor) is called viewport.

▪ The viewport indicates where the view will take place.

Two-dimensional view: Summary

EPL426 | Computer Graphics

▪ Mapping an area taken from the global coordinate system on a device is called
a projection transformation

▪

World Coordinates

Viewing Coordinates

2D view transformation: Summary

EPL426 | Computer Graphics

Construct world

coordinates

Convert world

coordinates to

viewing coordinates

Map viewing

coordinates

to normalized viewing

coordinates

Map Normalized

Viewport to

device coordinates

Clipping

EPL426 | Computer Graphics

▪ It is the process of finding the exact part of the
polygon that is in the field of view (view volume)

▪ To maintain consistency, clipping a polygon
should result in a polygon, not a sequence of
partially detached lines

▪ We will first look at a 2D solution and then
extend it to 3D

▪

View Window

Eye position

(focal point)

Right

Back
Towards

Up

Viewing Frustum

Why clipping?

EPL426 | Computer Graphics

▪ Clipping removes objects that will not be visible from the scene

▪ The point of this is to remove computational effort

Windowing I

EPL426 | Computer Graphics

▪ A scene is made up of a collection of objects specified in world coordinates

Global coordinates

Windowing II

EPL426 | Computer Graphics

▪ When we display a scene only those objects within a particular window are
displayed

wymax

wymin

wxmin wxmax

Window

Global coordinates

Windowing III

EPL426 | Computer Graphics

▪ Because drawing things to a display takes time we clip everything outside the
window

wymax

wymin

wxmin wxmax

Window

Global coordinates

Clipping

EPL426 | Computer Graphics

▪ For the image below consider which lines and points should be kept and which
ones should be clipped

wymax

wymin

wxmin wxmax

Window

P1

P2

P3

P6

P5P7

P10

P9

P4

P8

Point Clipping

EPL426 | Computer Graphics

▪ Easy - a point (x,y) is not clipped if:

▪ wxmin ≤ x ≤ wxmax ΚΑΙ wymin ≤ y ≤ wymax

▪ otherwise it is clipped

wymax

wymin

wxmin wxmax

Window

P1

P2

P5

P7

P10

P9

P4

P8

Clipped

Points Within the Window
are Not Clipped

Clipped

Clipped

Clipped

Line Clipping

EPL426 | Computer Graphics

Situation Solution Example

Both end-points inside the

window
Don’t clip

One end-point inside the

window, one outside
Must clip

Both end-points outside the

window
Don’t know!

▪ Harder - examine the end-points of each line to see if they are in the window
or not

Brute Force Line Clipping

EPL426 | Computer Graphics

▪ Brute force line clipping can be performed as follows:

▪ Don’t clip lines with both end-points within the
window

▪ For lines with one end-point inside the window and
one end-point outside, calculate the intersection point
(using the equation of the line) and clip from this point
out

Brute Force Line Clipping

EPL426 | Computer Graphics

▪ Brute force line clipping can be performed as follows:

▪ For lines with both end-points outside the window test
the line for intersection with all of the window
boundaries, and clip appropriately

However, calculating line intersections is computationally

expensive. Because a scene can contain so many lines, the

brute force approach to clipping is much too slow…

Cohen-Sutherland Clipping Algorithm

EPL426 | Computer Graphics

▪ An efficient line clipping algorithm

▪ The key advantage of the algorithm is that it vastly reduces
the number of line intersections that must be calculated

Dr. Ivan E. Sutherland co-
d e v e l o p e d t h e C o h e n -
Sutherland clipping algorithm.
Sutherland is a graphics giant
and includes amongst his
achievements the invention of
the head mounted display.

Cohen-Sutherland: World Division

EPL426 | Computer Graphics

1001 1000 1010

0001
0000

Window
0010

0101 0100 0110

▪ World space is divided into regions based on the window boundaries

▪ Each region has a unique four bit region code

▪ Region codes indicate the position of the regions with respect to the window

above below right left

3 2 1 0

Region Code Legend

Cohen-Sutherland: Labelling

EPL426 | Computer Graphics

▪ Every end-point is labelled with the appropriate region code

wymax

wymin

wxmin wxmax

Window

P3 [0001]
P6 [0000]

P5 [0000]

P7 [0001]

P10 [0100]

P9 [0000]

P4 [1000]

P8 [0010]

P12 [0010]

P11 [1010]

P13 [0101] P14 [0110]

Cohen-Sutherland: Lines in The Window

EPL426 | Computer Graphics

▪ Lines completely contained within the window boundaries have region code
[0000] for both end-points so are not clipped

wymax

wymin

wxmin wxmax

Window

P3 [0001]
P6 [0000]

P5 [0000]

P7 [0001]

P10 [0100]

P9 [0000]

P4 [1000]

P8 [0010]

P12 [0010]

P11 [1010]

P13 [0101] P14 [0110]

Cohen-Sutherland: Lines Outside The Window

EPL426 | Computer Graphics

▪ Any lines with a common set bit in the region codes of both end-points can be clipped
▪ The AND operation can efficiently check this

wymax

wymin

wxmin wxmax

Window

P3 [0001]
P6 [0000]

P5 [0000]

P7 [0001]

P10 [0100]

P9 [0000]

P4 [1000]

P8 [0010]

P12 [0010]

P11 [1010]

P13 [0101] P14 [0110]

Cohen-Sutherland: Other Lines

EPL426 | Computer Graphics

▪ Lines that cannot be identified as completely inside or outside the window may
or may not cross the window interior

▪ These lines are processed as follows:

▪ Compare an end-point outside the window to a boundary (choose any
order in which to consider boundaries e.g. left, right, bottom, top) and
determine how much can be discarded

▪ If the remainder of the line is entirely inside or outside the window, retain
it or clip it respectively

▪ Otherwise, compare the remainder of the line against the other window
boundaries

▪ Continue until the line is either discarded or a segment inside the window is found

Cohen-Sutherland: Other Lines

EPL426 | Computer Graphics

▪ We can use the region codes to determine which window boundaries should be
considered for intersection
▪ To check if a line crosses a particular boundary we compare the appropriate bits in

the region codes of its end-points
▪ If one of these is a 1 and the other is a 0 then the line crosses the boundary

Cohen-Sutherland: Examples

EPL426 | Computer Graphics

▪ Consider the line P9 to P10 below

▪ Start at P10

▪ From the region codes of the two end-
points we know the line doesn’t cross the
left or right boundary

▪ Calculate the intersection of the line with
the bottom boundary to generate point P10’

▪ The line P9 to P10’ is completely inside the
window so is retained

wymax

wymin

wxmin wxmax

Window

P10 [0100]

P9 [0000]

P’10 [0000]

P9 [0000]

Cohen-Sutherland: Examples

EPL426 | Computer Graphics

▪ Consider the line P3 to P4 below

▪ Start at P4

▪ From the region codes of the two end-
points we know the line crosses the left
boundary so calculate the intersection
point to generate P4’

▪ The line P3 to P4’ is completely outside the
window so is clipped

wymax

wymin

wxmin wxmax

Window
P’4 [1001]

P3 [0001]

P4 [1000]

P3 [0001]

Cohen-Sutherland: Examples

EPL426 | Computer Graphics

▪ Consider the line P7 to P8 below

▪ Start at P7

▪ From the two region codes of the two
end-points we know the line crosses the
left boundary so calculate the
intersection point to generate P7’

wymax

wymin

wxmin wxmax

Window

P’7 [0000]

P7 [0001] P8 [0010]

P’8 [0000]

Cohen-Sutherland: Examples

EPL426 | Computer Graphics

▪ Consider the line P7’ to P8

▪ Start at P8

▪ Calculate the intersection with the right
boundary to generate P8’

▪ P7’ to P8’ is inside the window so is
retained

wymax

wymin

wxmin wxmax

Window

P7’ [0000]

P7 [0001] P8 [0010]

P8’ [0000]

Calculating Line Intersections

EPL426 | Computer Graphics

▪ Intersection points with the window boundaries are calculated using the line-
equation parameters

▪ Consider a line with the end-points (x1, y1) and (x2, y2)

▪ The y-coordinate of an intersection with a vertical window boundary can be
calculated using:

y = y1 + m (xboundary - x1)

where xboundary can be set to either wxmin or wxmax

EPL426 | Computer Graphics

▪ The x-coordinate of an intersection with a horizontal window boundary can be
calculated using:

x = x1 + (yboundary - y1) / m

where yboundary can be set to either wymin or wymax

▪ m is the slope of the line in question and can be calculated as m = (y2 - y1) / (x2 - x1)

Calculating Line Intersections

Why is clipping difficult?

EPL426 | Computer Graphics

▪ What can happen to a triangle after clipping?

▪ Possible results

triangle-to-triangle triangle-to-quad triangle-to-5-gon

Area Clipping

EPL426 | Computer Graphics

▪ Similarly to lines, areas must be clipped to a
window boundary

▪ Consideration must be taken as to which
portions of the area must be clipped

Sutherland-Hodgman: Area Clipping Algorithm

EPL426 | Computer Graphics

▪ A technique for clipping areas developed by Sutherland & Hodgman

▪ Put simply the polygon is clipped by comparing it against each boundary in turn

Original Area Clip Left Clip Right Clip Top Clip Bottom

Sutherland
turns up
again. This
time with
Gary Hodgman with
whom he worked at
the first ever graphics
company Evans &
Sutherland

Sutherland-Hodgman: Area Clipping Algorithm

EPL426 | Computer Graphics

▪ To clip an area against an individual boundary:

▪ Consider each vertex in turn against the boundary

▪ Vertices inside the boundary are saved for clipping against the next boundary

▪ Vertices outside the boundary are clipped

▪ If we proceed from a point inside the boundary to one outside, the intersection of
the line with the boundary is saved

▪ If we cross from the outside to the inside intersection point and the vertex are
saved

Sutherland-Hodgman: Παράδειγμα

EPL426 | Computer Graphics

▪ Each example shows the point being
processed (P) and the previous point (S)

▪ Saved points define area clipped to the
boundary in question

S

P

Save Point P

S

P

Save Point I

I

P

S

No Points Saved

S

P

Save Points I & P

I

Other Area Clipping Concerns

EPL426 | Computer Graphics

▪ Clipping concave areas can be a little more tricky as often superfluous lines must be
removed
▪ When we have non-convex polygons then the above algorithm can produce polygons with

coincidental edges
▪ This is ok for rendering but maybe not for other applications (e.g. shadows)
▪ The Weiler-Atherton algorithm produces separate polygons for each visible piece of polygon

▪ Clipping curves requires more work
▪ For circles we must find the two intersection points on the window boundary

Window WindowWindow Window

Clipping polygons in 3D

EPL426 | Computer Graphics

▪ Similar to the case in two dimensions, we divide the world into regions

▪ This time we use a 6-bit region code to give us 27 different region codes

▪ The bits in these regions codes are as follows:

Summary

EPL426 | Computer Graphics

▪ Just like the case in two dimensions, clipping removes objects that will not be
visible from the scene

▪ The point of this is to remove computational effort

▪ 3-D clipping is achieved in two basic steps

▪ Discard objects that can’t be viewed
▪ i.e. objects that are behind the camera, outside the field of view, or too far away

▪ Clip objects that intersect with any clipping plane

Nate Robins’ OpenGL Tutorials

▪ Nate Robins has a number of great OpenGL tutorial applications posted on his
website

Nate Robin’s OpenGL Tutorials available at: http://www.xmission.com/~nate/tutors.html

EPL426 | Computer Graphics

Clipping Objects

EPL426 | Computer Graphics

▪ Discarding objects that cannot possibly be seen involves comparing an objects
bounding box/sphere against the dimensions of the view volume
▪ Can be done before or after projection

Clipping Objects

EPL426 | Computer Graphics

▪ Objects that are partially within the viewing volume need to be clipped – just
like the 2D case

The clipping volume

EPL426 | Computer Graphics

▪ After the perspective transformation is complete the frustum shaped viewing
volume has been converted to a parallelopiped - remember we preserved all z
coordinate depth information

When do we clip?

EPL426 | Computer Graphics

▪ We perform clipping after the projection transformation and normalisation are
complete

▪ So, we have the following:

=

1

z

y

x

M

h

z

y

x

h

h

h

Διαίρεση του κόσμου

EPL426 | Computer Graphics

▪ Similar to the case in two dimensions, we divide the world into regions

▪ This time we use a 6-bit region code to give us 27 different region codes

▪ The bits in these regions codes are as follows:

bit 6

Far

bit 5

Near

bit 4

Top

bit 3

Bottom

bit 2

Right

bit 1

Left

Region Codes

EPL426 | Computer Graphics

Point Clipping

EPL426 | Computer Graphics

▪ Point clipping is trivial so we won’t spend any time on it

▪ If the point belongs to the [000000], then it is visible

Line Clipping

EPL426 | Computer Graphics

▪ To clip lines we first label all end points with the appropriate region codes

▪ We can trivially accept all lines with both end-points in the [000000] region

▪ We can trivially reject all lines whose end points share a common bit in any
position

▪ This is just like the 2 dimensional case as these lines can never cross the viewing
volume

▪ In the example that follows the line from P3[010101] to P4[100110] can be rejected

Line Clipping

EPL426 | Computer Graphics

The Equation Of The Line For 3D Clipping

EPL426 | Computer Graphics

▪ For clipping equations for three dimensional line segments are given in their
parametric form

▪ For a line segment with end points P1(x1h, y1h, z1h, h1) and P2(x2h, y2h,

z2h, h2) the parametric equation describing any point on the line is:

uPPPP)(121 −+= 10 u

The Equation Of The Line For 3D Clipping

EPL426 | Computer Graphics

▪ From this parametric equation of a line we can generate the equations for the
homogeneous coordinates:

uhhhh

uzzzz

uyyyy

uxxxx

hhhh

hhhh

hhhh

)(

)(

)(

)(

121

,1,2,1

,1,2,1

,1,2,1

−+=

−+=

−+=

−+=

3D Line Clipping Example

EPL426 | Computer Graphics

▪ Consider the line P1[000010] to P2[001001]

▪ Because the lines have different values in bit 2 we know the line crosses the
right boundary

3D Line Clipping Example

EPL426 | Computer Graphics

▪ Since the right boundary is at x = 1 we now know the following holds:

▪ which we can solve for u as follows:

▪ using this value for u we can then solve for yp and zp similarly

1
)(

)(

121

,1,2,1
=

−+

−+
==

uhhh

uxxx

h

x
x hhhh

p

)()(2,21,1

1,1

hxhx

hx
u

hh

h

−−−

−
=

3D Line Clipping Example

EPL426 | Computer Graphics

▪ When then simply continue as per the two dimensional line clipping algorithm

3D Polygon Clipping

EPL426 | Computer Graphics

▪ However the most common case in 3D clipping is that we are clipping graphics
objects made up of polygons

3D Polygon Clipping

EPL426 | Computer Graphics

▪ In this case we first try to eliminate the entire object using its bounding volume

▪ Next we perform clipping on the individual polygons using the Sutherland-
Hodgman algorithm we studied previously

Games and Clipping Planes

EPL426 | Computer Graphics

 Sometimes in a game you can position the camera in the right spot that the front of an object
gets clipped, letting you see inside of it.

 Video games use various techniques to avoid this glitch. One technique is to have objects that
are very close to the near clip plane fade out before they get cut off, as can be seen below

 This technique gives a clean look while solving the near clipping problem (the wooden fence
fades out as the camera gets too close to it, allowing you to see the wolf behind it).

Screenshots from the game, Okami

Games and Clipping Planes

EPL426 | Computer Graphics

 Ever played a video game and all of a sudden some object pops up in the
background (e.g., a tree in a racing game)? That’s an object coming inside the far
clip plane.

 Old solution: add fog in the distance. A classic example, Turok: Dinosaur Hunter
 Modern solution (e.g. Stone Giant), dynamic level of detail: mesh detail increases

when you get closer to it in the game

▪ Thanks to fast hardware and level of detail algorithms, we can push the far plane back
now and fog is much less prevalent

